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ABSTRACT
Despite the advent of numerous Internet-of-�ings (IoT) applica-
tions, recent research demonstrates potential side-channel vulner-
abilities exploiting sensors which are used for event and environ-
ment monitoring. In this paper, we propose a new side-channel
a�ack, where a network of distributed non-acoustic sensors can
be exploited by an a�acker to launch an eavesdropping a�ack by
reconstructing intelligible speech signals. Speci�cally, we present
PitchIn to demonstrate the feasibility of speech reconstruction from
non-acoustic sensor data collected o�ine across networked devices.
Unlike speech reconstruction which requires a high sampling fre-
quency (e.g., > 5 KHz), typical applications using non-acoustic
sensors do not rely on richly sampled data, presenting a challenge
to the speech reconstruction a�ack. Hence, PitchIn leverages a dis-
tributed form of Time Interleaved Analog-Digital-Conversion (TI-
ADC) to approximate a high sampling frequency, while maintaining
low per-node sampling frequency. We demonstrate how distributed
TI-ADC can be used to achieve intelligibility by processing an in-
terleaved signal composed of di�erent sensors across networked
devices. We implement PitchIn and evaluate reconstructed speech
signal intelligibility via user studies. PitchIn has word recognition
accuracy as high as 79%. �ough some additional work is required
to improve accuracy, our results suggest that eavesdropping using
a fusion of non-acoustic sensors is a real and practical threat.
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Figure 1: Example scenario where non-acoustic sensors in
IoT devices are “listening” to conversations.
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1 INTRODUCTION
Emerging technologies in the Internet of �ings (IoT) give rise to
wide deployment of pervasive networked sensors. �is trend is
evidently increasing as recently demonstrated [33, 39], projecting
an IoT and global sensor market of $1.7 Trillion and $190.6 Billion,
respectively, by 2021. As the number of IoT devices increase, sensors
will surround us to monitor various parts of our lives at homes,
o�ces, and numerous other places.

While sensors contribute to numerous constructive applications,
some of the recent research demonstrate the feasibility of launching
side-channel a�acks to leak privacy sensitive information. Specif-
ically, these research demonstrate the feasibility of inferring sen-
sitive information of a victim (e.g., location or keystrokes) using
only accelerometer data from a smart phone [20, 30, 34].

All of the aforementioned side-channel a�acks focus on extract-
ing private information from an individual sensor. However, the
expected penetration of IoT devices into our homes and workplaces
inspires us to consider additional threats due to wide deployment
of sensors, including structural and activity sensors used for com-
mon IoT applications. We are witnessing structural sensors such
as geophones and accelerometers in smart buildings and smart
cities [26, 35, 36, 46] o�en as array of sensors for various applica-
tions such as occupancy, structural health, and earthquake monitor-
ing. Furthermore, beyond the already prevalent sensing capabilities
of smartphones, smart watches, and tablets, we are now seeing
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Figure 2: Recording of single geophone, accelerometer, gy-
roscope, andmicrophone of the word “one” each sampled at
8 KHz.

activity sensors (such as accelerometers and gyroscopes) deployed
in smart TV remotes and gaming controllers (e.g., Wii remote, PS4
and Xbox controllers) [17, 45]. Many of these sensors are widely
deployed in experimental and generic wireless sensor boards for
multi-purpose sensing [27, 28, 48], and we expect their deployment
and inclusion in commercial services to increase dramatically based
on the market projections mentioned above.

With such wide deployment of sensors in IoT devices, we �nd
that a large portion of research community has concentrated on
�nding and defending against vulnerabilities of individual sensors
or devices, and what the posed risks are for the users. However, we
are more interested in exploring new vulnerabilities if an a�acker
compromises data collected from multiple devices. Speci�cally, we
pose the question – what unforeseen information can one extract
from fusion of these sensors across networked devices?

In search for the answer to the above question, we present
PitchIn to demonstrate the feasibility of achieving the seemingly
unrealizable goal of reconstructing an intelligible speech signal by
fusing non-acoustic sensor data collected from a network of nodes.
Speci�cally, we consider scenarios of potential security breaches
of a smart home/o�ce’s gateway or in service provider’s database,
which has logs of sensor data from victim’s IoT devices. Such
breaches have been witnessed in many real-world examples re-
cently [7, 9]. Hence, the a�acker does not have to compromise
individual devices equipped with sensors in victim’s home or o�ce
to gain access to the sensor data. We illustrate an example scenario
depicted in Figure 1.

Traditionally, non-acoustic sensors such as geophones, accelerom-
eters, and gyroscopes are thought to be unresponsive to acoustic
signals, as they are designed to capture motion signals (vibrations,
movements, and tilt angles, respectively). However, we �nd from
our experiments and from relatedwork, that when exposed to sound
waves, the sensors vibrate to output minuscule signals, su�cient
to be processed to reconstruct intelligible acoustic signals [32, 50].
Figure 2 depicts the time series plots of non-acoustic sensors such
as a geophone, an accelerometer (x-axis), and a gyroscope (x-axis),

when sampled at 8 KHz1. We also show microphone data for com-
parison.

Unfortunately, a sampling frequency of 8 KHz is much higher
than the typical rate at which these motion sensors are con�gured
to be sampled at in commercial devices (further discussed in detail
in Section 2.1.2). Obtaining intelligible speech signals, however,
require a high sampling frequency, with a minimum of 5 KHz [37],
while telephones and CDs are sampled at 8 KHz and 44.1 KHz,
respectively [29] for higher quality audio. Hence, an a�acker cannot
recover an intelligible speech from sensor data of a single device.

Hence, to increase the overall system sampling frequency, PitchIn
builds upon the idea of Time InterleavedAnalog-Digital-Conversion
(TI-ADCs) [23], which is a method to parallelize the sampling task
with multiple ADCs with temporal o�set. PitchIn extends this idea
to create Distributed TI-ADCs so that the reconstructed signal,
which we refer to as the Amalgam signal, has an overall e�ect of
being sampled at a high sampling frequency. In reality, however,
each node is sampled at a much lower sampling frequency. Hence,
each node is “pitching in” to contribute to the Amalgam signal.

Even with the high overall Amalgam signal sampling frequency
thanks to PitchIn’s Distributed TI-ADC, achieving intelligibility
from the reconstructed Amalgam signal is extremely challenging
because fusion of sensor data creates mismatches in amplitude
alignments and causes distortions. Hence, we transform the signals
using di�erent signal processing techniques (e.g., normalization
and denoising) to reconstruct a �nal speech signal that can be
interpreted by humans.

We evaluate the intelligibility of PitchIn via a user study (ap-
proved by our Institutional Review Board (IRB)) by reconstructing
two sets of Amalgam signals constructed of varying number sen-
sors sampled with per node sampling frequency of 500 Hz and 1
KHz.

In summary, we present the following contributions.

• We present an eavesdropping a�ack by enabling intelligi-
ble speech signal reconstruction by fusing seemingly
innocuous non-acoustic sensory data across networked sen-
sor devices: the reconstructed signal has a high sampling
frequency despite low per-node sampling frequency by lever-
aging the distributed TI-ADC. We highlight that PitchIn
is an eavesdropping a�ack, and is not a substitute of an
Automated Speech Recognition (ASR) engines, although
PitchIn can be complemented with ASRs to increase the
e�ciency of the a�ack (Discussed in Section 6.4).

• We demonstrate a feasibility study and evaluation of
PitchIn and resulting Amalgam signals: we study the feasi-
bility of speech recognition via proof-of-concept implemen-
tation and evaluation of human recognition of the resulting
signals. We demonstrate that PitchIn’s reconstructed sig-
nals yield highest recognition accuracy of 79%, 53%, and
35% for varying sensor modalities, sampling frequencies,
and number of nodes.

1We note that we only use x-axis of accelerometer and gyroscope throughout this
paper for simplicity, but the axis can be interchanged or combined with other axes.
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2 BACKGROUND
In this section, we �rst present information on sensor device physics
and where these sensors are used today in di�erent IoT applications.
Following that, we discuss the main idea of interleaved ADC and
how it increases the overall sampling frequency. We then present
relevant information on speech intelligibility. We then present the
related work.

2.1 Sensors
We now introduce a brief discussion about how each sensor cap-
tures physical signals and transform them into electrical signals, as
depicted in Figure 3, and present their real-world use cases in IoT
applications.

2.1.1 Sensor Device Physics.
Geophone capturesmechanical vibrations that travel through solid
media [13]. As mechanical waves reach the base of a geophone,
small vibrations cause the base magnet to vibrate. Subsequently,
an electrical coil a�ached to the proof mass experiences changes
in magnetic �ux, which in turn translate the mechanical signal to
voltage induction, which is output as analog signal. As geophones
are tuned to capture longitudinal mechanical waves, it is no surprise
that vibrations from sound waves induce small vibrations of the
sensory mechanism, so acoustic waves are registered as small but
detectable signals in the analog output.

Accelerometer similarly capturesmechanical vibrations through
its sensing axes [16] (Figure 3(b)). As the MEMS sensor accelerates
along the axis of interest, a �ctitious inertial force shi�s the proof
mass to swing between springs. �e change in the distance between
the metal plates results in the change in capacitance, yielding the
analog signal change which can bemapped to the acceleration value
using a predetermined conversion factor. Since acoustic waves ex-
ert a force on the proof mass, small vibrations occur and yield
an analog signal output that would otherwise be interpreted as
acceleration.

GyroscopeMEMS gyroscopes also have a similar structure to
that of MEMS accelerometers [44]. Ass a gyroscope is rotated, the
proof mass rotates as a result of the �ctitious Coriolis force. �is
force is analogous to that of inertial force in translation. As metal
plates rotate as a response, the capacitance change is registered as
an analog signal. As acoustic waves come in contact with a MEMS
gyroscope, small vibrations that reach the proof mass also create
vibration along the rotating axis, translating to electrical signals
through capacitance.
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Figure 3: Illustration of how mechanical sensors translate
physical movements into voltages.
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Figure 5: System overview diagram of PitchIn speech signal
reconstruction.

2.1.2 Sensors Embedded in IoT Devices.
Di�erent IoT devices have various sensors depending on their appli-
cations. We highlight example IoT devices that include geophone,
accelerometer, or gyroscope. Di�erent devices sample these sen-
sors at varying frequencies depending on the application. Higher
sampling frequency captures more information resulting in more
accurate representation of the signal, but at a cost of higher com-
putational and energy costs. Table 1 depicts some of the IoT appli-
cations and the corresponding sensor modalities.

Structural and building monitoring solutions leverage (o�en
an array of) sensors such as geophones, accelerometers, and gy-
roscopes. Device-free user occupancy identi�cation and moni-
toring solutions are proposed for smart buildings [35]. Structural
healthmonitoring devicesmonitor the condition of buildings and/or
bridges [26, 46]. Earthquake detection devices and indoor foot-
step monitoring systems also leverage geophones to measure and
analyze seismic vibrations, and perform occupancy monitoring,
respectively [36]. �ese devices sample on the order of 1 KHz.

Furthermore, mobile devices such as smartphones, smart watches,
and tablets embed a large number of sensors, including accelerom-
eters and gyroscopes, used for various applications (e.g., activ-
ity/gesture recognition, gaming, etc). Mobile OSes such as iOS and
Android restrict the sampling frequencies of these sensors to a max-
imum of 200 Hz. Controllers for gaming consoles (e.g., Wii Remote,
PS4 Dualshock4 Controller, Xbox Controller) embed accelerometers
and gyroscopes to detect user motion for dynamic gaming expe-
riences [45]. Similarly, smart TV remotes embed sensors for user
gesture recognition and identi�cation [17]. �ese devices sample
sensors on the order of 100 Hz.

2.2 Time Interleaved ADC
Time Interleaved Analog-Digital Conversion (TI-ADC) has been
shown to acquire high sampled data on resource-constrained sys-
tems. �e main idea behind TI-ADC is that while each ADC is
bounded by a relatively low sampling frequency, it is possible to
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Table 1: IoT devices used for di�erent applications and the corresponding sensors embedded in the devices.

increase the e�ective sampling rate by using multiple ADCs in
parallel. Speci�cally, a set of multiple ADCs are placed at di�erent
temporal points to sample at a low frequency [23]. Subsequently,
so�ware recombines the pieces of sampled data. Assuming time
synchronization, TI-ADC allows e�ective sampling frequency to
increase by a factor of the number of ADCs. �is is depicted in Fig-
ure 4. PitchIn builds upon this idea, but rather than using multiple
ADCs on a single physical system, we treat distributed devices in a
network as “virtual” ADCs.

2.3 Speech Intelligibility
Two of themain factors contribute to achieving speech intelligibility
– (1) sampling frequency and (2) contextual information. Human
auditory systems process acoustic signals up to 20 KHz. Due to
the Nyquist sampling theorem – which de�nes minimum required
sampling rate for the signal [41] – audio �les on CDs are created
using a sampling rate of 44.1 KHz to avoid distortion [29]. We also
note that minimum sampling frequency of 5 KHz is required for
intelligibility of human speech signals [37].

Another factor to consider is the context within speech. Speech
recognition by humans is known to be a complex experience that
subconsciously perceives words that make best sense within the
given context. When a distorted signal is presented to human
perceptual system, it is known to perform much be�er when the
context of the information is also presented [47]. Inspired by the hu-
man speech recognition, automatic speech recognition (ASR) tools
also use language models to increase the recognition accuracy [25].

In this paper, we take into consideration how sampling frequency
from each sensor a�ects reconstruction of speech signals. Further-
more, we also take into consideration of contextual information
when designing our user study to re�ect the reality of speech recog-
nition performed by humans.

2.4 Related Work
We now present related work relevant to PitchIn. We �rst present
papers that exploit a non-acoustic sensors to capture sound sig-
nals. We then present related work exploring methods to leak
side-channel information via sensor data.

2.4.1 Sensors Capturing Acoustic Signals.
Sensors in Smartphones. Recent research has demonstrated key-
word detection using an accelerometer [50] and a gyroscope [32]
in smartphones. Gyrophone demonstrates that commercial gyro-
scopes that are implemented in smartphones are capable of cap-
turing acoustic signal even at low sampling frequency [32]. With
proper signal processing and machine learning algorithms, this is

enough to show speaker identi�cation and speech �nger printing.
AccelWord demonstrates hot word detection using accelerome-
ter, while achieving low energy consumption [50]. In addition to
demonstrating high accuracy in hot word detection, this work also
demonstrates the feasibility of an accelerometer capturing rich data
more so than conventionally expected.

However, both of these approaches rely on machine learning to
train a classi�er on a small, prede�ned group of keyword �nger-
prints (on the order of tens of words) and later test whether the
spoken words’ �ngerprints match the trained �ngerprints, neither
reconstructing intelligible speech signals. While these are promis-
ing �rst steps, each work mainly focuses on recovering �ngerprints
of a small prede�ned word group. Furthermore, we �nd that Gy-
rophone is limited as a practical eavesdropping tool because of
the low recognition accuracy when evaluating speaker-independent
experiments, which resembles a more realistic a�ack scenario than
speaker-dependent experiment, yet only yielding 7% to 17% on dif-
ferent phones. Gyrophone also provides a preliminary evaluation
of interleaving two gyroscope signals from di�erent smartphones
to increase the overall sampling frequency. However, Gyrophone
neglects to evaluate the results of speaker-independent experiments.
We imply that the results must be less accurate than that of the
single sensor experiment which yielded a best case of 17% because
the recognition accuracy from the interleaved signals would not be
higher than that of a single sensor experiment.

In this paper, we are rather interested in reconstructing intelli-
gible speech signals without restriction of prede�ned keywords nor
any prior training. Instead of prede�ned keywords, we can lever-
age any additional context information relevant to the deployment
scenario to infer a restricted language model that is independent of
the Amalgam signal, which aids in speech intelligibility. Hence, the
problem we are tackling is necessarily more challenging than the
previous approaches because there is no prior restriction on possi-
ble �ngerprints when the Amalgam signal is constructed, requiring
much more information to be extracted from the Amalgam signal.

Sensors embedded inNon-smartphoneDevices. �ere have
been approaches to capture acoustic signals from non-smartphone
environments as well. Son et al. describe how gyroscopes respond
to acoustic signals of certain frequency, enough to malfunction the
�ight control of drones [43]. Visual Microphone leverages a camera
to capture small vibrations on object surfaces due to sound waves,
which recovers the acoustic signal of the sound source [15]. Once
again, while PitchIn has a synonymous initial idea of capturing
sound signals from non-acoustic sensors, we are more interested in
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fusing disparate non-acoustic sensors that inherently are sampled
at low sampling frequencies.

2.4.2 Side-Channel A�acks.
ACComplice presents a side-channel a�ack on an accelerometer
in a smartphone by inferring a driver’s starting location within a
200 meter radius, along with the traveled route [20]. ACCessory
also exploits vulnerabilities of an accelerometer in a smartphone
by inferring tapped keystrokes, and is able to extract six charac-
ter passwords within a median of 4.5 trials [34]. spiPhone uses
accelerometer readings of a smartphone placed close to a com-
puter keyboard to infer text entered on the keyboard [30]. �ese
work look into exploiting sensor side-channel vulnerabilities from
a single device. PitchIn, however, looks into interesting potential
vulnerabilities when fusing sensor signals from di�erent devices.

3 THREAT MODEL
We now present the threat model of PitchIn. Speci�cally, we present
the goals and capabilities of the a�acker as well as the assump-
tions made. �e main goal of the a�acker is to launch a successful
eavesdropping a�ack on victim’s spoken verbal communications
in his/her home, o�ce, conference rooms, etc. Speci�cally, we
consider an o�ine a�ack made possible by potential breaches of
recorded sensor data from a gateway in a smart home or service
provider’s database, o�en encountered in many real-world inci-
dents [7, 9, 19]. However, each of these sensor data are sampled at
low sampling rate, resulting in non-intelligible sound. Furthermore,
we consider a�ackers who does not have the capability of remotely
controlling individual device to modify and increase the sampling
frequency. �e a�acker thus a�empts to interleave multiple signals
o�ine to achieve a Amalgam signal that has an overall e�ect of a
single device with a high sampling rate, increasing the intelligibility.
We note that the a�acker only launches PitchIn a�ack if (s)he does
not gain access to a microphone data (always sampled with high
sampling rate). Otherwise, the a�acker will directly make use of
the microphone data instead of the non-acoustic sensor data, elimi-
nating the need to interleave signals of di�erent devices in the �rst
place. �is is a reasonable assumption because there are not many
homes, o�ces, and conference rooms that are constantly recording
microphone data, as opposed to structural or motion sensors, which
are designed to constantly monitor their environment.

4 DESIGN AND IMPLEMENTATION
We now discuss the implementation details of reconstructing an
intelligible Amalgam signal by fusing data collected from a network
of sensors. We �rst present an overview of the Amalgam signal
generation, and then discuss the details.

4.1 Overview
To construct Amalgam signals from di�erent sensors, PitchIn lever-
ages a distributed form of Time Interleaved Analog-Digital Con-
version (Distributed TI-ADC). �is is to generate an e�ect of high
sampling frequency (FsAmal ) signal from a fusion of multiple sen-
sor data that are sampled at low per-node sampling frequency
(Fssensor ). However, distributed TI-ADC requires addressing di�-
cult challenges to produce an intelligible speech signal. Figure 5

depicts the �ow chart diagram of PitchIn Amalgam generation steps.
First, each sensor data is sampled locally with its low Fssensor . �en
each individual signal is leveled to account for DC o�set mismatches
that occurred during the ADC phase. Subsequently, individual sig-
nals are normalized to be aligned because di�erent physical sensors
lead to gain mismatches. We then leverage distributed TI-ADC
to interleave di�erent signals into one Amalgam signal and then
perform post-processing such as interpolation and denoising.

4.2 Main Challenges of Amalgam Generation
We discuss in detail how PitchIn addresses the following main
challenges: levelling DC o�set, gain normalization, accounting for
temporal o�set mismatches, and post-processing.

4.2.1 Leveling DC O�set.
Data sets from di�erent sensors may have distinct DC o�set, or
average value o�set from 0 volts [11] due to variations in hardware.
With the aggregated data from all the nodes, PitchIn reconstructs
the Amalgam signal by �rst leveling the DC o�set. Leveling the
DC o�set is important to speech intelligibility because the DC
o�set contributes to either a clipping of loudest parts of the signal,
distortions, and/or reduced audio volume.

4.2.2 Gain Normalization.
Data sets from di�erent sensors also exhibit di�erent amplitude
levels due to the di�erences in how each sensor captures the vibra-
tions from the sound signal and the di�erences in the ampli�cation
level before going through the ADC. Amplitude normalization is
imperative for PitchIn to reconstruct intelligible speech signal by
fusing di�erent sensor readings. Figure 6 depicts a toy example that
illustrates this concept. Figure 6(a) and 6(b) depict two signals, S1
and S2, respectively, exemplifying noisy sensor readings of a sinu-
soidal signal with non-aligned amplitudes. Figure 6(c) depicts the
resulting interleaved signal, SintS1S2, when no amplitude normal-
ization is performed. (We explain the details of signal interleaving
in Section 4.2.3 and 5.3.) We note that the resulting signal is heavily
distorted.

However, we show the e�ect of normalization with the remain-
ing sub�gures. Figures 6(d) and 6(e) depict ZS1 and ZS2 , which are
output of Z-Score normalization of S1 and S2, respectively. Fig-
ure 6(f) depicts the resulting interleaved signal, SintZS1ZS2 of the
normalized signals, ZS1 and ZS2 . As depicted from this �gure, the
resulting signal has a high resemblance to the original sinusoidal
signal.

While other types of normalization methods may be applied,
we leverage Z-Score because it computes the statistical quanti�-
cation of how much each score is distant from the mean in terms
of standard deviations. Within a sensory modality, the signal to
noise ratio of audio signal is expected to be similar between the
sensors. �is allows usage of Z-scores to project the signals in a
statistically normalized space, where the amplitude of the signals
in all the sensors will be aligned to one another based on signal to
noise ratio. �e normalized value of Z-Score ZSi is computed for
data Si from the ith sensor that has a known mean µi and standard
deviation σi is computed as ZSi = (Si − µi )/σi .

4.2.3 Accounting for Temporal O�set Mismatches.
Di�erent devices start sampling their sensors at di�erent times. We
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Figure 6: A toy example of amplitude normalization and its e�ects.

note that to achieve the best results for the distributed TI-ADC,
each device has to sample at a regular interval relative to each
other, resulting in perfectly interleaved signals. �is increases
the Amalgam signal sampling frequency by n times, where n is the
number of sensors. As a proof-of-concept, we demonstrate this with
experiments in Section 5. However, achieving perfectly interleaved
data is extremely infrequent in practice. Rather, the temporal o�set
is close to beingmodeled as random. We demonstrate that evenwith
such limitations, PitchIn obtains reasonable recognition accuracy
depicted in Section 5.3.2.

4.2.4 Post-processing.
Interpolation. Once data points are collected, spline interpolation
is used to estimate the original signal. We interpolate the signal
to output a Amalgam signal with a sampling frequency of 40 KHz.
�is method uses pieces of polynomials to estimate the region with
no signal. Because spline interpolation has no restriction on how
available data points are spaced, it is appropriate to use especially
in the current implementation where data points may be available
at random temporal o�sets.

Filtering. We then perform high-pass �ltering to the normalized
signal to remove the transient noise. We leverage a fourth-order
Bu�erworth �lter [12] with a cuto� frequency at 300 Hz. Bu�er-
worth �lter design uniformly preserves the passband frequency,
while a�enuating stopband frequencies.

5 EVALUATION
We now describe the evaluation details of PitchIn eavesdropping at-
tack. We �rst present the experiment setup and the implementation
details. We then present and analyze di�erent evaluation scenarios.
We report corresponding statistical test results in Appendix A.

5.1 Experiment Setup
Apparatus. We implement PitchIn by interfacing the sensors with
Arduino Uno boards [4]. Each Arduino board interfaces with one
distinct sensor, namely a geophone, accelerometer, or gyroscope.
For ground truth, we also interface an Arduino with a microphone.
�e apparatus is depicted in Figure 7. �e SM-24 geophone [13] is

designed to detect ground movement and translates to an output
voltage. �e ADXL-335 three-axis MEMS accelerometer [16] mea-
sures and creates signals to represent the acceleration experienced
by the sensor in the range of -3 to 3 g. �e LPY403AL two-axis
gyroscope [44] measures and outputs signals for the angular veloc-
ity of the pitch (X) and yaw (Z) axes in the range of -30 to 30°/s.
Each sensor is ampli�ed in hardware using two operational ampli-
�ers [24] and then fed into the Arduino’s ADC. We refer to each of
the board-sensor combinations as a node.

�e Arduino Uno board uses an 8-bit ATmega328P microproces-
sor [10]. It has 32 KB �ash memory, 2 KB SRAM, and 1 KB EEPROM
and a clock speed of 16 MHz. It has six analog interface pins. �e
single ADC has a resolution of 10 bits and output voltage range of
0 to 5 Volts. In our work, we modify the Arduino se�ing to range
from 0 to 3.3 Volts to match the maximum output voltage of the
sensors.

Geophone	   Accelerometer	  

Gyroscope	   Microphone	  

Speaker	  

Figure 7: Experimental apparatus with a geophone, an ac-
celerometer, a gyroscope, and a microphone.

Data Collection. Each node logs data on a microSD card, lever-
aging Arduino Ethernet Shield [2]. We make use of SdFat Analog
Bin Logger library [3] to enable low latency SD card writes so the
Arduino can write while sampling at such a high frequency.

We place the apparatus on a desk about a meter away from the
person speaking (henceforth called speaker). �e speaker’s average
Sound Pressure Level (SPL) is 85 dB, a typical “presentation-level”
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Names of
People Joseph Catherine �omas Je�erson Elizabeth Michelle Anthony Emmanuel Hilary Patrick

Cities Atlanta Los Angeles New York San
Francisco

Washington
D.C. Paris London Moscow Tokyo Hong Kong

Companies Apple Microso� Google Facebook Amazon Comcast Tesla
Motors Starbucks Walmart United

Airlines
Numbers One Two �ree Four Five Six Seven Eight Nine Ten

Table 2:WG1,WG2,WG3, andWG4 of names of people, cities, companies, and numbers (1 to 10), respectively.

volume. We measure the average SPL using SkyPaw’s dBMeter app
on an iPhone 6 [42] positioned close to the speaker. �e speaker is
a male and a �uent but non-native English speaker.

User Study Process. �e goal of this study is to determine the
intelligibility of the reconstructed Amalgam signals. Participants
were given instructions to transcribe recordings of di�erent words.
�e participants were given an additional information of the word
group that each recording belongs to. �ere are four word groups
of ten words,WG1 constituting names of people,WG2 constituting
names of cities,WG3 constituting names of companies, andWG4
constituting numbers from one to ten. �e additional information
serve to provide contextual information synonymous to context
within speech (e.g., words in a sentence), re�ecting the reality of
how humans perform speech recognition [47]. �e words are listed
in Table 2.

We recruit a total of 230 participants, and presented randomized
words so that each participant does not listen to the same word
from di�erent signals. Hence, each data point in the �gures of
this section consists of 230 transcriptions. �e participants were
recruited via Amazon Mechanical Turk [8]. We performed the user
study a�er receiving approval from our Institutional Review Board
(IRB) and complied to the IRB’s recommendation.

5.2 Non-Acoustic Sensors
Before presenting the Amalgam construction, we �rst evaluate
how each of the individual non-acoustic sensors respond to hu-
man speech, and how the intelligibility varies corresponding to
their sampling frequencies, Fs . We further investigate these sen-
sors to test the relationship between the recognition accuracy (i.e.,
intelligibility) and the sampling frequency, Fs . Figure 8 depicts the
recognition accuracy of non-acoustic geophone, accelerometer, and
gyroscope sensors each sampled at varying sampling rate (i.e., Fs
= {1KHz, 2KHz, 4KHz, and 8KHz}), compared to the baseline case
of a microphone. �is �gure clearly depicts the fact that the non-
acoustic sensors respond to speech signals, yielding non-negligible
accuracies when sampled at 8 KHz. We note the trend of increasing
recognition accuracy as Fs increases from 1 to 8 KHz. Addition-
ally, the accuracy is extremely low for all sensors when Fs=1 KHz,
including the microphone. Hence, we highlight that intelligibility
decreases signi�cantly as the sampling frequency decreases. We
demonstrate statistical signi�cance of the results with paired t-test
reported in Appendix A (along with t-test results of all following
evaluations in this section).

To provide a be�er understanding of these signals and deeper
insight into our results, we have posted audio and video clips at

h�p://mews.sv.cmu.edu/research/pitchin/. �e video clips show
spectrogram reconstructions of the spoken word “apple” using the
open source audio editor Audacity. We strongly advise the readers
to view the video clips together with the �gures in this section.
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Figure 8: Recognition accuracy increases as Fs increases for
each sensor.

5.3 Amalgam Evaluation
We evaluate Amalgam signals constructed from fused sensor data.
We �rst present the results of a proof-of-concept where sensor
fusion is performed by interleaving signals with a regular temporal
o�set. We then present the results when we relax this assumption,
more closely resembling the real-world scenarios. We also present
an idea of fusing sensor data across sensor modalities.

5.3.1 Ideal Temporal O�set.
We test the e�ects of achieving a higher Amalgam sampling fre-
quency FsAmal as we increase the number of nodes that “pitch in”
to constructing the Amalgam signal. We report two sets of exper-
iments as following. In the �rst experiment, we �x the per node
sampling frequency, Fs=500 Hz, and vary the number of nodes to 4,
8, and 16. Similarly, in the second experiment, we �x Fs=1 KHz and
vary the number of nodes to 2, 4, and 8. Both experiments yield
FsAmal of 2 KHz, 4 KHz, and 8 KHz. Figures 9(a) and 9(b) depict
the two experiments, respectively. We defer the discussion of how
we “simulate” di�erent sensor data from a single physical sensor
readings for each of these sensors in Section 5.3.3.

In both experiments, the trend of increasing recognition accuracy
with increasing FsAmal is preserved, similar to the non-Amalgam
�ndings depicted in Figure 8. More speci�cally, the accuracy (i.e.,
intelligibility) signi�cantly increases within most sensor modalities,
yielding accuracies as high as 79%, 53%, and 35%, for geophone,

http://mews.sv.cmu.edu/research/pitchin/
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Figure 9: Amalgam signals constructed with Fs=500 Hz and 1KHz for Figure 9(a) and 9(b), respectively. Recognition accuracy
of each Amalgam signal increases as FsAmal increases from 2, 4, and 8 KHz by varying number of nodes from 4, 8, and 16 for
Figure 9(a), and 2, 4, and 8 for Figure 9(b), respectively

accelerometer, and gyroscopes, respectively. We note that these
numbers may signi�cantly empower the a�acker, as any additional
information to the a�acker is a gain when launching eavesdropping
a�acks, potentially posing serious threat to the victims. As an
analogy, most people would feel uncomfortable or even threatened
if 79% of their phone conversations are eavesdropped.
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Figure 10: Varying temporal o�sets from worst to best case
sample scenarios for four nodes.
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Figure 11: Comparison of recognition accuracy of four gyro-
scopes (Fs=1KHz each) sampled at di�erent temporal o�set.

5.3.2 Practical Temporal O�set.
Recall that the aforementioned results assume a regular temporal
o�set, which inherently results in the best case scenario for the
PitchIn a�ack. However, in reality, temporal o�set may be randomly
distributed among devices. We investigate this aspect by exploring
how varying temporal o�set a�ects recognition accuracy.

To provide an intuition, we provide �ve di�erent temporal o�sets
of four nodes sampling di�erent gyroscopes. Figure 10 illustrates
pictorial representation of a spectrum of varying temporal o�sets
(i.e., sampling pa�erns) from the worst case to the best case sce-
nario. (a) depicts the situation when all four nodes are sampling
exactly at the same time (hence the worst case scenario). (b) and
(c) depict the situations when two of the nodes are sampling at the
same time. Speci�cally, (b) depicts an example where there is not
too much information gain from the temporal o�set due to samples
being clustered. We note that (c) resembles the situation synony-
mous to when two nodes are sampling at an evenly distributed
interval. (d) depicts the situation when four nodes are sampling at
di�erent times, but are not evenly distributed. Hence, the samples
are more distributed, allowing larger temporal coverage. (e) depicts
the situation when four nodes are sampling at an evenly distributed
time (hence the best case scenario). We denote these as Sample
Scenarios (a) through (e).

Figure 11 depicts the recognition accuracy of (a) through (e) for
four gyroscope sensors with Fs=1 KHz. We chose gyroscope to
demonstrate the lower bound of recognition accuracy among the
sensors (as seen from Figure 8). It is interesting to note that the
recognition accuracy increases from (a) to (e), from 7% to 30%),
which justi�es the spectrum of varying temporal o�sets from worst
to best case scenario. Furthermore, we note that (c) yields roughly
twice the accuracy of (a) and half of (e).

While scenarios (b), (c), and (d) are each single instances of
temporal o�set of these four sensors in between worst and best
case scenarios (i.e., (a) and (e)), this example serves to demonstrate
the trend of increasing recognition accuracy as temporal o�set lies
in between the two extremes.

We also present an example to provide an intuition of how “ran-
dom” temporal o�set still contributes to reasonable recognition
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Figure 12: An example of Distributed TI-ADC and its e�ects when sensors 1, 2, and 3 are sampling the original signal with
random temporal o�set.
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Figure 13: Inherent noise in time series of each sensor and
the corresponding histogram and Gaussian �t. Data are col-
lected from a quiet room.

accuracy by providing an example. �e accuracy of the estimation
depends on many factors including the frequency of the signal to
sample, the number of nodes sampling, and the sampling frequency
per node. �is idea is illustrated in Figure 12.

Figure 12(a) displays a scenario where di�erent sensors sample
a sine wave which varies its frequency from 2 Hz to 10 Hz), with
a constant sampling frequency of 25 Hz across the sensor nodes
(Sensor 1, 2, and 3). �e starting point of the nodes were not
synchronized and were taken at random.

We demonstrate that even without synchronizing the nodes, the
a�acker gains enough information to estimate a sensible signal for
certain portion of the original signal. Figure 12(b) depicts this idea,
where the solid line shows the estimated signal a�er interleaving
the sampled data from the sensors. Speci�cally, the 2 Hz portion
of the sine wave can be estimated more closely than that of the 10
Hz portion, even though the three sensors did not sample with an
evenly distributed temporal o�set. �is is intuitive as more points
are sampled for the slower portion of the signal. However, the 10
Hz portion of the signal is not well estimated as shown from the
same �gure.

5.3.3 Amalgam Signal Simulation.
A realistic simulation of sensor node requires acknowledgment of
the noise that are unique to each physical sensors. Using a Gaussian

�t, wemake an assumption that sensors of the same sensormodality
has similar signal to noise ratio, and therefore, Gaussian noise of
similar variance. In the aforementioned experiments, we sample
ambient noise (in a quiet room) from each sensor to estimate the
inherent noise distribution in each sensor modality. �e values
that are sampled are interpreted as a result of a Gaussian noise
corrupting the audio signal. We create a generative model to model
the noise characteristic of each sensor modality and then estimate
the Gaussian �t of such pro�le. �is pro�le is then used to create
multiple instances of possible noise given a sensor. As we add this
known noise to the signals we acquired, we simulate realistic sensor
data. �is process is repeated for all signals used in the present
study. Figure 13 depicts this process.

6 PRACTICAL CONSIDERATIONS
�is section presents practical considerations of PitchIn.

6.1 Time Synchronization
We note that the assumption of tight time synchronization made in
the paper are only for the purpose of proof-of-concept experimen-
tation but are not required for the general problem at hand for the
a�acker. In the experiment, we assumed the tight synchronization
due to simplicity of fusing the aggregated sensor data collected
from the network. However, in practice, even if the devices are
not tightly synchronized, we are inspired by previous work in time
interleaving ADCs (of local devices) that make use of a known
reference signal to try to detect and correct timing mismatches or
skews among signals sampled by di�erent ADCs [18, 38]. While
it is infeasible for an a�acker in PitchIn to have such a reference
signal, we claim that it is feasible for an a�acker to perform a man-
ual search (in a bruteforce manner) to shi� and �nd optimal results.
While this may be time consuming, it is certainly feasible due to
the nature of o�ine a�acks.

Furthermore, it is quite reasonable to assume a tight time syn-
chronization among IoT devices in the near future due to many
applications requiring high synchronization accuracy (e.g., sen-
sor fusion, precise indoor localization, etc.) Many proposals and
standards already propose sub-millisecond to microsecond accu-
racy [6, 21, 40]. Speci�cally, analogous to how synchronization
using NTP is common today, we carefully speculate that a more
accurate time synchronization protocols such as Precision Time
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Protocol (PTP) may be prevalently used in the near future among
the IoT devices, as we already �nd many open source libraries that
support PTP protocol on even cheap devices like Arduino [6]. �is
range is su�ciently accurate to aid the a�acker because PitchIn
devices require sampling frequencies far less than 8 KHz per node,
which translates to a minimum of 125 microsecond per sample, well
above the sub-microsecond synchronization accuracy ranges.

6.2 Controlled Experiment Setup
Recall from Section 5.1 that the experiments are conducted with
the speaker about a meter away from the co-located sensors. While
the experiments are conducted under such controlled environment,
we claim that such a setup still provides a practical use case as
an exemplary scenario. As depicted in Figure 1, the abundance
of sensors embedded in existing commercial products today (e.g.,
smart TV remote [17] and game controllers [45] depicted in Ta-
ble 1) are o�en found co-located on a co�ee table or sofa in a living
room. It is not di�cult to imagine that the sensor data may be
collected in the near future by the manufacturers for user behavior
analysis, as numerous TV (along with other device) manufacturers
are notoriously known to have been collecting privacy sensitive
information including viewing and searching data as well as speech
from TVs [14, 22, 31]. �is scenario demonstrates a strong yet po-
tential case for the a�acker, speci�cally illustrating the practicality
of close proximity setup of sensors and the speaker. While we
acknoledge that this is a generous scenario for the adversary, it
provides an intuition of how potential a�ack may be carried out
under favorable conditions for the a�acker.

6.3 Ampli�cation
Asmentioned in Section 5.1, the sensor output are ampli�ed in hard-
ware using operational ampli�ers (op-amps) before being interfaced
to the Arduino’s ADC. We note, however, that the hardware ampli-
�cation re�ects reality as many IoT devices are manufactured with
circuitry that leverages hardware ampli�ers for sensors [1]. In ad-
dition, many IoT devices use digital MEMS sensors, which already
come equipped with op-amps within the MEMS circuitry [5].

6.4 Automating the Attack
An a�acker may automate PitchIn a�ack by feeding in the results
obtained by PitchIn to an existing Automatic Speech Recognition
(ASR) engine. While we had conducted a preliminary experimenta-
tion with publicly available Speech Recognition Engine [49], the
results were not satisfying, due to the fact that the ASR is trained
with microphone data. From consultations with speech recognition
experts, we are hopeful that if an a�acker trains an ASR with non-
acoustic sensors with varying sampling rate, it would most likely
yield a relatively high accuracies.

7 CONCLUSION AND FUTUREWORK
Wepresent PitchIn to demonstrate a feasibility of fusing non-acoustic
sensors (e.g., geophone, accelerometer, gyroscope) to reconstruct in-
telligible speech signals using various speech processing techniques.
PitchIn minimizes per-node sampling frequency by leveraging a
distributed Time Interleaved Analog-Digital-Converter (TI-ADC)

across network of sensor devices. We conduct user studies to eval-
uate the intelligibility of the reconstructed signals. PitchIn achieves
speech recognition accuracy ranging from 79% to 35% depending
on the sensor modalities, sampling rate, and number of nodes.

We explore the PitchIn signal reconstruction a�ack by exploring
the metrics from the adversaries perspectives. While further the-
oretical and empirical study on the impact of signal quality from
TI-ADC would provide interesting results, we delay this to future
work. We also �nd many potential extensions to PitchIn, including
increasing scalability of PitchIn a�ack by leveraging automated
speech recognition engines to create a fully automated remote
eavesdropping tool. �rough this work, we hope to highlight a
potential problem of pervasive IoT devices that may be densely de-
ployed in our homes and o�ces, surpassing the known and obvious
risks. While other researchers have demonstrated the feasibility of
capturing voice signals for non-acoustic sensors, we illustrate that
a naive solution of merely reducing the sampling rate per node may
be insu�cient to thwart against the above problems. Rather, we
hint at a new paradigm of a room-level security policy to mandate
an upper-bound of a cumulative sampling rate across devices that
is low enough to su�ciently thwart such a�acks.

A T-TEST RESULTS
We show the signi�cance of evaluation results reported in Sec-
tion 5 using paired t-tests. Analysis of Variance (ANOVA) on these
evaluation showed signi�cance.

Fs
KHz

p-value
Geo Acc Gyr Mic

Fig.8

1 2 .86 <0.001 .41 <.001
2 4 <.001 <.001 <.001 <.001
4 8 <.001 <.001 <.001 <.001
1 8 <.001 <.001 <.001 <.001

Fig.9(a)
2 4 <.001 <.001 .43 N/A
4 8 .24 <.001 .43 N/A
2 8 <.001 <.001 .22 N/A

Fig.9(b)
2 4 <.001 <.001 .05 N/A
4 8 <.001 <.001 .28 N/A
2 8 <.001 <.001 <.001 N/A

Table 3: Paired t-test for Figures 8 and 9

Comparison Pair p-value
Pa�ern (a) Pa�ern (b) .006
Pa�ern (c) Pa�ern (b) .52
Pa�ern (e) Pa�ern (b) <.001
Pa�ern (a) Pa�ern (d) <.001
Pa�ern (c) Pa�ern (d) .003
Pa�ern (e) Pa�ern (d) .84

Table 4: Paired t-test for Figure 11
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B SPECTROGRAM
We present spectrograms depicting corresponding signals repre-
sented in Figures 8 and 9.
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(a) Spectrogram of signals in Figure 8
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(b) Spectrogram of signals in Figure 9(a)
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(c) Spectrogram of signals in Figure 9(b)

Figure 14: Spectrogramof signals evaluated in Figure 8 and 9.
We strongly advise the readers to view this �gure in color,
and to watch the corresponding video clips at http://mews.
sv.cmu.edu/research/pitchin/.
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