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ABSTRACT
Easily establishing pairing between Internet-of-�ings (IoT)
devices is important for fast deployment inmany smart home
scenarios. Traditional pairing methods, including passkey,
QR code, and RFID, o�en require speci�c user interfaces,
surface’s shape/material, or additional tags/readers. �e
growing number of low-resource IoT devices without an
interface may not meet these requirements, which makes
their pairing a challenge. On the other hand, these devices
o�en already have sensors embedded for sensing tasks, such
as inertial sensors. �ese sensors can be used for limited user
interaction with the devices, but are not suitable for pairing
on their own.

In this paper, we present UniverSense, an alternative pair-
ing method between low-resource IoT devices with an iner-
tial sensor and a more powerful networked device equipped
with a camera. To establish pairing between them, the user
moves the low-resource IoT device in front of the camera.
Both the camera and the on-device sensors capture the phys-
ical motion of the low-resource device. UniverSense converts
these signals into a common state-space to generate �nger-
prints for pairing. We conduct real-world experiments to
evaluate UniverSense and it achieves an F1 score of 99.9% in
experiments carried out by �ve participants.
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1 INTRODUCTION
�e Internet-of-�ings (IoT) requires a con�gured network
to perform sensing and actuation tasks. Pairing is a common
way to con�gure the network by authorizing a device with a
speci�c MAC address to transmit on the network. With the
rapid growth of IoT devices in the smart home environment,
each user will have an average of over 13 devices by 2020,
inevitably some will have signi�cantly more [19]. Various
pairing methods have been explored to allow easy and fast
network setup, including passkeys, QR codes, and RFID tags,
and each has their limitations. For example, passkey-based
methods require I/O hardware such as a display and a keypad
[3]. QR-code based methods require the device to have a
�at surface to print or glue the QR code on. In addition,
they limit the device to using a static MAC address, which
may cause unexpected consequences for user privacy [15].
RFID-based methods require additional hardware to conduct
pairing, such as tags and readers [24].
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Figure 1: UniverSense pairing concept.

However, more and more IoT devices are designed with
no interface [16, 21], which makes it di�cult, if not im-
possible, to conduct the traditional device pairing methods
[9]. Research has been done on utilizing existing on-device
sensors to achieve pairing via detecting co-sensed events.
�ey mainly fall into two categories: interaction-free and
interaction-based methods. Interaction-free methods rely
the fact that co-presented devices can sense events occur-
ring in the shared physical world [17, 29]. �ey require no
human interaction to establish the pairing between devices
in the environment. However, this process usually takes a
long time, especially when the frequency of detected events
is low, as there is less opportunity to correlate co-sensed
events. Interaction-based methods leverage human intention
to designate pairing devices [13, 22, 28]. �e state-of-the-art
approaches require either a designated device [22] or the
devices on both ends to be moved together to generate �n-
gerprints [13], which is di�cult for pairing between devices
of various sizes.
We present UniverSense, an alternative pairing solution

that enables network setup of IoT devices without an inter-
face, by using their existing sensors. Our solution targets
at the pairing between 1) interactive IoT devices (e.g., smart
TVs[25]), which already have I/Os, camera, and network con-
nection, and 2) IoT devices with Inertial Measurement Units
(IMU) and no interfaces [16, 21]. Figure 1 shows a concept
scenario where a user moves an IoT device in front of the
smart TV camera to conduct pairing. Both the camera and
the IoT device itself sense the motion of the IoT device. It
is challenging to extract information comparable enough
for pairing from the 2-D image signal and the 3-D inertial
signal. UniverSense achieves this by converting the co-sensed
motion to a common state space and generating �ngerprints
for pairing. �e contributions of this work include:

• We introduce an IoT device pairing mechanism, Uni-
verSense, that allows devices with di�erent sensing
modalities to pair through motion sensing.
• Wepresent a �ngerprint generating and pairingmethod

for heterogeneous sensing signals that extracts shared
physics representations of the motion from sensors
of di�erent modalities.
• We conducted real-world experiment to evaluate our
pairing mechanism.

�e rest of the paper is organized as follows. Section 2
introduce our pairingmechanismUniverSense. �en, we eval-
uate UniverSense through real-world experiments in Section
3. Next, we discuss the potential expansion of this work in
Section 4. Finally, we compare this work with related work
in Section 5 and conclude in Section 6.

2 UNIVERSENSE SYSTEM OVERVIEW
UniverSense pairs devices based on detecting shared physical
motion. Figure 2 shows the pairing process. UniverSense �rst
obtains the motion signals (Section 2.1), which are observed
by each device involved in the pairing. �en, UniverSense
converts each motion signal –detected by di�erent sensor
modalities– into a common state space (Section 2.2). Next,
each device generates a �ngerprint based on the converted
signal (Section 2.3). Finally, the �ngerprints are used to
determine whether a successful pairing should be established
(Section 2.4).

2.1 Heterogeneous Sensing
�e heterogeneity of the pairing devices allows the more
‘powerful’ IoT devices (i.e., computational power, sensors,
interface, network) to complement the low-resource IoT de-
vice with no interface, allowing for pairing between them
and potentially to the rest of the home network. �e ‘pow-
erful’ devices include 1) interactive devices, such as smart
TVs equipped with camera(s) to enable user interaction [25]
and 2) ambient sensing devices, such as security cameras
[12]. �ese cameras capture image frames that contain the
position/movement of the IoT device. On the other hand, low-
resource IoT devices are likely to be equipped with an IMU
[16, 21]. An IMU consists of an accelerometer, a gyroscope
and a magnetometer, which measure the linear acceleration,
the rotation rate of the device, and the magnetic �eld respec-
tively in body coordinates of the IoT device. We assume that
in this paper the low-resource IoT device has IMU internally.

2.2 Conversion to a Common State-Space
�e challenge of heterogeneous sensing-based pairing is that
the measured signals are in di�erent sensing state-spaces
and therefore cannot be directly compared. However, if a
user moves the low-resource IoT device in front of the cam-
era, both sensors can obtain common information about the
motion (in the form of position, acceleration, etc.) of the
low-resource IoT device in world coordinates (i.e., with re-
spect to down and North). Integration or di�erentiation could
transform acceleration and position into a common magni-
tude. In this regard, the literature is unanimous with respect
to avoiding integration of acceleration signals measured on
devices that can move freely in space [7, 18]. Integration is
unsuitable for two main reasons that cause the error to accu-
mulate faster than linearly over time: the propagation of the
error in the orientation estimate (which is used to remove
gravity from the raw acceleration) and the dri� induced by
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Figure 2: UniverSense system overview.

integration of noisy signals. �erefore, we use di�erentia-
tion to convert displacement into acceleration, and de�ne
the world coordinates acceleration as the common state-
space of our camera-IMU sensor pair.

2.2.1 Converting IMU signal to device acceleration. To
obtain the acceleration of IMU in world coordinates, Uni-
verSense estimates the device orientation from a 9-axis IMU
signal and projects the raw acceleration readings to a global
frame of reference. �is process basically consists of obtain-
ing a rotation matrixW

B R that convertsBody coordinates into
World coordinates. �en, UniverSense utilizes B

W R=iWB R−1 to
project gravity into body coordinates so it can be removed
from the raw acceleration signal. Finally, the result is ex-
pressed in world coordinates by multiplying by W

B R [18].

2.2.2 Converting camera stream to device acceleration. To
extract the acceleration of the low-resource IoT device, Uni-
verSense �rst detects the device from the video stream, then
calculates the position of the device, and �nally converts the
position into acceleration. Object detection methods take a
still image as the input, and provide a set of pixel coordinates
for each target found [1, 8]. �en, object tracking processes
the detection on consecutive frames and assigns a common
ID to each target found in both images. Finally, the position
of the IoT device can be tracked over time by converting
pixel coordinates to the world frame. �is conversion re-
quires knowledge of the camera extrinsics (i.e., the camera’s
W
B R , estimated through e.g., an IMU or a pre-calibration)
as well as intrinsics (obtained from the manufacturer) [30].
Once the camera obtains the world coordinate position of
the device, UniverSense performs a double di�erentiation on
the estimated 3-D position of the IoT device to obtain the
corresponding acceleration. In this work we assume the mo-
tion is performed perpendicular to the view of the camera at
a known distance; in a real implementation, the 3-D position
can be mapped into the camera view plane.

2.3 Fingerprint Generation
UniverSense generates binary �ngerprints from acceleration
signals to reduce the data exchanged. It takes two main steps:
signal axis selection and �ngerprint generation.

Signal axis selection Due to the noise of the sensor,
when the motion of the device is not signi�cant on the inves-
tigated axis, the low Signal-to-Noise Ratio (SNR) may cause
low pairing success rate. UniverSense collects signals of all
axises and selects the axis that has the highest signal energy
to conduct �ngerprint generation on.

Fingerprint generation UniverSense projects the accel-
eration signal into a binary signal by se�ing a threshold. If
the absolute value of the signal is over the threshold, the bit is
1, otherwise, the bit is 0. Since the mean acceleration signal is
close to 0, we speci�cally select an o�set away from 0. With
a sampling rate of 30 Hz, we estimate a 5-second motion can
be used to generate a 128-bit �ngerprint, and an 18-second
motion can be used to generate a 512-bit �ngerprint. Figure
3 shows an example of the �ngerprint generated from IMU
and camera measurements.

2.4 Pairing
To initiate the pairing, the ‘powerful’ device broadcasts a
pairing request and start to generate �ngerprint FPcam . Once
the low-resource IoT device receives the request, it starts to
generate its �ngerprint FPIMU . Once the �ngerprint reaches
the designated length, the low-resource device sends its MAC
address with the generated �ngerprint. �e ‘powerful’ device
compares the received FPIMU to its FPcam and calculates the
�ngerprint similarity. If the two �ngerprints have similarity
over a threshold, UniverSense considers them as paired.

3 EVALUATION
We implemented UniverSense to evaluate our pairing method
in a real-world environment (Section 3.1). We evaluate the
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Figure 3: Fingerprint generation example.
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Low-resource IoT

Figure 4: Experiment settings (camera view).

motion variable (Section 3.2) and pairing performance (Sec-
tion 3.3) respectively.

3.1 Implementation
To evaluate UniverSense, we conducted real-world experi-
ments with an o�-the-shelf RGB camera (ELP 3.0 MegaPixel
USB camera) for the ‘capable’ device, and IMU device from
an IoT sensing platform, CrazyFlie 2.0, as the ‘low-resource’
device [4]. We covered the CrazyFlie with an orange plastic
cap and used a color (hue) detector in OpenCV, together
with an object tracker [11] to ensure we correctly follow
the target. For real use cases, a more robust object detector
could easily replace the current simpli�ed version, without
requiring any hardware modi�cations. In order to reduce
the e�ect of sensing noise in the visual position estimation,
we obtain good results with a traditional Savitzky-Golay
(also known as Least-Squares) smoothing di�erentiation �l-
ter [27]. On the CrazyFlie, we use the popular Madgwick
orientation �lter [14] to minimize the dri� in the orientation
estimation. Figure 4 shows our experiment setup from the
camera view, where the camera is 1.5m away from the mo-
tion area. Fingerprints used in the evaluation are 512 bits.

3.2 Motion Variable Analysis
We evaluate the system feasibility to match motion accelera-
tions measured by camera and IMU under di�erent motion
variables: amplitude and velocity. We �x one parameter
when evaluating the other. We asked one participant to
conduct a designated motion 10 times and demonstrate the
similarity of the pairwise �ngerprints from camera and IMU.

3.2.1 Motion amplitude. We evaluate four di�erent mo-
tion amplitudes, including 10, 20, 40, and 80 cm, with the
motion velocity �xed. We control the motion velocity by
asking the participant to conduct the motion of designated
length within a given duration. We plot the �ngerprint sim-
ilarity against motion amplitude in Figure 5 (a). When the
motion amplitude is 20 cm, the system achieves highest �n-
gerprint similarity 0.95. When the motion amplitudes are
40 and 80 cm, the average �ngerprint similarity drops below
0.9. �e reason is that when the motion is in a large range,
the velocity change is relatively small during the motion,
and therefore the acceleration signal amplitude is low.
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(b) Motion Velocity

Figure 5: Motion variables’ e�ect on �ngerprint simi-
larity. (a) shows the e�ects of motion amplitude. (b)
shows the e�ect of motion velocity.

3.2.2 Motion velocity. Since UniverSense projects di�er-
ent sensing modalities into acceleration, the motion velocity
a�ects the acceleration signal amplitude. We mainly investi-
gate 5 di�erent motion velocities controlled by metronome
beats: 40, 60, 80, 100, 120 beats per minute (BPM) with a
motion amplitude of 20 cm. We demonstrate the �ngerprint
similarity against motion velocities in Figure 5 (b). We ob-
serve an increasing trend of the �ngerprint similarity for
velocities lower than 80 BPM. However, when the velocity
increases above 80 BPM, the increase of the motion velocity
has li�le e�ect on the �ngerprint similarity.

3.3 Pairing Performance
We further evaluate the pairing performance from two as-
pects: 1) human factors, and 2) the e�ciency of �ngerprints.
We �rst investigate the human factor by asking multiple
people to conduct experiment and evaluate the robustness
of UniverSense through di�erent users. �en we evaluate the
�ngerprint e�ciency by analyzing the �ngerprint similarity
of the same motion and across di�erent motions, and the
pairing success rate with a selected pairing threshold.

3.3.1 Human factors. Di�erent people may perform pair-
ing motions di�erently. �erefore, we conduct experiments
with multiple users and ask them to move the IoT device
within a designated area (a circle of 45 cm radius) arbitrarily
for 20s. We compare multiple users’ pairing �ngerprint simi-
larity calculated from di�erent signal axises to demonstrate
the system robustness, and the results are shown in Figure
6. �e average �ngerprint similarity across 5 participants
using X-axis, Y-axis, and our axis-selection approach are re-
spectively 0.845, 0.915, and 0.917, with standard deviations
of 0.146, 0.038, and 0.036. Our approach achieves the highest
�ngerprint similarity and demonstrates stable matching per-
formance. �is is because di�erent people may come up with
di�erent pairing motions. If a �ngerprint is generated using
an axis that lacks signi�cant movement, the SNR will be low,
giving a low �ngerprint similarity. Our approach uses the
axis with the highest SNR among the available signal axises
to achieve high �ngerprint similarity.
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Figure 6: Di�erent signal axes’ �ngerprint similarity.

3.3.2 Fingerprint similarity analysis. We further analyze
the �ngerprint similarity between camera and IMU signals
originating from world coordinate acceleration of the same
motion, versus those from di�erent motions and show it
in Figure 7. �e �ngerprint similarity of the same motion,
even detected by sensors of di�erent modalities, is o�en over
0.8, which we set as the pairing threshold. On the other
hand, the �ngerprint similarity across di�erent motions are
relatively low, with an average of around 0.5. �is indicates
the feasibility of our system. We consider a successful pairing
when the �ngerprint similarity between the camera and an
IMU device is above the pairing threshold. With a threshold
of 0.8, the system achieves a precision of 100%, a recall of
99.8%, and an F1 score of 99.9% in 50 trials.

4 DISCUSSION
�e previous section demonstrated the feasibility of our pair-
ing mechanism. Here we discuss some limitations and po-
tential extensions of this work.

4.1 Secure Pairing through UniverSense
UniverSense provides e�cient device pairing for low-resource
IoT devices that do not have a direct interaction I/O. On the
other hand, establishing secure network is very important
considering the growing number of IoT devices. Compared
to current scan-based pairing, e.g., Samsung Smart�ings
[26], �ngerprints generated by UniverSense can be used to es-
tablish shared keys for secure pairing. Prior work has been
done to achieve secure pairing through protocols that utilize
similar �ngerprints generated from the sensing of shared
physical events for IoT devices and vehicles [10, 17]. �e
challenges for secure pairing through UniverSense include de-
signing a pairing protocol that can e�ectively defend against
a�acker models (e.g., eavesdropping, Man-in-the-Middle).

4.2 Object Recognition and Auto-Pairing
�e implementation of this work relies on color markers
to recognize the IoT device and a �xed depth to track its
motion. Various work has been done on object recognition,
single camera depth estimation, and human motion tracking
[5, 23]. With these trending new approaches for robust ob-
ject recognition and tracking, we believe the pairing can be
done without intentionally moving the device. �e camera
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Figure 7: Compare �ngerprint similarity of the same
motion v.s. of di�erent motions.

can capture the motion of the device or human hand when-
ever the human interacts with it, and then link the physical
objects/device to their virtual ID.

5 RELATEDWORK
Device pairing has been explored using various sensing ap-
proaches. Traditional methods include passkey, QR code, and
RFID, all of which face certain sensing limitations. Passkey-
based methods require I/O hardware such as a display and
a keypad [3]. QR-code based methods require either a �at
surface or a screen to show the QR-code [2], but either case
requires speci�c types of surfaces that certain devices may
not meet. RFID relies on tags and readers speci�cally used
for pairing [24], adding unnecessary hardware. �ese tra-
ditional methods do not apply to our problem because the
type of low-resource IoT devices we focus on in this paper
does not have I/O or extra hardware.

Sensing shared physical phenomena through co-presented
devices has been applied under di�erent scenarios to tackle
these limitations. �ese methods mainly fall into two di�er-
ent categories: context-based and interaction-based. Context-
based pairing methods generally utilize everyday events
that can be detected by co-presented sensors [17, 31]. �ese
methods o�en require zero-interaction and establish the
secured network automatically. However, due to the ran-
domness of human activities, this process can take a very
long time (e.g., days) to identify the shared context.

Interaction-based pairingmethods o�en utilize human
intention to designate pairing devices, such as shared mo-
tions induced by human activities [13, 28] or pointing to the
targets [22]. Involving human interaction leads to reduced
pairing times (e.g., seconds). However, the state-of-the-art
either requires a speci�c device, the ‘wand’ [22] or provides
this type of pairing when the same motion is applied to both
devices simultaneously [13, 28], thus limiting the variety of
devices that can be paired (e.g., shaking a smart TV with an
IoT device might be di�cult). UniverSense provides an alter-
native �exible pairing through conversion of multi-modal
sensing signals, which allows the pairing between IoT de-
vices of heterogeneous systems without additional devices.

Prior work has been done utilizing sensors of di�erent
modalities to achieve various sensing tasks. Nguyen et al.
combine camera and Wi-Fi signals to localize and identify
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people in an indoor environment while they carry their
smartphones [20]. Chen et al. utilize inertial and depth sen-
sors to accurately link the detected motion on both devices
and use this information to estimate the �tness of seniors
[6]. Among these multi-modal sensing applications, to the
best of our knowledge, we are the �rst to apply the shared
physical-phenomena detected by sensors of di�erent sensing
modalities on device pairing.

6 CONCLUSION
In this paper, we present UniverSense, a multi-modal sensing
based pairing method that pairs ‘powerful’ devices equipped
with a camera to low-resource IoT devices with no interface.
�e user moves the low-resource IoT device in front of the
camera so that the camera can capture the device motion.
�e low-resource IoT device, on the other hand, measures
its own motion through its embedded IMU. �ese sensed
motion signals are then converted into a common state-space
to generate pairing �ngerprints. We evaluate UniverSense
through real-world experiments with multiple participants,
and it achieves a 99.9% F1 score for the pairing success rate.
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