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Abstract—The rise of the Internet of Things (IoT) encourages
an emerging computing paradigm – edge computing – which
leverages innovations in “last mile” communications infrastruc-
ture to provide improved support for connected devices and
improved quality of service guarantees for compute-intensive
services such as autonomous driving. Moreover, many high-
value edge computing applications benefit from a privacy-
preserving integration of resource-constrained connected de-
vices, privacy-sensitive data streams, and resource-intensive
analytic techniques like deep learning.

We propose a practical method for privacy-preservation in
deep learning classification tasks based on bipartite topology
threat modeling and an interactive adversarial deep network
construction in the context of edge computing. We term this
approach Privacy Partition. A bipartite topology consisting of a
trusted local partition and untrusted remote partition provides
an apt alternative to centralized and federated collaborative
deep learning frameworks in the case of deployment contexts
such as IoT smart spaces, where users would like to restrict
access to high-resolution data streams due to privacy concerns
but would still like to benefit from deep learning services as
well as external computational resources such as public cloud
computing.
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I. INTRODUCTION

Presently, deep learning has been shown to outperform

other machine learning solutions in a wide variety of prob-

lem areas including computer vision and natural language

processing [1], [2], [3]. Deep-learning-based models benefit

from increased computing power as well as a proliferation

of massive data sets and data-streaming sources.

Real-time machine learning applications are some of the

most significant consumers of user data and potentially one

of the most significant producers of global network traffic.

These analytic techniques require low latency guarantees

from the network in addition to large quantities of data

sourced from a large number of individual contributors.

However, when cloud computing is the sole option for

mobile offloading, these data-intensive technologies place

significant pressures on limited network infrastructure due

to the large amount of real-time data transmission as well

as significant pressure on resource-constrained mobile em-

bedded data-sources due to the high energy-demand of

constantly refreshing wireless signals [4]. Still, the challenge

of high performance network and computation requirements

and demand for large volumes of user data are justified by

the benefits of high value deep learning applications (e.g.,

the real-time computer vision processing used in self-driving

vehicles and virtual reality).

Edge Computing [5] has been proposed to address such

issues in mobile and cloud computing by routing and

processing data at the edge of the networks. It has been

shown that with the paradigm of edge networks, computing

resources may be significantly reduced in terms of energy

consumption and network latency. Additionally, edge com-

puting architectures provide a promising medium for new

privacy-preservation mechanisms by avoiding the need to

send raw user data to remote service providers – easing the

privacy risk potential of information leakages to honest-but-

curious service providers or eavesdroppers.

In this work, we present a practical method for privacy-

preservation in deep learning classification tasks based on

bipartite topology threat modeling and an interactive ad-

versarial deep network construction in the context of edge

computing. We term this approach Privacy Partition. This

framework is based on a bipartite deep neural network

topology consisting of a trusted local partition and untrusted

remote partition. It provides an apt alternative to centralized

and federated collaborative deep learning frameworks in the

case of edge networks, where users would like to restrict ac-

cess to high-resolution data streams due to privacy concerns

but would still like to benefit from deep learning services

and external computational resources such as remote cloud

data centers. We show the feasibility of our approach exper-



imentally – we find that by using the proposed interactive

adversarial training framework, the capacity for an adversary

with access to deep network intermediate states to learn

privacy-sensitive inputs to the network can be significantly

attenuated.

II. RELATED WORK

Edge computing is a distributed computing paradigm

where computation is mainly performed at the edge of the

network [5]. “Edge” devices refer to distributed computing

nodes and network elements that are deployed close to

connected devices and cyber-physical systems that consume

their services. The new edge computing paradigm meets the

need for the realization of scalable distributed computing [6].

However, solution addressing the privacy risk potential of

edge computing has not been well studied.

Deep learning is one of widely used machine learning

models. Recently, questions regarding how best to protect

data privacy within deep networks (including the user data

that is processed both during model learning and model

usage) has raised significant interest in the community of

security and privacy [7], [8], [9].

This work considers deep learning services in the setting

of edge computing [10], [11], [12]. We propose a new

bipartite topology consisting of a trusted local partition and

untrusted remote partition. The proposed framework is appli-

cable to edge computing deployments and can attenuate the

privacy leakage to an honest-but-curious service provider.

III. METHODOLOGY

Prior research has shown that inputs to a deep network

can be recovered from the hidden layer activation in some

deep neural networks architecture such as the Convolutional

Neural Network (CNN). Similarly, we were able to replicate

this finding during the course of developing the framework

proposed here for the non-invertibility of deep networks.

In many cases, it is possible to recover inputs from the

hidden layer activation by training a mapping function.

Given similar training data as the target deep network and

the corresponding hidden layer activation of the model, an

attacker can compute fθa : H → X such that fθa can map

the hidden layer activation to input data.

In service time, we propose to “split” the deep learn-

ing model layers and deploy the “shallow” layers on the

local computing nodes (e.g., edge devices), deploying the

”deeper” layers of the deep network layers on the remote

computing context (e.g., cloud servers). We term these

partitions “local layers” and “remote layers”.

The intuition behind the splitting of the deep network

topology is that the data transformations, such as those

resulting from the application of activation functions and

pooling layers, exhibit some similarities to one-way func-

tions – the resulting data representations are simultaneously

better suited for the forward propagation, to successive

network layers, of the features most salient to improving

classification accuracy, while less applicable to backward

propagation operations that may be used to recover the net-

work inputs generated by any previous layers. We leverage

and strengthen this type of information filtering, that occurs

during the forward propagation of input data through a deep

network, to lessen the ability of attackers to recover the often

privacy-sensitive inputs to deep neural networks without

incurring significant reductions to classification accuracy.

In effect, we would like to lessen the ability to recover

network inputs by strengthening the invertibility of the local

layer operations. To achieve this, we introduce an additional

component during the model learning phase: defender (Θd).

The role of defender Θd is to “mimic” the behavior of an

attacker, which means, the defender attempts to recover the

inputs given hidden layer activations. Then defender network

Θd and the primary deep network Θ are trained concurrently

with the defender network providing feedback regarding how

well a potential attacker can recover inputs given hidden

layer activations. The primary network responds in turn by

iteratively optimizing itself to reduce the defenders recovery

accuracy.

Recall that our primary goal is to learn a deep learning

model fθ = X → Y with a sequence of training data D =
{(xi, yi)}

m
i=1

. According to our bipartite design, the deep

learning model is formulated as fθ = fθl ◦fθr = fθr (fθl(·)),
where fθl : X → H is the function mapping input domain

X to the domain of intermediate layer activations H in local

partition Θl and fθr = H → Y is the function mapping H
to output domain Y in remote partition Θr.

Within this framework, the defender learns mapping func-

tion fθd = H → X . The objective function of the defender

is formulated as follows:

max
θd

1

m

m
∑

i=1

s
(

xi, fθd(fθl(xi))
)

(1)

where s(· · · ) is the similarity metric between the original

input and the recovered input.

During the model learning phase, the primary model fθ =
fθl ◦ fθr uses the recovery performance of defender model

fθd = H → X as supplemental information for optimizing

its parameters, making it harder for an attacker to recover

input images at model usage time. This network capacity is

formulated as follows:

min
θ

1

m

m
∑

i=1

l(yi, fθ(xi)) + λ · s
(

xi, fθd(fθl(xi))
)

(2)

where θ = {θl, θr}, l(· · · ) denotes the loss function for

classification, and λ denotes the defender weight.

When the model is properly deployed to proximate edge

computing infrastructure and remote public cloud infrastruc-

ture according to the bipartite topological design (i.e., during



the model usage phase), the adversary wants to learn the best

mapping function fθa = H → X . The objective function of

the attacker is formulated as:

max
θa∈{θa1

,...,θak
}
max
θa

1

n

n
∑

i=1

s
(

x̂i, fθa(fθl(x̂i)
)

(3)

The goal of the attacker is to recover the inputs of

the model fθ using the best available training data set

D′ = {x̂i}
n
i=1

such that whenever intermediate network

states fθl(x̂i) (corresponding to new data from the edge

devices) are intercepted, the adversary can use fθa to recover

the input.

Note that the data set D′ that the attacker obtains may

differ from the model’s training data set. In practice, the

attacker’s data set may be a similar data set that the attacker

collects independently, or in the worst case, the same training

data set used to learn network fθ, or some admixture of the

two.

In practice, the attacker may not know the precise network

topology Θ used by fθ = fθl ◦fθr (although the task type of

the network is readily available and this information alone

provides some general insights into the topology that is being

used). In this case, the attacker may derive several estimates

θa ∈ {θa1
, . . . , θak

}, selecting the best match among the

deep network architectures they devise based on the apparent

quality of the recovered data.

IV. CONCLUSION

In this work, we propose Privacy Partition as a prac-

tical framework for reducing the privacy risk potential of

an adversary with access to intermediate activation, or a

significant portion of a deep network topology, conducting

successful input recovery attacks. In essence, a deep network

privacy partition lessens the ability to recover network

inputs from intermediate network states by lessening the

invertibility of local layer operations.

Future work will explore the feasibility of deploying

this framework to large scale machine learning systems

with integration of IoT software and hardware and security

modules used to secure a local domain. Additionally, future

work will investigate formal privacy guarantees and optimal

invertibility conditions based on the proposed interactive

adversarial training method.
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