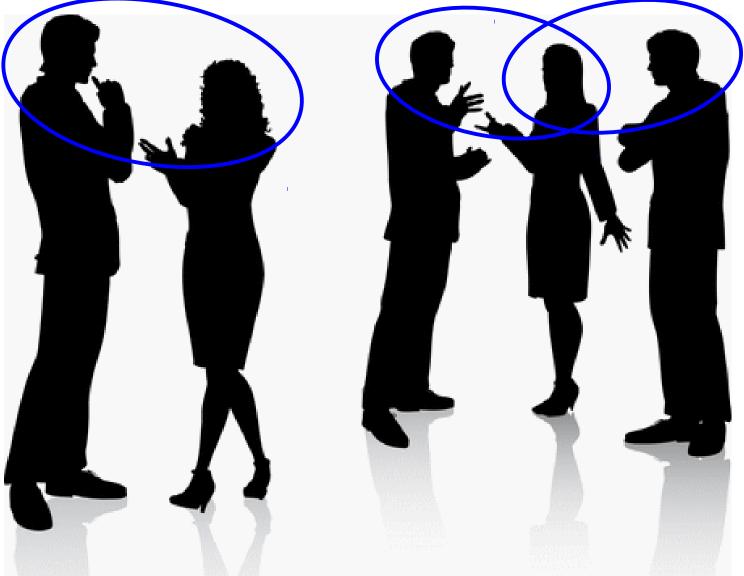
Wireless Network Security Spring 2016

Patrick Tague Class #6 - Link Layer Threats; WiFi Security

Carnegie Mellon University

©2016 Patrick Tague

1


Quick Announcements

- Project topics, teams, etc.
 - A few project topics are mentioned on Blackboard
 - There's a Google form to sign up your team
 - Don't sign up for my project ideas without talking to me first
- Intro Presentations
 - Class is probably small enough to have all of our intro presentations in one day \rightarrow Thursday 2/4

Class #6

- Basic link layer security considerations
- WLAN/WiFi security
- WiFi vulnerabilities

Wireless Links

Carnegie Mellon University

Link Layer Functionality

- The wireless link layer is primarily responsible for establishing and managing point-to-point links between neighboring nodes
- Also, passing data frames to/from the PHY and the network layers

Wireless Link Types

SSDENSKELLEVSTORK X"

D Weither (*) :ted

- WiFi: AP ↔ host
- Telecom: mobile ↔ BTS
- V2I: vehicle \leftrightarrow RSU
- V2V: vehicle ↔ vehicle
- V2C: vehicle \leftrightarrow cat
 - Not really…?
- D2D: device ↔ device
- And so on...

Service Breakdown

- Establishing the link:
 - Neighbor discovery
 - Addressing
 - Channel setup / sync
 - Authentication / authorization
- Managing the link:
 - Medium access control (MAC), availability
 - Confidentiality, integrity, etc.
 - Queueing & scheduling
- Layered services:
 - PHY: collision avoidance, carrier sensing, error correction, signaling, etc.
 - NET: forwarding, switching, etc.

Carnegie Mellon University

Link Layer Threats

Essentially, every service at the link layer has corresponding threats

Carnegie Mellon University

Discovery Threats

- Discovery can be affected by malicious devices actively preventing benign devices from finding and connecting to each other
- Examples:
 - In WiFi, a malicious device can spoof the WiFi access point, attracting unsuspecting users to attach to the attacker instead of the intended network
 - In MANET/VANET, a Sybil attacker can present multiple network identities, attracting connection-limited devices to waste space in look-up tables

Network Access Threats

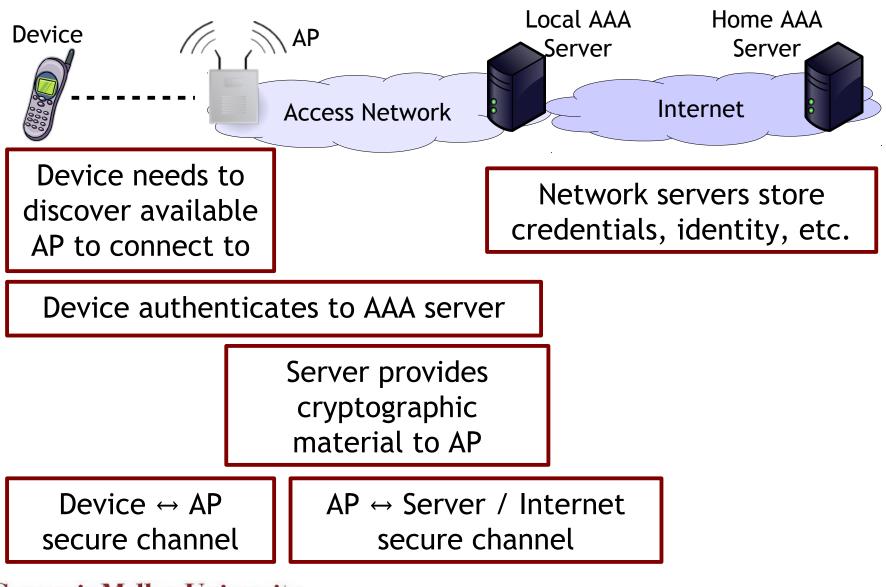
- Network access can be affected in two ways: 1) preventing access by valid devices and 2) gaining access for invalid devices
- Examples:
 - Preventing access by DoS, forced disconnection, etc.
 - Unauthorized access or elevated access level, achieved by crypto-based attack, session hijacking, session take-over during hand-off, etc. based on authentication / authorization protocols

InfoSec Threats

- Secrecy / confidentiality can be compromised by attacking the crypto or security protocols used to protect the data in flight
 - Esp. if weak crypto is used
- Integrity can be similarly compromised
 - Weak crypto or unfortunate integrity protocol design

Availability Threats

- Availability can be threatened in different ways from discovery or access, namely an attacker can let you discover and connect, but get no or poor service
 - PHY-layer threats like interference/jamming can affect connection mgmt with a discovered AP
 - Cheating is often possible at the MAC layer due to assumptions that everyone plays well together
 - More on this later


Privacy Threats

- Device/user privacy may be at risk due to the inherent exposure/exchange of identifying information in link formation and mgmt
- Examples:
 - In WiFi (and most others), devices are required to broadcast a MAC address that identifies them
 - Even if the MAC isn't linked to a personal identity, subsequent messages/locations can be correlated

Let's go into more detail about WiFi

Carnegie Mellon University

Private WiFi Networks

Carnegie Mellon University

WiFi Discovery

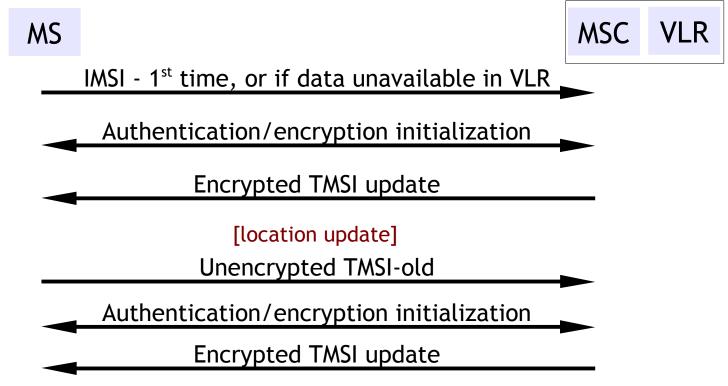
- In order for a client device to connect to an AP, it needs to discover its presence/existence
- Two ways to do this:
 - AP can announce itself to all surrounding devices
 - Can't do this very often, so devices need to wait also need to check multiple channels, since APs can move → slow
 - Client can call out for known APs "WiFi Probing"
 - If the client has connected before, it knows how the AP is/was configured, so can find it very quickly
 - But, ...

WiFi Probing Issues

Filter: (wlan.	fc.type_subtype ==	0×04)	 Expression
Time	Source	Туре	SSID
401.697011000 401.707384000 401.855865000 401.868368000 402.093322000 402.094443000 402.095695000 402.096939000 402.098059000 402.099190000 402.100310000 402.101568000 402.107442000 402.108690000 402.109815000	54:26: Apple_ bc:cf Apple_	Probe Request Probe Request Probe Request Probe Request Probe Request	HarborLink - Buffalo Wi NetScout Rosen Guest Wireless Student Guest Gdaycreations cactusmoon_public

SSID Based Threats

 Whenever a mobile device blasts out probe messages, we can learn its relevant SSID set



Potential Fixes

- Since many threats are based on MAC-SSID pairs, MAC pseudonymy can help
 - Implies there's a trusted third party to handle pseudonyms, requires pre-existing relationship
- MAC or SSID info can be encrypted
 - Requires computation or search on mobile and/or AP to discover which keys should be used to decrypt, requires pre-existing relationship
- Don't use direct probing
 - Slow

GSM Pseudonym Mgmt.

- User and device identity:
 - IMEI: Int'l Mobile Equipment ID device
 - IMSI: Int'l Mobile Subscriber ID user
 - TMSI: Temporary Mobile Subscriber ID pseudonym

Carnegie Mellon University

C?

SIM

WiFi Link Security

- WiFi link security focuses primarily on access control and encryption
 - In private WiFi systems, access is controlled by a shared key, identity credentials, or proof of payment
 - Most often, authentication is of user/device only, but mutual authentication may be desired/required by some users/devices
 - Confidentiality and integrity over the wireless link
 - Shared medium among untrusted WiFi users

Feb 2: Continuation, or TBD

Feb 4: Project Intro Presentations

Carnegie Mellon University