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Design Experiences in Minimalistic Flying Sensor Node

Platform through SensorFly

XINLEI CHEN, AVEEK PUROHIT, SHIJIA PAN, CARLOS RUIZ, JUN HAN, ZHENG SUN,

FRANK MOKAYA, PATRICK TAGUE, and PEI ZHANG, Carnegie Mellon University

Indoor emergency response situations, such as urban fire, are characterized by dangerous constantly changing

operating environments with little access to situational information for first responders. In situ information

about the conditions, such as the extent and evolution of an indoor fire, can augment rescue efforts and reduce

risk to emergency personnel. Static sensor networks that are pre-deployed or manually deployed have been

proposed but are less practical due to need for large infrastructure, lack of adaptivity, and limited coverage.

Controlled-mobility in sensor networks, that is, the capability of nodes to move as per network needs can

provide the desired autonomy to overcome these limitations.

In this article, we present SensorFly, a controlled-mobile aerial sensor network platform for indoor emer-

gency response application. The miniature, low-cost sensor platform has capabilities to self deploy, achieve

three-dimensional sensing, and adapt to node and network disruptions in harsh environments. We describe

hardware design trade-offs, the software architecture, and the implementation that enables limited-capability

nodes to collectively achieve application goals. Through the indoor fire monitoring application scenario, we

validate that the platform can achieve coverage and sensing accuracy that matches or exceeds static sensor

networks and provide higher adaptability and autonomy.
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1 INTRODUCTION

Indoor emergency response scenarios, such as urban fire, earthquakes, gas leaks, or hostage situ-
ations, are characterized by dangerous and constantly changing operating environments for first
responders. Rescue personnel have little prior information about the scene as well as adverse con-
ditions, such as smoke or structural collapse, that may impede the planning and co-ordination
efforts.
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Deployments of wireless sensor networks have been proposed to improve the effectiveness of
rescuers. Sensor networks can provide valuable fine-grained real-time environmental informa-
tion [23, 35, 46]. For example, the temperature profile within a building structure on fire can be
used to predict the fire’s propagation through the building. Such information could potentially
enable rescuers to anticipate the evolution of an emergency and adopt effective strategies to min-
imize injury, loss of life, and damage to property. The very low-cost of sensor nodes has been
envisioned to enable practical large-scale deployments in such circumstances and provide enough
redundancy to survive these harsh environments.

Previously proposed sensor networks have largely been static in nature [17, 20, 41]. The sen-
sor nodes either must be pre-installed as part of an infrastructure or be deployed manually by
first responders. As a result, these static node approaches require the following improvements for
widespread adoption and utility:

• Less infrastructure and maintenance. In most approaches, a pre-installed sensing in-
frastructure is assumed to be in place. The cost of universally creating (placing of nodes)
and maintaining (battery replacement) such infrastructure remains high.

• Adaptability and robustness. The harsh environment of emergency scenarios makes
sensing nodes susceptible to damage and failure. A pre-installed static network infrastruc-
ture cannot effectively adapt to the destruction of parts of the network and requires high
redundancy.

• Adaptive spatial coverage. With only a limited number of sensors, spatial coverage of
sensed data is also restricted at deployment time. Repositioning or re-tasking nodes as per
situation is not possible.

Recent literature has proposed the vision for how mobile sensors or mobiscopes can be used to
monitor human spaces [4]. One envisioned idea is that of actuated or controlled mobility. Con-
trolled mobility enables a network to mobilize its nodes to suit its demands. Such needs could
involve tasks such as data gathering or maintaining network connectivity. Since the network can
deploy autonomously, it can replace faulty nodes or reorganize as per its application requirements,
addressing many limitations of static sensor networks. Moreover, considering that no universal
sensing infrastructure must be installed and maintained, a much larger number of devices can be
deployed economically. Sensing nodes like these that combine mobility with low-cost large-scale
deployments can provide effective solutions for information gathering in emergency response sce-
narios.

While robotic platforms [6, 13] exist, they are unsuitable for use as mobile carriers for sensor
nodes in indoor emergency response scenarios. This is because robotic platforms suffer from the
following limitations:

• Single or monolithic robot platforms do not provide the robustness and coverage of highly
distributed sensor networks. Furthermore, most robot platforms require sensors such as
laser range finders or GPS for navigation, making them considerably more expensive than
traditional sensor nodes and uneconomical for large or expendable deployments.

• Second, most existing swarm robot platforms are ground based. Ground-based robots do not
allow for three-dimensional (3D) sensing as well as have limited reach. Existing micro-aerial
vehicles [30] or networked unmanned aerial vehicles [5], apart from their high cost, have
large form factors that is ill-suited to indoor operation and hazardous to human occupants.

An aerial controlled-mobile sensing platform, therefore, provides a better alternative for indoor
emergency response. Designing such a platform, however, raises the unique challenge of realiz-
ing a low-cost, small form-factor device capable of autonomous flight and collaborative sensing.
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The low-cost and small-form factor requirements limit the capabilities of individual nodes, mak-
ing traditional robotics approaches less applicable. We contend that such a lightweight platform
must take a network-centric view to collectively realize complex application goals with its simple
sensing, navigation, and processing abilities.

1.1 Contributions

In this article, we present SensorFly, a controlled-mobile aerial sensor network for monitoring
applications in indoor emergency scenarios. The design, modeling, and physical simulation of
SensorFly are proposed. The main contributions of the work are:

(1) We discuss the experiences on design consideration through evolution of SensorFly:
(1) how to obtain more physical separation and shielding between sensitive components;
(2) how to increase the lift of the drone; (3) how to increase stability of the drone when in
flight. The details will be discussed in Section 3.

(2) We propose the modeling of the navigational sensors used in SensorFly under real opera-
tion conditions. Their noise profile due to the miniature form-factor and flying motion is
experimentally analyzed, and on-board computationally inexpensive noise filtering mech-
anisms are presented. Specifically,
• We analyze the effect of the motors on the and design a filter to minimize the effect of

the magnetic field distortions.
• The nature of the noise due to motion and environmental effects is analyzed and a filter

is designed to discard erroneous readings.
• We present an accelerometer-based obstacle sensor, which eliminates the need for spe-

cial infrared or ultrasonic obstacle detectors that do not meet the weight constraints of
the node.

The details will be discussed in Section 5.
(3) We present a physical simulation platform for drone algorithm design. The operating en-

vironment of a SensorFly-like cyber-physical system has many disparate computational
and physical components that are not adequately modeled by existing robotics simulation
packages. We present a simulation environment that combines a physical disaster model
(indoor fire growth model), a radio path loss model, a wireless network model, and a node
mobility model to comprehensively evaluate such cyber-physical systems. The details will
be discussed in Section 6.

The rest of the article is organized as follows. Section 2 introduces our target application and
its requirements that motivate platform design. Section 3 examines our constraints and hardware
design tradeoffs. Section 4 describes our software architecture. Section 5 provides the implemen-
tation and characterization of the platforms capabilities. Section 6 compares our work with static
sensor networks. Section 7 discusses related work. Section 8 presents a discussion of aspects for
further study. Section 9 summarizes our work.

2 APPLICATION

The SensorFly system can be deployed in several sensing and monitoring applications, such as sur-
vivor search after earthquakes, reconnaissance in urban combat, or indoor toxic plume sensing [8,
33]. We present on the indoor fire emergency monitoring application to evaluate the effectiveness
of our platform in providing autonomous, timely, and high-fidelity information to aid fire-fighter
operations.

Fire response and fire rescue remain extremely challenging operations that annually claim the
lives of over 100 firefighters in the United States [3]. Lack of situational information has been
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identified as a critical limitation for firefighters [17]. On average, firefighters reach 61% of urban
fires in 6min. However, the fire may spread extensively within that period. Firefighters have little
or no knowledge of the location, extent, or advance of the fire in these situations.

Requirements. Sensors for real-time sensing and prediction of fire propagation are an active
area of research. Researchers have proposed fire models to predict the advance of fire from in situ

sensor readings.
This information can be valuable for several fire-fighting tasks:

• Firefighters can determine the extent of fire and predict its progression.
• Firefighters become aware of hazardous areas to avoid.
• Firefighters can effectively plan evacuation routes.

The fire model determines the type and spatial location of sensed data. A popular model is
Consolidated Model of Fire and Smoke Transport (CFAST) [32]. CFAST is a zone model where each
space is split into the top zone (consists of the high-temperature gases and smoke) and the bottom
zone (consists of lower-temperature gases). The height of the interface between the two zones is
called the smoke layer height and this layer descends as smoke builds up in the room. Structural
information such as the presence of shafts or open stairways is also of interest to firefighters.

Fire monitoring sensor networks seek to provide a 3D profile of parameters, such as temperature,
gas, pressure, and ceiling height in each room as inputs to such a model.

While many sensor networking systems have been proposed for fire monitoring, they are es-
sentially composed of pre-deployed static sensor nodes [1, 17, 22, 41]. We present a detailed com-
parison with related work in Section 7. Such infrastructure is expensive to deploy and universal
adoption remains far into the future. SensorFly nodes can be deployed at the time and location of
fire. While, unlike static pre-deployed sensors, current version of SensorFly nodes cannot know
their exact location and provide data from regions obstructed due to closed doorways or building
structure collapse, the SensorFly system can provide valuable information where a static infras-
tructure is absent. Firefighters can introduce SensorFly nodes into connected spaces as they enter
the building structure, without the need to physically explore every region.

Moreover, a larger number of SensorFly nodes can be deployed at the actual point of emergency
as opposed to maintaining universal infrastructures. Finally, the aerial mobility allows better spa-
tial resolution of sensing. The fire-monitoring scenario requires 3D sensing of vertical temperature
profile and ceiling height in building structures. The SensorFly with its ability to hover vertically
can provide higher fidelity data.

3 HARDWARE DESIGN

To demonstrate the feasibility of the SensorFly system, we have designed and built four generations
of SensorFly nodes (Figure 1). This section focuses on the hardware design choices and the trade-
offs involved in building controlled-mobile aerial sensing platforms.

We discuss the experiences on design consideration through evolution of SensorFly: (1) how to
obtain more physical separation and shielding between sensitive components; (2) how to increase
the lift of the drone; (3) how to increase stability of the drone when in flight.

3.1 Key Constraints

The low-cost, low-weight aerial sensing platform presents several constraints and challenges,
occupying a new and unique design space. The addition of mobility and control introduces new
constraints like weight, sensor interference, and higher noise, to the traditional low-cost commercial
off-the-shelf (COTS)-based sensor node hardware architectures. Careful consideration is required
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Fig. 1. Four generations of SensorFly node design.

in new aspects of sensor network hardware design such as component placement and weight

balance. To achieve the desired level of collective system capability given the minimum available
resources of individual nodes, a delicate balance must be attained and trade-offs examined. The
following factors affect our design approach:
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Table 1. Weight of Several Possible Components

of SensorFly Nodes

Component Weight

X Drive Motors and Propeller Assembly 15g
X 130mAh Lithium Polymer Battery 4g

200mAh Lithium Polymer Battery 7g
X Controller Board 10g

Camera Board Add-on 3g
Audio Board Add-on 4g
LED Board Add-on 3gs
Ultrasonic Distance Sensor Add-on 4g
Basic SensorFly Total Weight 29g
Absolute Maximum Takeoff Weight 34g

Xs mark the components included in the base configuration of Sensor-

Fly nodes.

Cost. Low per-device cost allows us to scale up sensor node deployments. As a result, for the
equivalent cost of an intelligent robot, many more sensor nodes can be used, enabling higher
sensing coverage as well as discovery speed. Utilizing a low-cost flight mechanism, common
to off-the-shelf RC helicopters, allows us to achieve a prototype cost of about $200. In mass
production, similar RC helicopter assemblies are commercially available for about $20 [39]. While
larger flying platforms such as the Parrot.AR Drone can provide better capability, they have higher
production cost (∼$300) and lower reach due to the bigger form-factor. The navigational capability
of individual sensor nodes must be attained through low-cost COTS sensors. A trade-off must be
made in forgoing accuracy for deployment scale to better realize our application objectives.

Weight. The miniature aerial platform adds a new metric, weight. The small weight enables
longer flight times, greater reach, and better safety for indoor emergency response scenarios.
The weight limit is decided by delicate trade-off point. Adding more weight requires bigger
motors that in turn require a bigger battery. A larger craft eventually sacrifices the miniature
form factor along with the mobility and scalability advantages that it provides. Table 1 shows the
component-wise weight break-up of the 29g SensorFly node.

This weight constraint limits the number of sensors that can be carried. In addition, the weight
must be balanced to achieve stability of the node in flight requiring careful component layout and
board design.

Energy. Similar to many battery-operated systems, the SensorFly platform is highly energy
constrained. Unlike most other sensor systems, however, SensorFly has many different operating
modes with vastly different energy characteristics. Table 2 shows the energy consumption
characteristics for some of these modes. Of all these modes, the ones involving flight are the most
expensive in terms of energy usage.

This further underscores the need for a lighter node, as it enables us to reduce the power
consumption of motors. The current battery and weight profile provides about 5min of airborne
flying time. However, by optimizing movements for deployment and reconfiguration, and
managing energy consumption when landed and sensing, the overall life of the network can be
extended. Utilizing physical characteristics such as the ground effect can further reduce movement
energy. We evaluate the flight time of the SensorFly nodes in Section 5.3.

Interference and Noise. The small form-factor requires placing sensors and components very
close to each other on a miniature circuit board. At the same time, use of low-cost brushed motors
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Table 2. SensorFly Node’s Operation Modes and

Their Power Usage Breakdown

Operation Typical Power Usage
Mobile Mode 6.2W
Stationary Mode
Data transmission 310mW
Data receive 330mW
Sensing only 225mW

Processing Only Mode 150mW
Idle Mode 1mW

creates large electromagnetic noise that interferes with the proper operation of the sensors. The
placement of sensors and components must be done keeping in mind the effect and nature of
induced noise. Additionally, software-filtering approaches are also needed to obtain better sensor
readings.

3.2 Design Trade-Offs

The resource constraints and capability requirements force our component selections for the Sen-
sorFly platform. In this section, we examine our design choices and trade-offs. We also discuss the
evolution of the current third-generation hardware platform, which incorporates learning from
previous iterations.

Processor. The first processor used in the SensorFly node is the ARM7-based LPC2148. The
micro-controller is capable of running at 60MHz and features 512KB of Flash memory as well as
42KB of RAM. It is limited in comparison to the computers that are currently used for most robotics
applications. Through various iterations, we have found the processor to be capable of running
both the flight control algorithms and the sensor filtering algorithms. In later versions, SensorFly
incorporated a secondary external processor, an AVR AtMega644, for radio functions and control.
By moving the majority of the time critical processes off-board, concurrency is handled better
and application integration is simplified. This significantly reduces conflict between time critical
components such as the radio and the flight controller.

Navigation Sensors. The choice of sensors requires careful consideration, due to the limit
on their size and numbers. Navigational sensors have been explored extensively for robotic plat-
forms [10]. Navigational sensors are needed to detect the motion of the node itself as well as sense
the environment or other nodes. For motion estimation, miniature MEMS-based inertial sensors
such as the accelerometer and gyroscope have become popular in consumer devices like mobile
phones, and as a result are commercially available at low-cost. However, their susceptibility to
noise is higher and a trade-off must be made against accuracy. For navigating the environment, a
number of higher accuracy range-based options such as laser range finders, multiple-ultrasound
sensors, camera, and lidar sensors are unsuitable for use in SensorFly. Table 3 summarizes the
strengths and weaknesses of available sensors on the basis of cost, weight, and accuracy. Radio-
based RF-ranging is an attractive technique, especially because the radio can also be used for
communication. However, multipath effects limit the accuracy of radio ranging in indoor environ-
ments. This limits precise navigation and movement and calls for collective stochastic exploration
approaches. We examine trade-offs further in Section 5. Furthermore, these sensors are re-used for
multiple purposes as described in Section 3.3.

In the first version of SensorFly, a two-dimensional compass and a three-dimensional
accelerometer were included as flight state sensors. Since the craft is passively stable, the
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Table 3. Comparison of Navigational Sensors

Component Cost Weight Accuracy

Accelerometer Low cost COTS
component

Low < 1g Analog inertial sensor. Unreliable
for distance estimation due to
accumulating error. Used to detect
collisions.

Gyroscope Low cost COTS
component

Low < 1g Useful for angular velocity
measurement. Unreliable for
absolute angular position
measurement but not affected by
magnetic fields. Used for feedback
to for yaw controller.

Compass Low Low < 1g Low indoors due to sensitivity to
magnetic fields. Error does not
accumulate. Used to provide
absolute heading.

Ultrasonic
Ranger

Low Medium ∼4g Fair. Depends on environmental
factors such as interference and
materials.

Nanotron
nanoLoc
RToF ranging

Low. Cost is
amortized as radio is
also used for
communication.

Medium.
(∼4g)

Better accuracy than RSSI-based
radio-ranging. Less accurate than
ultrasound and laser range finders.

Laser Ranger Medium High 50g+ High. Not included due to weight
constraints.

Vision High High Accuracy depends on operation
scenarios. Less effective in
presence of smoke. Needs high
processing power.

five-degree-of-freedom measurement should be enough to capture the full possible motion of
the self-stabilizing platform chosen. However, the magnetic interference from the motors is large
due to the nodes small physical size. This interference during flight renders the readings from the
compass inconsistent and unsuitable for measuring rotation. To improve the flight controls, the
later versions include a 3D compass, a three-axis accelerometer, as well as a 2D gyro. In addition,
the placement and physical design of the boards mitigate the noise characteristics as described
later. These sensors provide a full eight degree-of-freedom measurement. During flight, the gyros
provide a rotational sensor immune from magnetic noise, while the compass provides an absolute
reading.

Radio. To aid navigational needs, the current version of SensorFly uses the nanoLOC TRX
transceiver module [29]. Apart from offering better performance against indoor multi-path fading
effects, the radio provides inter-node range estimates based on round-trip time of flight (RToF)
computations.

A Digi XBee [9] was used for the V1 of the hardware. This radio is commonly used in
sensor networks. Received signal strength indicator (RSSI) was used for range estimation in V1.
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Several factors prevented the success of this approach. First, in the indoor environment, the
radio characteristics were extremely unpredictable, making the multi-path problem pronounced.
Second, electromagnetic noise from the motor significantly increased the unpredictability of RSSI
measurements. Finally, due to the physical orientations of the helicopter, the antenna cannot be
placed at an omni-directional location. This increased the effect of node orientation on the RSSI.
These factors prevented the use of RSSI as a viable solution for use in mobile sensor nodes.

Motors. A unique feature of the SensorFly nodes is the mechanical helicopter drives. We use two
7-mill core-less motors. These motors drive two coaxial main rotors, and are a significant source of
noise in the system, as we shall explore later. While brush-less motors would provide better noise
and thrust performance, their size, cost, and circuitry requirements make them ill-suited for our
target application.

Furthermore, the low-cost of these core-less motors implies substantial variations in their re-
sponse to input voltages as well as degradation in performance with use. However, due to the
coaxial helicopter design and its passive stability, simple control algorithms can be used to counter-
effect these variations. A third motor can be added to the node to provide controlled forward flight.
Currently, a weight difference, created by placement of components on the board, is used to pro-
vide a constant forward motion, while the craft rotates in small circles to hover in place.

3.3 Component Reuse

An important strategy for achieving the platform’s stringent weight goals is component reuse.
Several elements of the node’s mechanical and electronic components are selected to be capable
of perform more than one function.

On the electronic hardware side, the Nanotron nanoLoc radio module enables communication as
well as Round-trip Time-of-Flight radio ranging. This ranging capability provides a primitive form
of localization and is a substitute for having laser or ultrasound range finders. Although, a trade-
off is made in the accuracy of range estimation, the weight and cost constraints are impossible to
meet with the alternative ranging mechanisms mentioned.

Sensors such as the accelerometer are used as obstacle sensors, for their ability to detect contact.
The lightweight and robust design of the SensorFly nodes enables them to tolerate bumping into
obstacles without affecting their flight performance. Thus, dedicated obstacle sensors like infrared
or ultrasound-based detectors are avoided.

Amongst the mechanical components, the blades on the helicopter design serve to protect the
body of the node from bumps. As the body is designed to be smaller than the blades, it acts as a
protective buffer for the on-board electronics.

The circuit board housing the SensorFly electronics acts as the fuselage for the node. This re-
quires careful selection of the board to provide enough rigidity and, in turn, prevent stress on the
connections and traces when the node lands. At the same time, a thick board adds more weight
to the node. In V1 of the design, a 20-mill double-layer board is used. While the design is a 1.6 ×
3.1 inches square, the size reduced airflow thereby degrading the lift of the nodes. A 20-mill, four-
layer circuit board shaped as a “T” was subsequently used to allow more air to flow through from
the blades. Due to the reduced per-layer thickness nodes experienced higher failure rate due to
stress on the metal traces caused by takeoff and landings. In the third version of SensorFly, a 30-
mill board was selected, stress relief added to the “T” shape and component placement staggered
to further reduce single stress points. This redesign greatly improved the fuselage strength.

The legs of the SensorFly node are built with gold plated spring wire and are used as charging
terminals as well as landing supports.

Each node can have different weight distributions due to modular design of the SensorFly nodes.
For example, different sensors can be added to the extension port of the SensorFly. To counter this
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Fig. 2. The SensorFly node layout. Analog sensors are isolated and the compass placed away from the motors

to reduce interference. The digital, analog, and high-power sections have separate power supply and the

ground plane is interconnected through ferrite beads to filter noise.

Table 4. The Design and Performance Improvement on SensorFly Version 4

Design Improvement Performance Improvement

Modular board design • Easier replacement and update of the hardware.
• Easier customization for equipping SensorFly
nodes with different sensors.

Stacked Sensor
platform

•More air to follow through to achieve similar
flying time with higher payload
• Increasing the lift of the drone

Sensor board hanged
lower

• Lower center of mass for more stable flight (24g)

effect on the stability of the craft, the battery and the ultrasonic sensor act as adjustable counter-
weights and are positioned so as achieve the desired node balance.

3.4 Board Layout

The SensorFly board layout involves careful consideration of the noise characteristics of the com-
ponents and their weight. The analog sensor components such as the accelerometer and gyroscope
must be placed so they are isolated from the noise sources. The main source of noise in the platform
is the high power source and the pair of brushed motors causing high electromagnetic interfer-
ence. Similarly, the compass must be isolated from the motors as it is adversely affected by their
rotation magnetic field.

Figure 2 shows the layout of the SensorFly board for versions 3 and 4. In version 3 the board
is divided into three sections. The motors occupy the right (front) end, along with digital section,
since the digital components are least affected by the EMI. The 3D compass is placed towards the
tail of the node to minimize the magnetic effect of the motors. The left-most section is the analog
section, which houses sensors, such as the gyro and accelerometer that are adversely affected by
noise in the power-lines due to the motors back-emf. The high-power section that feeds the motors
occupies the bottom-right corner of the board. Each section has separate power lines and a separate
ground plane. These are interconnected through ferrite beads to filter out noise.

Compared to the previous versions, the major improvement design of SensorFly version 4 hap-
pens in hardware part, as shown in Table 4. (1) The sections were separated into multiple boards
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with ground plans placed in between to further reduce noise. This allows more physical separation
and shielding between sensitive components. The antenna is placed at the tip of the platform to
minimize interference. The processing board is stacked closest to the motor, because it is least sen-
sitive to electrical magnetic noise. The sensing board, on the other hand, is stacked at the furthest
layer to avoid interference from these noise. The modularity also allows for updating part of the
hardware and allows easier hardware customization for equipping SensorFly nodes with different
sensors. (2) The sensor platform is stacked and has a lower vertical profile. This allows more air
to flow through, thus increasing the lift of the drones. (3) Another consideration in the placement
of sensors is their weight. The board weight must be balanced for stability of flight. The sensor
board is hanged lower, which lowers the center of mass and increases stability of the drone when
in flight. A slightly larger weight is maintained towards the front of the node, to substitute the
tail-blade of the helicopter design, and enable forward movement. The 4g battery and 4g ultra-
sound height sensor are used as adjustable counterweights to balance the weight of the node. The
battery is placed toward the tail of the node while the ultrasound sensor is placed in the middle to
counteract the weight of the motors in the front.

3.5 Extensibility

Several types of sensors can be added to each node using the provided expansion ports, in ac-
cordance to the needs of different applications. The expansion port supports serial, SPI, 10-bit
parallel, and I2C for sensor interconnection, as well as provides regulated and unregulated power
pin through the node battery. Due to weight constraints, we plan to only include limited additional
sensor module per craft to maintain weight characteristics of the craft. Several sensors have been
designed, including the camera, speaker, microphone, and infrared detectors. We plan to explore
the use of additional sensors as our research progresses.

4 SOFTWARE ARCHITECTURE

The SensorFly is designed to provide a platform for controlled-mobile and collaborative sensing
for emergency response. The SensorFly system architecture, shown in Figure 3, consists of the
firmware, the node-level system software, customizable network level services, and user appli-
cation layers. The node system software consists of three major modules corresponding to the
capabilities of the platform:

• The sensor controller provides access to on-board sensors and expansion ports. Includes
filtering modules to mitigate noise caused by motors and motion.

• The network controller provides peer-to-peer aggregation and broadcast communica-
tion, with support for inter-node range estimation through RToF.

• The flight controller provides a high-level navigation API for hover, turn and single-
direction flight. A biased random-walk dispersion and exploration algorithm is imple-
mented utilizing the node ranging capability. The algorithm enables nodes to navigate and
deploy in unknown environments without need for localization.

4.1 Sensor Controller

The sensor controller provides access to the on-board sensors that include the ultrasonic altitude
sensor, three-axis accelerometer, two-axis gyroscope, and a 3D electronic compass, as well as to
the sensor expansion port. The module provides an API for querying sensors, setting repetitive
sample rates, as well as provides in-built filters for noise reduction.

The motors and miniature form factor of the SensorFly nodes affect the performance of sen-
sors such as the compass, as described in Section 3. Moreover, some sensors have inherent noise
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Fig. 3. SensorFly Node Architecture.

characteristics that can be filtered with knowledge about the dynamics and mobility of the node.
Thus, sensor filtering must be performed for achieving useful capabilities such as altitude control
and pose estimation.

The ultrasonic range finder used to measure the altitude of the SensorFly node is affected by
several environmental factors such as absorption characteristics of the ground and interference
from other sources such as fluorescent lamps. The sensor controller utilizes the vertical motion
dynamics of our platform to discard erroneous readings, using a first-order recursive digital filter,
as described in Section 5.

Similarly, the SensorFly has a three-axis electronic compass [15] for direction sensing. This is
useful in estimating the pose of the node. However, the small dimensions of the SensorFly node
require the compass to be placed close permanent magnet DC motors that distort compass reading.
Analysis of error induced by the motor’s moving magnetic field points to a symmetric distribution
that can be filtered out to a large extent through a moving average filter implemented within the
sensor controller module. The window size and other filter parameters are tuned through empirical
analysis of sensor data, as detailed in Section 5.

The sensor controller also provides a virtual sensor for detecting obstacles using an accelerom-
eter. An algorithm based on thresholds is able to distinguish bump events from the acceleration
signal vector magnitude from normal flight.

4.2 Network Controller

Our networking implementation supports two major capabilities namely peer-to-peer data com-
munication and radio-based inter-node ranging. The SensorFly has a dedicated AVR AtMega644
microcontroller for radio control. This enables better handling of packet transmit-receive and
ranging operations that require timely processing. Especially, since flight control is the highest
priority task on the primary microprocessor. The radio module, that is, the nanoLOC transceiver
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and the AVR micro-controller, are connected via UART to the primary ARM7 LPC2148 micropro-
cessor. The network controller implements the UART communication protocol, message queues
for inbound and outbound packets, and provides a high-level API for sending, receiving, and for-
warding data.

4.2.1 Data Communication. The network protocol for the mobile SensorFly nodes essentially
consists of an aggregate and broadcast communication model. The monitoring network seeks to
route all sensed data to the base station. Additionally, due to the constant motion of nodes, es-
tablishing routes and running explicit node discovery service is impractical. Nodes therefore pe-
riodically broadcast messages containing their sensor data. Neighboring nodes, on hearing the
broadcast message, aggregate the node’s sensor data with their message.

Each node’s sensor data consists of a sequence identifier and a time-to-live field. The time-to-
live is decremented with the number of hops as well as on the expiration of a local time window,
to control the time for which stale data propagates in the network. A node’s data is propagated by
other nodes only if the time-to-live is still not zero. Old sensor data from a node is replaced with
fresh data, if it is received before the expiration of the time-to-live field. This scheme is akin to a
controlled reverse-flood of data to the base station.

4.2.2 Ranging. The network controller also provides an API for node-to-node range estima-
tion. The range estimates are used in the exploration algorithm currently employed by SensorFly
nodes, which consists of biased-random walks [26] that disperse nodes away from each other based
on their distance from each other. Inter-node ranging is a primitive used by topology estimation
schemes.

The radio has the capability to compute distance using a round-trip time-of-flight (RToF)-based
technique called Symmetric Double Sided Two Way Ranging (SDS-TWR) [28]. The round-trip
time-of-flight method measures the elapsed time between the host node sending a data signal
to the remote node and receiving an acknowledgment from it. Using the estimated speed of prop-
agation of a typical signal through a medium and the signal turnaround time, that is, the time
for the remote node to send out an acknowledgement packet, the host computes the distance from
the remote node. Using physical layer timestamps and hardware-generated acknowledgments, the
nanoLOC TRX radio achieves a predictable turnaround time.

Unlike other time-of-flight methods, this method does not require tight clock synchronization
between nodes. The time elapsed is computed from timestamps of individual nodes themselves.
This removes the need for extra hardware for global time synchronization, which is the source
of complexity and higher cost in other systems. Likewise, no special antenna arrays are required
such as angle-of-arrival ranging methods. We perform an experimental evaluation of the ranging
performance in Section 5.1.

4.3 Flight Controller

A SensorFly’s miniature helicopter flying mechanism has many advantages like the ability to take-
off, land, and turn in confined indoor spaces, maximizing sensing coverage. Realizing and control-
ling a helicopter-based sensor-networking platform presents many interesting aspects.

On one hand, the helicopter has highly coupled dynamics. Prior autonomous helicopters [16]
have required more accurate feedback sensors and computationally expensive algorithms for pre-
cise control. On the other hand, the sensor-networking platform has a single CPU with lim-
ited computation (60MHz) and memory (42Kb) resources that must perform sensing, control and
network processing tasks. Besides, as described before, the performance of control strategies is
limited by sensor noise, attributed to node form factor, and cost constraints.
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The SensorFly overcomes these challenges by using a lightweight damage-resistant node design
and by sacrificing precise control and navigation. The SensorFly system is designed to approach
tasks as a networked group that achieves system-wide objectives while tolerating errors in indi-
vidual node motion. The robust design ensures that nodes can collide with obstacles and still be
able to fly, removing the need for precise obstacle avoidance. In fact, the nodes detect obstacles
through contact. This allows the flight controller component to implement computationally in-
expensive proportional-integral-derivative (PID) control loops that provide good enough stability
and utilize a biased-random walk approach to navigation.

The flight controller provides a high-level navigation API with commands for hovering, turning,
and moving forward. The following sections briefly describe the node dynamics, the navigation
and exploration approach used, and the control algorithms.

4.3.1 Exploration and Navigation. The fire-monitoring scenario required a group of resource
constrained SensorFly nodes to explore an unknown environment. No assumptions can be made
regarding the availability of localization beacons or infrastructure in the indoor environments,
for nodes to estimate their location. Detailed and updated maps of building structures may not
always be available to the firefighters. Moreover, the harsh environments with smoke and fire
make sophisticated vision-based navigation capabilities ineffective. Thus, SensorFly nodes utilize
their low cost and large numbers to spread out and maximize coverage through a biased random
walk-based exploration algorithm, similar to that presented and analyzed by Morlok et al. [26].

The SensorFly nodes hop, that is, takeoff, fly for certain duration, and land in the operating
arena. The direction of hop is chosen randomly. For increasing coverage, the random walk is biased
toward moving away from other SensorFly nodes while still maintaining connectivity. When a
SensorFly node lands, it estimates its distance from other nodes in its vicinity. If a node exists
within a coverage range, then the node resumes its random motion. If no node exists in the coverage

range, then the node deploys and continues to sense data. In addition, if a node finds no other
nodes within a connectivity range, then it resumes it’s random motion. This is to prevent networks
from being partitioned. Nodes can hover at desired heights as per application sensing needs. The
evaluation of this approach for fire monitoring is provided in Section 6.

The previous exploration algorithm requires the capability of nodes to takeoff, control their
altitude, follow a random path, and land safely. The SensorFly node design and design choices
enable these capabilities to be attained in a computationally efficient fashion.

4.3.2 Altitude and Yaw Control. The SensorFly uses a kind of co-axial counter-rotating dual
rotor design, which is passively stable for hover and forward flight [27]. This reduces the num-
ber of sensors and computing power required to stabilize it. In addition, this configuration and
SensorFly’s low weight allow the rotors to operate at relatively low RPM compared to conventional
rotors, making them safer for indoor operation.

The control of the coaxial-helicopter-based platform is simple compared to other helicopter de-
sign designs, with altitude and yaw being the controllable entities. A constant weight bias towards
the front of the node enables it to move in the forward, when the yaw is held constant. The main
features of controlling the node are:

• Altitude control is attained by controlling the speed of the two main rotors of the node.
• Yaw control, that is, turning the helicopter from side to side is achieved by increasing the

speed of one rotor and reducing the speed of the other rotor by the same amount.
• Forward flight of the helicopter is attained by placing the center of gravity towards the front

of the aircraft. The main rotors follow the tilting of the node body and pull the helicopter
forward. To hover, the helicopter rotates in small circles.
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Fig. 4. The 29g SensorFly node hovering in a hallway.

This flight controller provides SensorFly nodes with the capability to takeoff and maintains
altitude, through a PID controller designed from first principle dynamic models of the node and
empirical tuning. Similarly, another PID control loop is implemented for controlling the spin of
the node and maintaining pose to achieve forward flight.

5 HARDWARE CHARACTERIZATION

This section describes the implementation and characterizes the distinctive characteristics of the
SensorFly platform, in context of the fire monitoring application. Specifically, the altitude sensing,
pose estimation, ranging, and flight performance is detailed and evaluated. Figure 4 shows the
SensorFly node hovering using the height sensor and algorithms described bellow.

We propose the modeling of the navigational sensors used in SensorFly under real operation
conditions. Their noise profile due to the miniature form-factor and flying motion is experimentally
analyzed, and on-board computationally inexpensive noise filtering mechanisms are presented.
Specifically:

• We analyze the effect of the motors on the and design a filter to minimize the effect of the
magnetic field distortions.

• The nature of the noise due to motion and environmental effects is analyzed and a filter is
designed to discard erroneous readings.

• We present an accelerometer-based obstacle sensor, which eliminates the need for special
infrared or ultrasonic obstacle detectors that do not meet the weight constraints of the node.

5.0.1 Ultrasound. It is essential for SensorFly nodes to stay passively stable and reduce the
timeliness bounds for any network-dependent navigation or control inputs. Therefore, the Sensor-
Fly nodes require an autonomous and stable hover capability that is independent of network layer
services such as localization. For example, relying on a radio location service to obtain feedback
for altitude control would require extremely low latency (∼1ms) ranging and communication. This
is extremely difficult in a resource-constrained sensor network with low-power radio links. There-
fore, we use a LV-MaxSonar-EZ1 [25] ultrasonic range finder mounted below the node fuselage,
to measure the node’s altitude from ground and provide feedback for our control algorithms.

However, the motion of the SensorFly node causes degradation in the performance of the sensor.
Figure 5(a) shows the variation in measurements at different known altitudes from the ground. The
measured values have noise in the form of short duration positive and negative pulses. Therefore,
using only raw sensor data for control, the node shows large vertical oscillations during hover.
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Fig. 5. The noise characteristics of the sonic altitude sensor, and our filtering techniques are illustrated,

which provide feedback for autonomous hover control. (a) Shows the measured value at different known

altitudes. (b) Shows measured value, when the helicopter moves up and down. (c) Shows the smoothing

effect of the filter for a sample noise pulse. Our filtering technique reduces root mean squared error by 43%.

Apart from echoes, the noise can be attributed to many factors. First, the node motion causes short
duration vibrations or roll, which changes the direction of the sensor, giving incorrect altitude
readings. Second, the ultrasound-based sensor is affected by materials in the environment, for
example, soft surfaces such as carpets absorb ultrasound waves and distort distance measurements.
Other sources of ultrasound noise in the environment, such as computers and lamps, also have
seemingly random cumulative effects.

As a result, it is difficult to use statistical techniques to mitigate its effect, since the noise is
a characteristic of node movement in an unknown external environment. The sensor controller
utilizes the vertical motion dynamics of our platform to discard erroneous readings. Our control
algorithm limits the rate at which the platform can gain or lose altitude through maximum thrust
limits on the motors. Utilizing this information, the sensor controller implements a first-order
recursive digital filter to smooth out the abrupt changes in the sensor measurements. The filter is
simple and computationally efficient enough to be employed at even 1KHz sampling rates. In our
system, since the control module runs at a frequency of 1KHz, we adopt 1KHz sampling rate for
the filtering.

In the general form, the filter can be expressed as

yn = axn + byn−1, (1)

where yn and xn , are, respectively, the filter output and input raw sensor reading for the nth
iteration, while a and b are the parameters of the filter.
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Fig. 6. The plot shows compass measurements versus true direction values at different motor duty cycles.

(a) Shows compass measurements when motor is stopped. The average measurement error is under 5◦. (b)

Shows compass measurements at 100% motor duty cycle. The raw compass readings are the raw data from

compass without filtering, which is shown in dashed line. Single instance raw compass readings with a

maximum error of 92.1◦. The continuous line shows filtered readings with a 20-reading (2s) moving window

and the error bars represent the standard deviation of each measurement from the filtered results. Filtering

reduces maximum error by almost 10× to 9.8◦.

The parameters a and b must be computed such that the filter can distinguish between real alti-
tude change and noise. We determine these values through an experimental setup, which involves
moving the node up and down, between altitudes of 0.3m and 1.5m from the ground, at the typical
maximum velocity. Logging the measured altitude values, we heuristically tune the filter to give
minimum mean squared error with respect to true altitude, giving parameter values of a = 0.513
and b = 0.487. Figure 5(b) shows the true altitude, raw measured values and the filtered values for
one experiment run.

Figure 5(c) shows the performance of our simple yet effective filter in smoothing out a erroneous
pulses at the true altitude of 0.8m. With the filtering technique, average error reduces by 43%. The
abrupt changes in altitude feedback reduce to the order of 0.2m, leading to significantly lower
vertical oscillations during hover.

5.0.2 Compass. To offer direction information, a three-axis electronic compass [15] is used
on SensorFly to provide an absolute measurement. The measurement is independent of both in-
door radio multipath propagation effects, and inertial motion measurement errors. Direction sens-
ing augments the SensorFly platform’s radio-based range estimation capability for implementing
higher accuracy localization protocols. For radio-based localization systems, the compass can thus
be used for providing direction bounds on subsequent location of mobile nodes [21]. In inertial
measurement systems, based on integrating accelerometer or gyroscope readings, the compass
can be used as a reset to prevent error accumulation [45].

However, the motors produce a magnetic field and distort compass measurements. This is be-
cause the small dimensions of the SensorFly node require the compass to be placed in close prox-
imity to the permanent magnet DC motors. In addition, the motion mechanism of the SensorFly
nodes also affect the electronic compass.

Through experimentation, we observe two components of motor-induced measurement noise.

• When the motors are off, the permanent magnets produce a constant field distortion. This
effect can be negated through a calibration routine, which is built into the compass mod-
ule. Figure 6(a) compares the measured values to the true values for motor input voltage
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Fig. 7. This figure shows the compass average measurement error at different filter(moving average) widow

sizes, for different motor input voltages. A 20 reading (2s) window provides a tradeoff between latency and

accuracy.

duty cycle of 0% (motor stopped). The compass measurements are within 5◦ of the true
value.

• When the motors are running, they induce a changing magnetic field. Moreover, the use of
inexpensive brushed motors causes sparks and unpredictable spikes in compass readings.

The sensor controller provides a moving average filter to offset the effects of the motors on direc-
tion measurements.

Figure 6 compares the measured values to the true values, at various motor input duty cycles.
Error bars represent the standard deviation from the mean for a set of 200 measurements obtained
at each location. The error increases significantly at higher motor speeds. At 100% duty cycle, il-
lustrated in Figure 6(b), raw readings have errors up to 92.1◦. However, the mean of each set of
readings provides a sufficiently accurate estimate of direction. Considering the mean, the maxi-
mum error is 24.7◦ at 100% motor input duty cycle, that is, full motor speed. A moving average
filter therefore provides a significant reduction in compass errors.

The choice of the filter window size should be chose carefully. On the one hand, large N brings
“smoother” results. This is because a moving average filter can be equivalent with a low pass filter
and larger N means lower cut-off frequency. On the other hand, larger N also bearings on the
latency of the control loop feedback. We evaluated the performance of filters at different window
sizes to determine a suitable trade-off point. We obtained 200 readings each for eight different
orientations at 0–100% motor duty cycles. Since the sampling rate of the compass is 10Hz, the
total time length for 200 readings is 20s.

Figure 7 shows the average errors for filters with different window sizes and at different duty
cycles. Four different line types are used to represent four different duty cycles. When the moving
average window size increase from 0 to 10, the average errors decrease fast for all duty cycles.
When the moving average window size is between 10 and 20, the errors of low duty cycles (25%) are
very stable while the errors of the other three slightly decrease. When the moving average window
size is larger than 20, all four lines are very stable. Therefore, a 20-readings or 2s moving average
filter represents a tradeoff between accuracy and latency for compass measurements and provides
an average error of 9.8◦ at maximum motor duty cycle. This is used as the default parameter for
the filter.

Metallic objects or environmental conditions can distort the magnetic field at certain indoor
locations. However, as all nodes obtain similar headings at any given location, the compass mea-
surement is still useful as a location signature. In addition, the compass is very sensitive to the
position of the battery and its connecting power lines. The battery is thus affixed at the same
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Fig. 8. We use physical collisions to detect obstacles using accelerometer data. The profile at 15s shows a

contact with an obstacle in the x-y plane.

standard location for all nodes, and their compasses calibrated so they provide consistent read-
ings. The compass is thus compensated for the magnetic field distortion produced by the platform
itself.

5.0.3 Obstacle Sensor. Obstacle detectors are essential for SensorFly platform. However, in-
frared or ultrasonic obstacle detectors do not meet the weight constraints of the SensorFly node.
To deal with this problem, the sensor controller provides a virtual sensor for detecting obstacles
using an accelerometer. The low weight and robustness of the node make it immune to collision
damage with most stationary obstacles.

To detect contact with an obstacle, we use data from the accelerometer sensor sampled at 10Hz.
An algorithm based on thresholds is able to detect bump events from the acceleration signal vec-
tor magnitude. Figure 8 shows a hovering node bumping into an obstacle, horizontally, in the
accelerometer’s x-y plane. The peaks in the plot show bump events and are easily discernible from
accelerometer readings obtained during unobstructed flight.

5.1 Ranging

Radio ranging enables us to attain navigation capabilities, while at the same time, meet our weight
and cost constraints. However, our indoor and mobile operating environments introduce multi-
path and Non-Line-of-Sight (NLoS) errors. These errors are a feature of the specific space configu-
ration near the node’s location and a general model cannot be assumed. Thus, to characterize the
accuracy of ranging obtainable, we evaluate the SensorFly node radio ranging in typical operating
scenarios.

We performed range measurement tests at four different locations—three indoor and one out-
doors. The indoor locations included a metallic cubicle area, a hallway, and a classroom with fur-
nishings representative of multi-path rich RF propagation environment. An empty parking lot was
selected for the outdoor test, to minimize the effect of reflections. At each location, measurements
were made for inter-node distances of 1m to 15m, taking 100 readings for each distance.

Outdoor tests illustrated in Figure 9(a), show the baseline measurement to be consistently within
1m, with an average of 0.6m. Figure 9 also shows indoor measurements for three separate loca-
tions. Indoor tests exhibit a much larger error in measured range. Moreover, the errors are not
consistent across locations. While a large university hallway, shown in Figure 9(d), presented a
largely linear relationship between distance and RToF measurements, more constrained cubicle
floors and corridors, illustrated in Figures 9(b) and 9(c), show higher variations. The average error
for our test setup was around 4.2m from the true value.
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Fig. 9. Evaluation of RToF range measurements at different location. (a) Shows outdoor measurements,

which characterize error sources other than multipath. (b, c, and d) Show indoor locations. While the average

error is high (4.2m), the measurements have a high correlation (94%) with distance.

Overall, our experiments indicate that RToF measurements cannot be utilized directly to obtain
accurate indoor locations. These errors are caused due to the specific configurations of the environ-
ment and a general model cannot be assumed. However, a higher correlation exists with distance
(when compared to other distance metrics like RSSI, hop-count, etc.), enabling the SensorFly nodes
to use the measurements for a biased-random walk exploration algorithm. This also provides a bet-
ter metric that RSSI and hop-count for use in-network localization and topology estimation proto-
cols [11, 31], while meeting the platforms relatively strict cost, weight, and accuracy constraints.

5.2 Motion

We use PID controllers to implement the desired height and yaw control for SensorFly nodes. PID
control is simple, does not require detailed dynamic models, and can be implemented using min-
imal computing power. However, hand tuning PID gains is tedious without simulation models.
Such models exist for larger helicopter designs like quad rotors, but not for the SensorFly’s essen-
tially hard-to-instrument miniature design with low-cost components. Therefore, we derived an
approximate first-principles dynamic model for SensorFly nodes.

Figure 10 shows the forces acting on the SensorFly during stable vertical flight. The force F is
the net force on the helicopter, where f0 is equal to weight, and f is the upward thrust due to the
combined effect of the two rotating blades. These forces can be expressed as

F = f0 + f , (2)

f0 = −mд, (3)

wherem is the mass of the helicopter and д is the acceleration due to gravity.
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Fig. 10. This figure shows the forces acting on the SensorFly during stable vertical flight.

Fig. 11. In this figure, the empirically determined relationship between the upward thrust f generated by

rotors and the input duty cycle is shown at different battery voltage levels.

The thrust f is a function of the speed of rotation of the helicopter blades and hence the duty
cycle of the voltage input to the drive motors. However, due to non-linearity in the drive motors
and varying battery capacity, we empirically determine the relation between upward thrust f and
the input duty cycle, as shown in Figure 11.

The forceV in Figure 10 is the viscous drag or air resistance, which opposes the relative motion
of an object through air. Drag forces act in a direction opposite to the oncoming flow velocity and
are proportional to the velocity of the craft. N , the coefficient of viscous drag, is the proportionality
constant relating the two for a given medium and object surface, giving

V = Nẋ , (4)

where x is the vertical displacement from the ground.
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An unbalance of forces in the vertical direction results in a linear acceleration given by

mẍ = F − Nẋ . (5)

In the Laplace domain,

ms2X (s ) = F (s ) − sNX (s ). (6)

The PID controller for maintaining altitude is based on a first principles model of the SensorFly
node given by

X (s ) = �
�

1
m

s2 + N
m
s
�
�
F (s ), (7)

where x is the altitude, F is the input, m is the mass of a SensorFly node, and N is the coefficient
of viscous drag.

Blade rotation causes a torque to be applied to the helicopter body. In stable hovering condition,
the top and bottom rotor torques,Ttop andTbot , should be balanced. The dynamic equation is given
by

I × α = Ttop −Tbot , (8)

where α is the yaw rate and I is the moment of inertia of the node about the vertical axis through
the center of gravity.

A second PID controller, which adjusts the individual rotor speeds while keeping the total thrust
constant, enables the craft to hold a certain direction (trim) or turn at a desired rate.
Ttop andTbot depend on the rotational speed of the top and bottom rotors, respectively. However,

due to the greater lift contributions of the bottom rotor, to change the individual torques while
keeping the lift constant, the speed of the top rotor and bottom rotor is changed by a ratio of 0.7 in
opposite directions. For example, if the speed of the top rotor is increased by 5%, the speed of the
bottom rotor is decreased by 0.7 × 5%. The same mechanism is used to turn the node in an open
loop mode, by creating a net torque in the desired direction. The ratio 0.7 is empirically obtained
for V3 nodes and is conditioned on the shape of the circuit board.

From Equations (7) and (8), we design two independent PID control loops for height control and
yaw control. The feedback for the altitude PID loop is a sonic distance sensor, measuring the height
x of the node from the ground, while a two-axis gyroscope measuresw for the yaw control loop. We
take a heuristic approach to obtain an approximation of the system dynamics for simulation. The
simulation enables us to obtain an initial ballpark value for the controllers proportional, derivative
and integral gains. We further tune the control-loop gains obtained with real experiments. In our
current basic configuration, a proportional gain of Kp = 0.2, a derivative gain of Kd = 0.2, and

an integral gain of Ki = 2 × 10−4 is used as default parameters for altitude control loop. The loop
frequency is 1KHz. For yaw control, Kp = 0.6, Ki = 2 × 10−3, and Kd = 0. The control module,
running at a frequency of 1KHz, consumes only 2% time of the microcontroller.

5.3 Flight Time

Table 5 shows the performance of the flight controller and sensor control software in achieving
stable hover at a given height. The flight time is lower for hovering at higher target altitudes due
to the higher overshoots and settling time. While the current system provides sufficient stabil-
ity at very low computational cost, better control strategies remain the focus of our work in the
future. The flight time of approximately 5min is attainable with the prototype. Optimization of
the mechanical design can extend flight time to 15min as has been obtained by similar, although
RF-controlled, flying crafts [12].
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Table 5. Performance of Flight Controller and Sensor Controller Software Modules

Set Height
Maximum
Overshoot

Settling Time
(70%)

Avg. Steady State
Height Flight Time

1ft 4ft 25s 1.5ft 6:20min
2ft 6ft 40s 2.5ft 5:30min
3ft 6ft 50s 3.5ft 4:50min

6 EVALUATION

In this section, we evaluate the performance of our platform in a realistic fire scenario. CFAST [32]
is a computer simulation environment that fire investigators, safety officials, engineers, architects,
and builders use to simulate the impact of past or potential fires and smoke in a specific build-
ing environment. It is a two-zone fire model used to calculate the evolving distribution of smoke,
fire gases, and temperature throughout compartments of a building during a fire. Considering a
multi-compartment building scenario, we extend the realistic fire growth model to include mobile
SensorFly nodes with parameters and capabilities derived from actual experimental characteriza-
tion presented in Section 5.

We present a physical simulation platform for drone algorithm design. The operating environ-
ment of a SensorFly-like cyber-physical system has many disparate computational and physical
components that are not adequately modeled by existing robotics simulation packages. We present
a simulation environment that combines a physical disaster model (indoor fire growth model), a
radio path loss model, a wireless network model, and a node mobility model to comprehensively
evaluate such cyber-physical systems.

6.1 Methodology

We compare the performance of the autonomously deployed mobile SensorFly nodes with a stat-
ically pre-deployed network of sensors in a three-room building shown in Figure 12. The CFAST
fire simulation runs for a total of t = 1800s, providing fire evolution data such as layer interface
height, temperature, pressure, and gaseous composition along the height of each room. Fires are
set in the Kitchen and Living room compartments at t = 0s. Each room has typical furniture with
their combustible properties as provided in the simulation environment. The CFAST zone model
assumes the conditions at a certain height of the room to be uniform. Therefore, only variations
along the vertical dimension in the building compartments are of interest in sensor placement.

The static network is pre-deployed consisting of three nodes placed at heights of 0.5m, 1.2m, and
2.4m in each of the three rooms. The nodes measure temperature at 10s intervals and route the data
back to the base node at the entrance of the building structure. The SensorFly nodes are introduced
into the environment at t = 0s into the simulation arena. The nodes deploy autonomously and
route back sensed temperature readings to the base station at 10s intervals, moving vertically to
obtain data at different heights. Figure 12 also shows the placement of sensors in the simulation
arena as well as the entry point for SensorFly nodes. The mobility models, network protocol, and
radio link characteristics used for the simulation are described in the following section.

6.2 Evaluation Metrics

Both approaches provide discrete sensor readings in time and height. Sensor readings from both
approaches are interpolated to give a continuous surface along the time and spatial dimensions.
With the simulation data as ground truth, we define two metrics as a measure of the ability of the
approach to provide accurate fire evolution predictions:
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Fig. 12. Arena for SensorFly and CFAST fire simulations. The figure shows the building geometry, the place-

ment of nodes for the static network, the entry point for mobile SensorFly nodes, and the point where fires

are initiated at t = 0s.

Average Model Error. This is defined as the root-mean-square error of the predicted model
obtained by interpolating the discrete sensor readings reported by the static nodes and mobile
SensorFly nodes. The positions of the static nodes are predefined and the real positions of the
flying nodes are tracking by the simulation platform. It is noticed that the simulation platform
maintains two kinds of positions for flying nodes: the real positions of the flying nodes as ground-
truth positions and the estimated location derived from localization module in Figure 13. The
flying nodes interpolate the sensor reading from estimated positions to get a continuous surface.
The readings are interpolated in both the height and time dimensions to the maximum resolution
of the CFAST simulator, 0.1m in height and 10s in time. For static nodes, the error comes from (1)
sensor reading and (2) interpolations. For the flying nodes, besides the previous two errors, the
estimated position brings another error. This metric captures the performance of the system in
terms of predicting an accurate model from sensed data.

Spatio-Temporal Percentage Coverage. The static nodes have limited resolution in the space
dimension, since only a few nodes can be economically installed as part of a universal infrastruc-
ture. Conversely, the mobile SensorFly nodes by virtue of being introduced into the environment
and relying on autonomous means to deploy are constrained in the temporal dimension. That is,
the mobile nodes may not be available at the desired location. The spatio-temporal percentage
coverage captures the effect of both these characteristics. It is defined as the ratio of the number
of sensor readings in the height-time plane to the maximum possible resolution obtainable. To
make this metric calculable, we split the height-time plane to 1s by 1 cubic meter. The maximum
possible resolution obtainable is decided by the desired average model error. If we would like to
achieve higher resolution, then there would be higher average model error. In the implementation,
we need to find a trade-off between resolution and accuracy.

First, we compute these metrics from deployments without accounting for the effect of network
disruptions. Second, to evaluate the adaptability of the solution, we introduce network disruptions
by randomly failing a subset of nodes. The failure of nodes causes loss of sensed data from the
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Fig. 13. Simulation framework.

nodes themselves, as well as from the nodes, which are partitioned from the base station. We also
consider the effect of the number of deployed SensorFly nodes on sensing effectiveness.

6.3 Simulation Framework

To make our simulation result close to the real scenario, we incorporate the real and experimentally
evaluated capabilities and characteristics of the SensorFly platform to the simulation framework.
We describe the various components of the framework (shown in Figure 13) in the following para-
graphs.

Two key parts make the simulation framework close to a real scenario: the environment
modules and the sensor node module. The environment modules describe the physical aspects of
the surroundings while the sensor node modules describes capabilities and characteristics of the
SensorFly platform from experiments.

In environment modules, the fire growth model provides a realistic prediction of temperature
and smoke in the specified simulation arena. The radio path loss model enables wireless link char-
acterization for communication between nodes. The failure model incorporates the failure rate of
nodes corresponding to environmental conditions. The simulation arena provides the configura-
tion parameters for the system, including the building geometry and material information. The
environment modules act as inputs to the mobile sensor node. The sensor node module consists
of modeled components of the hardware such as sensors, radio, and processor. In addition, it in-
corporates some software modules such as localization algorithms and network protocols. Finally,
the simulator outputs a real-time graphical representation of the simulation arena and movement
of sensor nodes. Each module is described in more detail in the following sections.
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The sensor node module consists of modeled components of the hardware, such as sensors, ra-
dio, and processor. The capabilities and characteristics of the SensorFly platform are obtained from
experiments. In addition, it incorporates some software modules, such as localization algorithms
and network protocols.

Finally, the simulator outputs a real-time graphical representation of the simulation arena and
movement of sensor nodes. Each module is described in more detail in the following sections.

6.3.1 Indoor Fire Model. Sensors for real-time sensing and prediction of fire propagation is
an active area of research. Researchers have proposed fire models to predict the advance of fire
from in-situ sensor readings. Such a model is required to provide physical sensing layer for the
simulation environment.

Our current implantation includes a popular model called CFAST [32]. CFAST is a zone model
where each space is split into two zones with uniform conditions in each zone. The top zone con-
sists of the high temperature gases and smoke, while the lower layer consists of lower temperature
gases. The height of the interface between the two zones is called the smoke layer height and this
layer descends as smoke builds up in the room. The layer height is used as an indication of the
extent of the fire.

The CFAST model is described as an initial value problem for a system of ordinary differential
equations. These equations arise from first-principle laws of conservation of mass, the conserva-
tion of energy, the ideal gas law and relations for density and internal energy. The model estimates
the pressure, layer height, and temperatures given the accumulation of mass and enthalpy in the
two layers as a function of time. The model takes as input the simulation arena, which is described
in Section 6.3.2.

The outputs of CFAST are variables that are needed for estimating the conditions in a build-
ing subject to a fire. These include temperatures of the upper and lower gas layers within each
compartment, the surface temperatures within each compartment, and the visible smoke and gas
species concentrations within each layer.

6.3.2 Simulation Arena. The simulation arena is the stage for the simulation. This is where
the fire originates and propagates as well as the mobile nodes sense temperature and smoke in-
formation. The framework requires creating a simulation arena that supplies the configuration
parameters required by the CFAST fire growth model, sensor node mobility model, and the radio
path loss model. The arena parameters include:

• Information about the building geometry such as compartment sizes, materials of construc-
tion, and material properties.

• Connections between compartments such as horizontal flow openings such as doors, win-
dows, vertical flow openings in floors and ceilings, and mechanical ventilation connections.

• Fire properties including fire size and species production rates as a function of time.
• Common combustible material such as furniture, defined by their thermal conductivity,

specific heat, density, thickness, and burning behavior.
• Placement of initial sensor node positions (entry points).

The parameters are defined through a configuration file that is read by simulation framework,
which is implemented in MATLAB. CFAST compatible input files are generated by the MATLAB
program.

6.3.3 Mobility Model. The mobility model specifies the algorithm for motion path planning and
obstacle detection. The model can be configured to correspond to various platforms. The frame-
work currently models the SensorFly system. The SensorFly platform has the ability to measure
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height through the ultrasonic range finder, measure its pose through an integrated three-axis com-
pass, and measure the distance from other nodes through the radio’s time-of-flight capability. As-
suming these capabilities, a motion model is implemented for the simulated SensorFly node using
empirically collected data.

• When the SensorFly nodes are connected to the base station directly or through other nodes,
they follow a biased random walk for exploring and deploying in the on-fire building. The
nodes move at designated speed in random directions until they are within a minimum
specified distance from only one other SensorFly node, to maintain connectivity as well as
spread out through the building for exploration.

• The SensorFly nodes may move so far that no other node is within a maximum specified
distance or when no data route exists to the base station. Since the nodes are lost and do
not know where to go, the best way is to move in random directions until they find another
SensorFly node that can connect them to the base station. This behavior is to guard against
partitioning of the network.

• When either of the two motions aforementioned, nodes also move vertically at a specified
speed in a periodic fashion to obtain readings at different heights. The vertical position
corresponding to a given reading is obtained from the height sensor.

This motion model is realistic and easy to implement scheme for our system and requires few
physical and sensing assumptions for accurate simulation.

6.3.4 Sensors. The framework allows for sensors that can sense the variables output by the fire
model, as well as obstacles in the simulation arena. The virtual SensorFly node is equipped with
sensors corresponding to the actual hardware, including an ultrasound height sensor, an electronic
compass, a gyroscope, and an accelerometer. It includes an error model for sensors that is currently
assumed to have a normal distribution based on empirical observations on our hardware.

6.3.5 Network Model. The framework implements an aggregate and broadcast communication
model for communication. The monitoring nodes seek to route all sensed data to the base station.
Accounting for constant motion of nodes, establishing routes, and running explicit node discov-
ery service is considered impractical and avoided. Nodes are simulated to periodically broadcast
messages containing their sensor data.

Neighboring nodes, on hearing the broadcast message, aggregate the node’s sensor data with
their message. Each node’s sensor data consists of a sequence identifier and a time-to-live field.
The time-to-live is decremented with the number of hops as well as on the expiration of a local
time window, to control the time for which stale data propagates in the network. A node’s data is
propagated by other nodes only if the time-to-live is still not zero. Old sensor data from a node is
replaced with fresh data, if it is received before the expiration of the time-to-live field. This scheme
is akin to a controlled reverse-flood of data to the base station.

6.3.6 Radio Path Loss Model. A radio path loss model is required to provide a more realistic
characterization of the wireless links for node-to-node communication. As complex models would
be too computationally expensive and unfeasible, we use shadowing with a path loss exponent
of 3 as the radio link model for simulations. This is similar to that employed by previous indoor
fire monitoring work [41] and is an estimate for a single-floor multi-room scenario [36].

6.3.7 Node Failure Model. The framework provides a configurable stochastic model for node
failures. It allows a failure rate to be specified corresponding to maximum threshold for environ-
mental variables such as temperature and gas concentrations, as predicted by CFAST. This allows
testing of redundancy schemes and sensing performance for a realistic deployment.
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Fig. 14. (a) Average error in predicted model shown as a function of the size of SensorFly deployment. (b) The

percentage coverage in time and height dimensions is shown as a function of deployment size. (c) Shows the

error obtained in 25 node SensorFly deployments, when a percentage of nodes fail at t = 900s.

6.3.8 Localization. We do not require any accurate localization for navigation or mobility as
nodes follow random paths through the building. This is because (1) the goal of the system is to
achieve high spatial-temporal percentage coverage for sensing the building and (2) the SensorFly
nodes are resource-constrained without vision and laser sensors. Therefore, the system obtains
coarse-grained locations for tagging sensor readings with radio-based method every second. The
framework models the capability of the SensorFly nodes to measure inter-node distances through
time-of-flight ranging. All the inter-node distances are broadcasted to the base station for multi-
lateration localization. Knowing estimates of inter-node distances, an iterative multi-lateration
algorithm is simulated to obtain compartment-level location as in Reference [37].

6.4 Results

The simulation starts at t = 0 with a fully deployed static network with nodes in all three rooms,
and all SensorFly nodes introduced into room 1. Figure 14(a) shows the average model error as
the number of nodes introduced into the arena is increased. The error from the static deployment
of nine nodes, three in each room, is shown for comparison. The error is large for a small number
of nodes primarily because of the lower coverage. The error and the variance in error decreases as
the number of nodes is increased. The error stabilizes at ten nodes, about the same as the size of the
static node deployment. The difference in error between the autonomous SensorFly deployment
and the base line static one is about 14% with similar-sized deployments. It decreases further as
the number of nodes increases. The stabilization can be attributed to the fact that once nodes
are present in all three rooms, additional nodes increase redundancy but improve the error only
slightly given the uniform model. A scenario with higher resolution sensing needs will benefit
more with a larger number of nodes.

Figure 14(b) shows the percentage coverage of SensorFly deployments of various sizes. The per-
centage coverage, as defined earlier, is the total points, in the height and time dimension, available
from sensing to the maximum points provided by the CFAST simulator. In a real-world scenario,
the resolution would be infinite. However, this baseline corresponds to an ideal case sensing reso-
lution suitable for the phenomena being sensed and its spatial distribution. The coverage increases
with the number of nodes as expected, with SensorFly coverage being about equal to that of static
nodes at the deployment size of ten nodes. The coverage increases almost linearly thereafter. This
is because the mobile SensorFly nodes can provide very high resolution in the height dimension.
However, when the number of nodes is fewer, the nodes are slower to enter into a compartment
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Fig. 15. The figure shows the ratio of SensorFly errors to static node error by compartment location. Sen-

sorFly nodes achieve similar performance closer to areas where they are introduced. For Room 3, which is

farther away and obstructed, the error is higher for small sized deployments.

and therefore have less temporal coverage. Arguably, this is a result of the biased random explo-
ration and deployment method employed.

Figure 14(c) shows the adaptability of the network to node failure and network disruptions. In
a 25-node deployment, a percentage of nodes are failed at t = 900s. The actual nodes to fail are
picked at random from the total nodes for each run. The failure of nodes causes loss of sensed data
from the nodes themselves, as well as from the nodes that are partitioned from the base station.
The mobile node deployment shows a sub-linear increase in error for node disruptions. Increasing
the number of nodes failed from 20% to 80% causes a 5-degree increase in error, as nodes not
within range of other functioning nodes resume random motion, until a connected network is
re-established. This makes the network adaptive to node failure.

We evaluate the break up of errors in different building compartments to further illustrate the
nature of mobile deployments. Figure 15 shows the ratio of the error of SensorFly deployments to
the baseline static deployments on a room-by-room basis. The geometry of the deployment arena
quite obviously has an effect on the accuracy of the predicted model in case of SensorFly. As the
SensorFly nodes are introduced into Room 1 (Living Room), the error matches or is lesser than the
static deployment case due to the higher resolution possible due to mobility. Room 3 is farthest
from the point of entry and obstructed by two doorways. Therefore, smaller deployments of au-
tonomously deployed SensorFly nodes have large errors as compared to static nodes in Room 3.
However, as the number of nodes increase, the nodes spread out faster and achieve better coverage
in time, eventually matching errors shown by static nodes.

Figure 16 shows the spatial coverage that is obtained by SensorFly nodes in the three-room sim-
ulation arena over a duration of 1,800s. The arena volume is divided into 1-cubic-meter volume
regions. A region is covered if a SensorFly node visits it during the simulation run time. The cover-
age is computed as the percentage of regions covered by the node to the total number of regions in
the simulation arena. We observe that for a given time a larger number of nodes, following our bi-
ased random-walk exploration scheme, can obtain higher coverage. However, diminishing returns
are observed, for spatial coverage alone, once the number of nodes increases above 15 nodes. For
the five-node scenario, the coverage remains flat with time due to the inability of nodes to explore
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Fig. 16. The figure shows the percentage 3D coverage for SensorFly nodes in the three-room simulation

arena over a duration of 1,800s. The error bars show the standard deviation of coverage obtained.

Fig. 17. Experimental setup for determining 2D space coverage in a 100-square-feet space with four Sensor-

Fly nodes.

further while maintaining a network route to the base station. SensorFly nodes achieve better
performance closer to areas where they are introduced.

6.5 Experiment

We performed a small-scale controlled experiment with real SensorFly nodes to validate the cov-
erage trends obtained from the simulation. SensorFly nodes programmed with the biased random-
walk exploration scheme were introduced into an enclosed area of 100 square feet as shown in
Figure 17. The area was divided into square regions of 2 square feet each. A region was designated
as being covered if a SensorFly node visits it during a time of 2min. Coverage was determined
visually as a percentage of visited regions to the total regions in the area. The number of nodes
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Fig. 18. The 2D space coverage in an area of 100 square feet over a duration of 2min using the biased random

walk exploration scheme.

was varied from one to four. Each experiment was performed ten times and the average coverage
with standard deviations is plotted in Figure 18. We observe a similar trend of increasing coverage
with increasing size of deployment as seen in the simulation.

6.6 Physical Feature-Based Simulation for Version Comparison

To show the improvement of our system design on different SensorFly versions, we evaluate the
performance of four versions of SensorFly platforms with physical feature-based simulation [34].
The simulation is conducted by 20 times with ten nodes to prevent bias.

Since the main differences of four SensorFly platforms lie on sensing noise and flight time,
we adopt DrunkWalk [8] indoor localization and navigation algorithm to illustrate the design
improvement. DrunkWalk is a collaborative and adaptive indoor localization and navigation algo-
rithm for Micro-Aerial Vehicles (MAVs). In general, the localization accuracy is particularly affected
by sensing noise while the navigation is affected by both sensing noise and flight time.

In the physical feature-based simulation, we collect the real sensing noise and flight time
from experiments and evaluate the localization accuracy and navigation. All experiments were
performed 25 times with ten SensorFly nodes. We run the simulation for a time period of 90s,
180s, 240s, and 300s, which correspond to the average flight time of SensorFly V1 to V4.

To illustrate the performance improvements caused by system design, specifically sensing noise,
we plot the cumulative distribution function (CDF) of location estimation errors of SensorFly V1
to V4 in Figure 19.

More than 50% location estimation errors of SensorFly V4 are less than 1m, while the previous
three versions have 24%, 16%, and 12%, respectively. This shows that SensorFly V4 enables
higher resolution indoor localization with lower sensing noise, which is caused by system design
improvement over previous versions (described in Sections 3–5).

In addition, 90% location estimations of SensorFly V4 have errors less than three meters. In
contrast, the previous three versions have 56%, 38%, and 30%, respectively. This shows that low
sensing noise from system design improvement of SensorFly V4 offers stronger ability to limit
the location estimation error than previous three versions.
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Fig. 19. The cumulative distribution function (CDF) of location estimation errors of four versions of

SensorFly platforms.

Fig. 20. The figure shows navigation success rate under different navigation accuracy constraints for four

versions of SensorFly platforms. It is noticed that the flight time of four SensorFly versions varies from 90s

to 300s.

To illustrate the performance improvements caused by system design (sensing noise + flight
time), we compare the navigation success rate under different accuracy constraints. A successful
navigation is achieved when the node can be navigated to the destination within the given nav-
igation accuracy requirement before it runs out of battery. It is noticed that the flight time of four
SensorFly versions are 90s, 180s, 240s, and 300s, respectively. For example, if the destination
location is (4m, 5m) and the navigation accuracy requirement is 1m, a successful navigation for
SensorFly V1 means that the node can arrive within the range of 1m from (4m, 5m) within its
flight time (90s).

Figure 20 shows the navigation success rate as a function of navigation accuracy for four
SensorFly versions. When the navigation accuracy is strict (0.5m), SensorFly V4 has ∼80% success
rate, while the other three versions have 36%, 20%, and 0%, respectively. The large improvement
comes from (1) the lower sensing noise of V4 to ensure accurate localization and (2) the longer
flight time to ensure the node have enough time to arrive within 0.5m range from the destination.

When the navigation accuracy requirement is less constrained (2m), SensorFly V4 achieves
100% success rate. In contrast, the other three previous versions have 56%, 37%, and 1% success
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rate, respectively. This shows that the hardware improvements on both sensing noise and flight
time of SensorFly V4 greatly improves successful MAV navigation.

7 RELATED WORK

Research in sensor networks has been actively conducted for the better part of ten years. By far,
the most explored area has been fixed networks [24, 40, 42]. These sensing applications have some
similar characteristics to SensorFly, in that they are mostly networks with multiple neighbors, and
nodes are composed of microcontrollers, radios, and sensors. The main metrics of the system are
energy usage, data flow, and data aggregation.

Mobility has been explored in sensor networks largely in context of sensor nodes being carried
by human beings or animals [18]. However, unlike SensorFly, the work focuses mainly on adapting
the system to user mobility.

Controlled-mobility has been envisioned by previous work in wireless sensor networks that
proposes the idea of using controllably mobile elements in the network to alleviate resource limi-
tations and improve system performance by adapting to deployment demands [19]. Somasundara
et al. provide a theoretical analysis of the advantages of controlled-mobility in improving sensing
fidelity and node lifetimes with prototype deployments using ground robot platforms [38]. The
SensorFly, on the other hand, focuses on the hardware platform designed for enabling controlled-
mobile indoor aerial sensing.

Mobility has often been explored as part of robotics research. A segment of research focuses on
monolithic or a small team of robots, which may be remote-controlled or autonomous. Typically
research on these devices focuses on individual stability and independent navigation, requiring so-
phisticated sensors [13]. Robotic platforms tend to have a higher per device cost and are economical
for deployment in much smaller numbers compared to traditional sensor networks. Consequently,
they are constrained in their ability to cover large areas simultaneously and rapidly.

The idea of miniature indoor flying platforms has been proposed before in literature. One work
explores using a miniature electric helicopter to combine UAV flocking and wireless cluster com-
puting [14]. Allred et al. present wireless link characterization for a network of semi-autonomous
MAV’s for atmospheric plume sensing [5]. SensorFly is the lightest functional system by at least
a factor of 5 and targets a different design space. The SensorFly provides a platform for indoor
sensing, accomplishing navigation and networking under strict resource constraints, with a high
degree of collaboration.

Wood et al. have worked on flapping-wing micro-mechanical flying devices capable of au-
tonomous flight [43], weighing under 200mg. This is the target hardware platform for the
RoboBees [2] project. We believe these flying mechanisms represent exciting advances and un-
derscore the need for research into controlled-mobile, highly resource constrained collaborative
sensing and coverage algorithms. With a fully functional hardware platform, SensorFly allows us
to validate assumptions and determine true tradeoff points in realistic deployments.

For fire monitoring, the FIRE [1] project proposes SmokeNet, a pre-deployed network of nodes
with smoke and deferential temperature sensors. The system also consists of nodes with LED’s to
visually alert or guide firefighters. The SIREN [17] project focuses on improving the firefighter’s
access to information, using a WiFi-enabled PDA with peer-to-peer networking capabilities to
communicate with an infrastructure of sensors. These sensors warn firefighters of hazards as
well as help with navigation and localization. The FireGrid [41] project employs zone models
and utilizes an array of static sensors positioned from ceiling to floor. Using the correlation
between the sensors, the system proposes a communication protocol for emergency response
that minimizes congestion. The assumption of a universal pre-established infrastructure, in all of
the previously mentioned work, limits their adoption in the near-term.
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Another proposed approach has been that of automatically deploying nodes as firefighters
advance into the building on fire [22]. These sensor nodes are primarily concerned with relaying
firefighter data back to the incident commander. Since this approach involves firefighters entering
the building for sensor deployment to take place, such a system would have limited utility for
providing situational a priori information without risking the rescuers’ lives.

8 DISCUSSION

Having presented a description and evaluation of our controlled-mobile aerial platform, we note
that several aspects warrant further discussion and could result in possible extensions to this work.

Interoperability with Static Networks. Pre-deployed static sensor networks have certain
advantages, such as knowledge of exact locations and ability to provide data from regions that
may be occluded due to closed doorways or structural collapse. On the other hand, the point-of-
emergency deployment capability and mobility of SensorFly nodes allow larger deployments and
higher resolution sensing of spaces where they can be introduced.

A hybrid approach with SensorFly nodes working in collaboration with static sensing infras-
tructure, where it exists, can combine the advantages of both approaches. Thus, research into
making controlled-mobile and static networks interoperable, as well as work on leveraging the
static network to augment the mobile-network’s localization protocols, could be beneficial.

Communication Protocols. Networks of controlled-mobile nodes present new opportunities
and challenges for design of communication protocols. In this article, we present a simple ag-
gregate and broadcast scheme that is sufficient for relaying the low-bandwidth temperature data.
Nevertheless, we envision more complex communication scenarios with heterogeneous sensor
nodes with varying bandwidth requirements. The network must provide quality-of-service for
both higher-bandwidth data, such as camera streams as well as low-bandwidth temperature read-
ings. Another challenge is the co-existence of delay-tolerant communication with communication
that has timeliness requirements, such as that required for localization of nodes. Furthermore, the
constant but controlled mobility of nodes provides opportunities in designing routing and discov-
ery schemes better suited to such networks.

Radio Propagation. Radio propagation may be affected adversely in emergency response en-
vironments, such as in the presence of smoke and fire. This may impact the speed and extent of
coverage obtained for a deployment of specific size. Recent research has studied the effect of fire
on wireless propagation in wildfire environments [7]. The work suggests that ionization in flames
causes particular frequency bands to be attenuated. An empirical study of the characteristics of
fire propagation in indoor environments for our chirp spread spectrum radio would be helpful in
obtaining a more accurate estimation of system performance in real deployments.

Energy and Flight Time. Miniature aerial platforms remain limited in their flight time due
to high-power consumption of motors. Improvements in mechanical design and battery technol-
ogy can extend flight times to the order of 15–20min, which however may not be sufficient for
many applications. We seek to explore collaborative techniques to distribute movement tasks and
manage energy across the group. For example, in the fire monitoring scenario examined, nodes
can collaborate with nodes in their close proximity and duty cycle their flying task. One node can
land and act as relay, while another flies and senses the temperature. When the battery level of the
flying node becomes low, the roles can be reversed.

Environment Influence on the Performance. The SensorFly is designed to deploy au-
tonomously for different challenging operations such as fire rescue. Environmental factors such
as temperature and smoke will affect the performance of the system. The individual SensorFly
nodes could fail due to these factors, but the overall swarm of SensorFly should function through
redundancy. The wind affects the motion of SensorFly, which could be solved by PID control.
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Temperature and smoke affect the performance on the following aspects. (1) The SensorFly body
frame may be damaged under high temperature. This could be solved by adopting some fire resis-
tant material. (2) The radio propagation may also be affected in real scenarios. The performance
characteristic could be found in the datasheet of radio module [44]. (3) The IMU sensors will also
be affected under different temperatures. A calibration algorithm based on temperature could be
designed to deal with this problem. All the previous effects could be modelled as a node failure
model. To make our physical simulate more realistic, we incorporate the failure model, which de-
scribes failure rate of nodes corresponding to environmental conditions, as shown in Figure 13.
The failure model provides a configurable stochastic model for node failures. It allows a failure
rate to be specified corresponding to maximum threshold for environmental variables, such as
temperature and smoke, which is predicted by CFAST. This allows testing of redundancy schemes
and sensing performance for a realistic deployment. In addition, the failure SensorFly nodes also
indicate these factors during system operation.

9 CONCLUSION

In this article, we presented a novel 29g controlled-mobile aerial sensor network platform for
indoor emergency fire monitoring applications. We identify the challenges in low-cost low-weight
aerial sensing platform design and propose an architecture that utilizes limited-capability resource-
constrained individual sensing nodes to autonomously and quickly achieve network-wide sensing
objectives.

We evaluated the platform in the fire-monitoring scenario using realistic CFAST indoor fire
simulation models. We show that autonomously deployed SensorFly nodes can achieve perfor-
mance in both sensing quality and coverage that matches or exceeds pre-deployed static network
infrastructures. The autonomy and adaptability of SensorFly-like networks can eliminate the cost
of building large sensing infrastructures and reduce the risk to firefighters, as compared to prior
static sensor network approaches.
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