
©2016 Patrick Tague 1

Wireless Network Security
Spring 2016

Patrick Tague

Class #8 – Broadcast Security & Key Mgmt



©2016 Patrick Tague 2

Note on HW#2
• With a fresh install of OMNET++ 4.6, it grabs INET 

3.2, but the sample code we gave you only works 
for INET < 2.99
– You'll need to downgrade your INET install to use the 

sample code
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Class #8
• Broadcast authentication

• Group key management
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Broadcast Communication
• Wireless networks can leverage 

the “broadcast advantage” 
property to send a message to 
multiple recipients 
simultaneously
– In a “star” (like a WiFi network), 

O(1) transmissions cover all N 
recipients

– In general, O(N/d) transmissions 
cover N recipients with density d, 
using relaying
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Broadcast Security
• To leverage “broadcast advantage”
– All recipients need to be able to authenticate the 

transmitter / message from the single transmission

– All recipients need to be able to decrypt the message 
from the single transmission

– Also, the authentication, en/decryption, and key 
management mechanisms need to be efficient
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Broadcast Authentication
• Sender wants to broadcast a single message in a 

wireless network

• To protect against packet injection and other threats, 
need to verify the data origin
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 Some form of asymmetry is required

Broadcast Auth Mechanisms
1. Symmetric key crypto and message auth codes 

(MACs)
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Broadcast Auth Mechanisms
2. Public-key signatures
– Sender uses a private key to sign the message, all 

recipients verify with the corresponding public key
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• Ex: RSA 1024 bit signatures
– High generation cost (~10 milliseconds)
– High verification cost (~1 millisecond)
– High communication cost (128 bytes/packet)

• Even more costly for low-end processors
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Broadcast Auth Mechanisms
3. Packet-block signatures

– Sign a collection of packets, partition signature over 
packet block  disperse the cost of signing over larger →
chunks of data
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More efficient, but loss of 1 block  no verification→
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TESLA
• TESLA = Timed Efficient Stream Loss-tolerant 

Authentication [Perrig et al., RSA Cryptobytes 2002]

• Uses only symmetric cryptography

• Asymmetry via time
– Only the correct sender could compute MAC at time t

– Delayed key disclosure for verification

– Requires loose time synchronization
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Delayed Key Disclosure
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One-Way Hash Chains
• Versatile cryptographic primitive
– Pick random rN and public one-way function F

– For i=N-1,...,0 : ri = F(ri+1), then publish r0

• Properties
– Use in reverse order of construction: r1, r2, …, rN

– Infeasible to derive ri from rj (j<i)

– Efficiently authenticate ri using rj (j<i): rj = Fi-j(ri)

– Robust to missing values
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TESLA Schedules
• Keys disclosed 2 time intervals after use
• Receiver setup: Authentic K3, key disclosure 

schedule

K5 K6 K7

tTime 4 Time 5 Time 6 Time 7

K4K3
FFF

K5

Time 3

F

P1,
MAC

K5
(P1),

K3

P2,
MAC

K7
(P2),

K5



©2016 Patrick Tague 14

Robustness to Packet Loss
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Asymmetric Properties
• Disclosed value of key chain is a public key, it 

allows authentication of subsequent messages 
(assuming time synchronization)

• Receivers can only verify, not generate

• With trusted time stamping entity, TESLA can 
provide signature property
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TESLA Summary
• Low overhead
– Communication (~ 20 bytes)
– Computation (~ 1 MAC computation per packet)

• Perfect robustness to packet loss
• Independent of number of receivers
• Delayed authentication
• Applications
– Authentic media broadcast
– Sensor networks
– Secure routing protocols
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What about highly-constrained nodes 
in wireless sensor networks?
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mTESLA for WSN
• Proposed as part of the SPINS architecture [Perrig et 

al., WiNet 2002]
– Reduced communication compared to TESLA, key 

disclosure per epoch instead of per packet

– Includes several other optimizations for minimum 
overhead, practical in severely-constrained devices
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SNEP for WSN
• SPINS also includes the Secure Network Encryption 

Protocol (SNEP) to provide data confidentiality, 
authentication, and freshness [Perrig et al., WiNet 
2002]
– SNEP includes efficient key generation
– SNEP authenticated + encrypted packet structure:

• Data encrypted with shared key + counter (for 
semantic security)

• MAC over encrypted data

• Optional nonce-exchange for provable freshness
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TinySec
• The TinySec architecture provides a practical 

security suite for wireless sensor networks [Karlof et 

al., SenSys 2004] 
– TinySec-Auth provides authentication only
– TinySec-AE provides authenticated encryption

– Extensive discussion of design trade-offs and simulation 
results included in the paper
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Further Reading
• Broadcast authentication in VANETs
– Studer et al., ESCAR 2008 / JCN 2009.
– Raya et al., SASN 2005.

• More papers @ http://lca.epfl.ch/projects/ivc/

• … in WSN
– Ren et al., WASA 2006.

• DoS-resilient broadcast authentication
– Gunter et al., NDSS 2004.
– Karlof et al., NDSS 2004.
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In addition to security and performance 
features of the security protocols, what 
about the underlying key management?
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Key Management
• How to add a member to the group without giving 

them access to past group activities?

• How to remove/revoke a member from the group 
without giving them access to future group 
activities?

• How to provide fresh credentials to group members?
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Group Key Management
• Group formation, joining, and leaving can be 

controlled entirely by distribution and revocation of 
keys
– A session encryption key (SEK) is given to all group 

members (used to distribute/collect data)

– Key encryption keys (KEK) given to group members are 
used to periodically update SEKs

• Revocation = not getting an SEK update

• KEKs may also need to be updated

– Updating key must be very efficient so it can occur often 
enough to minimize effects of misbehavior
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Challenges
• Simple attack models such as eavesdropping, 

message injection / tampering, masquerading, etc. 
can affect the entire security architecture

• Unicast solutions may be infeasible / impractical

• Network and services are dynamic, need to scale

• Various types of overhead to manage

• Initial trust relationship
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Scale & Dynamics
• Depending on the scenario, the group size could be 

10s, 100s, 1000s, 1000000s, …

• Group membership and service subscription can be 
dynamic
– Can change on the order of seconds, minutes, days, 

months, … 
– Join and leave are random

• Most likely, there's no “one size fits all” method
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Logical Key Hierarchy
• LKH arranges group members in an m-ary tree
– Tree leaves correspond to members with unique KEKs
– Internal tree nodes represent group KEKs
– Tree root represents the SEK
– Each member gets SEK and KEKs along tree path
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LHK Addition
• If M
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 wants to join a group and the tree isn't full
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LHK Removal
• If M

3
 wants to leave the group, update SEK/KEKs
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LKH Overhead
• Storage:
– Authority holds O(N) total keys

– Each member holds 1 SEK + O(log
m
(N)) KEKs

• Communication:
– Broadcast flood required for every update message, 

O(log
m
(N)) msg/removal

• Note: every msg may require multiple transmissions...

• Computation:
– Symmetric en/decryption operations
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Generalized Key Graphs
• Key graphs generalize key trees for secure group 

communication [Wong et al., TR 1997] 
– The authors propose a graph generalization of LKH 

allowing users to belong to groups arbitrarily instead of 
using a tree structure
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How do these update procedures 
translate to the wireless domain?
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Metrics
• Previous techniques described focus on number of 

update messages to broadcast
– What about the physical topology of the network?

– Relaying messages over multiple wireless links?

– Energy expenditure of long/lossy links?

– Broadcast advantage?
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Power-Efficient Key Trees
[Lazos & Poovendran, 2005]

• Key updates in large wireless networks (WSNs, 
MANETs, etc.) should be energy-efficient
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But, in all these approaches,
there's a catch...
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Initial Key Agreement
• All of these key management approaches assume 

the new user is a valid user that can establish a 
pairwise KEK with the server
– Valid user  authentication  keys→ →
– So, initial key agreement requires pre-existing keys or a 

secure offline initialization

– Protocols such as Diffie-Hellman and their many variants 
can help here, as long as they're practical for the context

– Human-in-the-loop allows for different approaches, e.g., 
SafeSlinger [Farb et al., 2013]
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Key Agreement in WSN
• In challenged systems (WSN), 

key agreement is often to 
expensive

• Option: authority assigns 
symmetric keys (KEK, etc.) prior 
to deployment, nodes that share 
SEKs/KEKs after deployment can 
bootstrap secure links

• See [Eschenauer & Gligor, CCS 2002; 
Tague & Poovendran, ToSN 2007]
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This “pre-distribution” has its own class 
of associated threats/attacks

I can provide hundreds of papers if 
you're interested in learning more
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Feb 11:
MAC Misbehavior;

OMNET++ Tutorial II


