Wireless Network Security Spring 2016

Patrick Tague Class #12 - Routing Security; Forwarding Security

Carnegie Mellon University

©2016 Patrick Tague

1

SoW

- SoW Presentation
 - Thursday in class
 - I'll post a template
 - Each team gets ~5 minutes
- Written SoW
 - Due Thursday
 - Use IEEE 2-column format
- Questions?

Carnegie Mellon University

Class #12

- Examples of approaches for control-plane security
- Data-plane attacks and defenses

Control-Plane Security

- How to guarantee that an established path can be efficient (e.g., short) and/or reliable?
- How to prevent attackers from manipulating path discovery/construction?
- What metrics can be used to quantify the value of a path?
 - Length? Latency? Trust?

Securing DV Routing

- Distance vector (DV) routing is one of the classical approaches to network routing
- SEAD: Secure Efficient Ad hoc DV routing
 - [Hu et al., Ad Hoc Networks 2003]
 - Based on DSDV protocol using sequence numbers to prevent routing loops and async. update issues
 - Uses hash chains to authenticate routing updates
 - Relies on existing mechanisms to distribute authentic hash chain end-elements

Securing LS Routing

- Link-state (LS) routing is another classical approach to network routing
- SLSP: Secure Link-State Protocol
 - [Papadimitratos and Haas, WSAAN 2003]
 - MAC address / IP address pairs are bound using digital signatures
 - Allows for detection of address re-use and change
 - Link state updates are signed and propagated only in a limited zone, with the hop count authenticated by a hash chain

Carnegie Mellon University

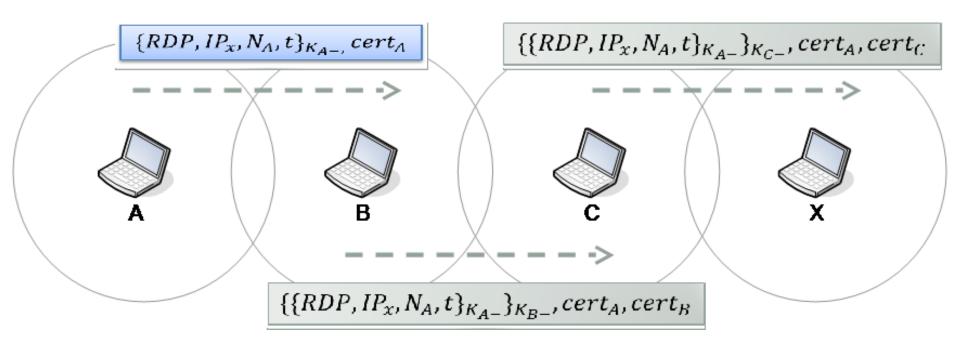
Secure Routing Protocol

[Papadimitratos & Haas, 2002]

- SRP authenticates single-hop exchanges in DSR request and reply messages
 - Since protection is hop-by-hop, SRP over DSR is vulnerable to path (or other parameter) modification

SAODV

[Guerrero Zapata & Asokan, 2002]

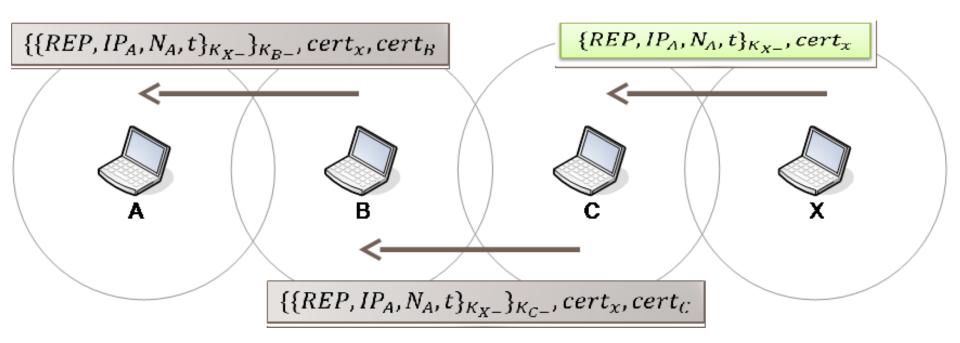

- Secure AODV introduces signatures into the AODV routing protocol to authenticate various message fields
 - RREQ and RREP messages are signed, hop counts are authenticated using hash chains

ARAN

[Sanzgiri et al., ICNP 2002]

- ARAN: Authenticated Routing for Ad hoc Networks (based on AODV)
 - Make use of cryptographic certificates and asymmetric key to achieve authentication, message integrity and nonrepudiation
 - Need preliminary certification process before a route instantiation process
 - Routing messages are authenticated at each hop from source to destination and vice versa

Auth. Route Discovery



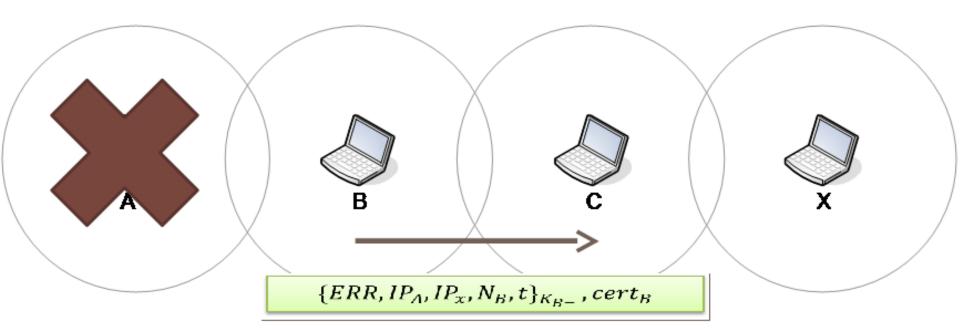
- --> Broadcast Message
 - Unicast Message

Carnegie Mellon University

©2016 Patrick Tague

Auth. Route Setup

---> Broadcast Message


Unicast Message

Carnegie Mellon University

©2016 Patrick Tague

Route Maintenance

• Send ERR message to deactivate route

- ---> Broadcast Message
 ---> Unicast Message
- **Carnegie Mellon University**

ARAN Security

- Modification attacks
 - Prevents redirection using seq# or #hops
 - Prevents DoS with modified source routes
 - Prevents tunneling attacks
- Impersonation attacks
 - Prevents loop-forming by spoofing
- Fabrication attacks
 - Prevents route error falsification

ARAN Limitations

- ARAN relies on an underlying PKI
 - Requires a trusted third-party / infrastructure
 - Requires either:
 - Significant communication overhead to interact with the TTP for near-term updates/revocation
 - Long delays in certificate updates, revocation lists, etc.

Ariadne

[Hu, Perrig, & Johnson, 2004]

- Ariadne is a secure on-demand routing protocol built on DSR and Tesla
 - DSR: Dynamic Source Routing, Tesla: Timed Efficient
 Stream Loss-tolerant Authentication (broadcast auth)
 - Route request and reply messages are authenticated
 - S: $h_0 = \text{MAC}_{K_{SD}}(\text{REQUEST}, S, D, id, ti)$
 - $S \rightarrow *$: (REQUEST, S, D, id, ti, h_0 , (), ())

$C \cdot h_2 = H[C h_2]$

Ariadne is vulnerable to malicious forwarding by attackers on the selected routing path - requires an additional mechanism to feed back path loss/quality

What about forwarding security at the data plane?

Carnegie Mellon University

©2016 Patrick Tague

Data Plane Security

- Injecting and modifying packets are issues of packet/data integrity, can be solved using cryptographic techniques
 - Though not efficiently solved...more in a moment
- Forwarding to the wrong next hop is an issue of protocol compliance, but can be checked and reported similar to packet/data integrity
- Packet dropping is an issue of compliance and availability

Carnegie Mellon University

Data Plane Availability

- Cryptographic primitives alone cannot solve availability problems at the data plane
 - Cannot provide any sort of guarantee about delivering data through routers that misbehave
 - In general, crypto alone cannot solve DoS problems
 - Data plane availability is partially due to compliant behavior of routing nodes and partly due to natural nondeterministic faults, errors, and failures

E2E Delivery Measures

- Suppose packet delivery is measured end-to-end using signatures or MACs
 - Every message carries overhead for packet authentication, but message authentication is already desirable for many other reasons
 - Packet drop induces end-to-end retransmission
 - With high delay if the ACK is also dropped/modified
 - Packet modification forces routers to carry bogus message all the way to the destination node

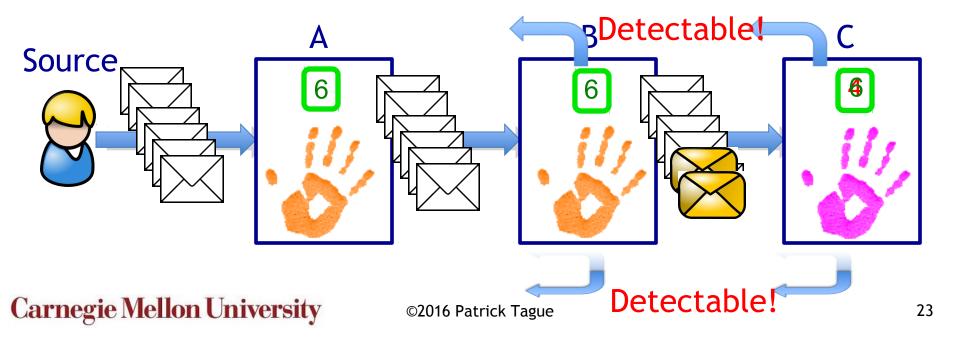
Limitations

- Paths can only be changed after a large number of end-to-end transactions, i.e., after enough data is available to make a decision
- Path-based detection only identifies a bad path, not a bad node
 - Good nodes may be excluded from networking
 - May have to search a large number of paths to find one with good performance
 - In fact, exponential in #attackers

Per-Node Delivery Measures

- Suppose packet delivery is measured per node
 - Verification at finer granularity may require more overhead (e.g., MAC per node)
 - Quicker retransmission requests can be issued by intermediate routers, but malicious routers can also request retransmissions
 - Routers are forced to do more computation and reporting

- Neighbors may be required to "overhear" behavior

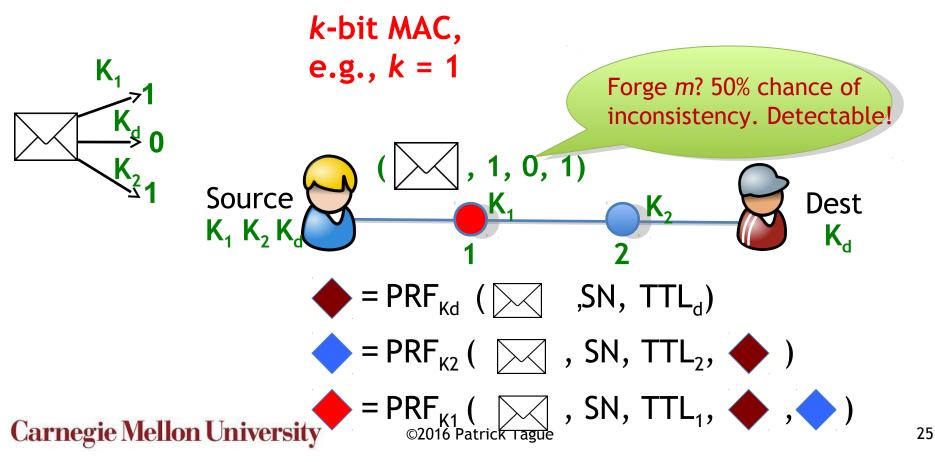

ShortMAC

[Zhang et al., NDSS 2012]

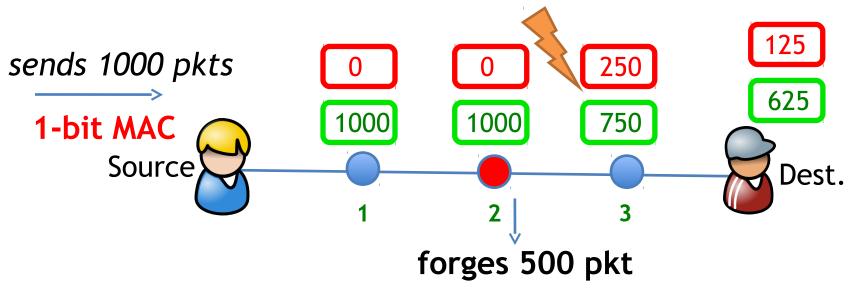
- Instead of reacting to poor performance, highly efficient monitoring can enable continuous monitoring with minimal overhead
- A few key design insights allow for significant efficiency gains by making seemingly-significant tradeoffs with detectability

ShortMAC Counters

- Fault Localization \rightarrow Packet authentication
 - Fault localization \rightarrow monitor packet *count*, *content*
 - W/ pkt authentication, content \rightarrow count
 - Counters-only approach yields small state and low communication overhead


Limiting the Attacker

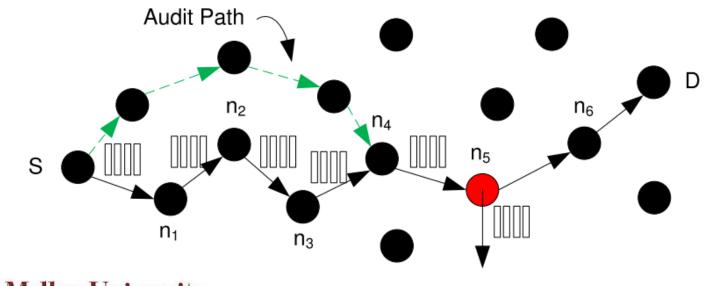
- Limiting attacks instead of perfect detection
 - Detect every misbehavior? Costly! Error-prone!
 - Absorb low-impact attack: tolerance threshold
 - Trap the attacker into a *dilemma*
 - Enable probabilistic algorithms with provable bounds


ShortMAC

- ShortMAC packet marking
 - Limiting instead of perfectly detecting fake packets
 - Source marks each packet with k bits (w/ keyed PRF)

Detection using Counters

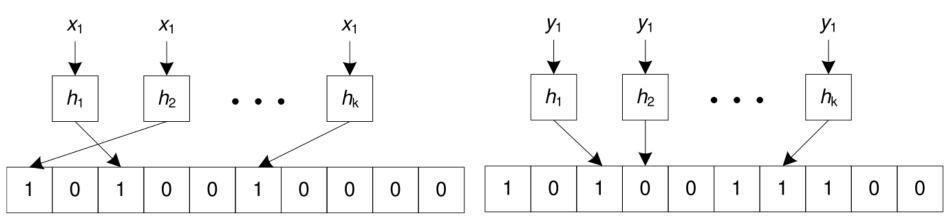
- High-level steps
 - Each node maintains two counters (counter only!)
 - Secure reporting (details in paper)
 - Threshold-based detection (details in paper) robust to *natural errors*


Limitations

- ShortMAC was designed for the Internet and has some implicit assumptions that limit its use in wireless domains
 - Detection is based on a threshold value much higher than a natural packet loss threshold - in wireless, natural packet loss can be high
 - Source must share pairwise symmetric key with every node along the path

Random Audits in MANETs

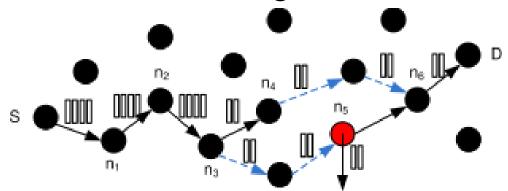
[Kozma & Lazos, WiSec 2009]


- Instead of constantly monitoring every node's forwarding behavior, only perform path audits when end-to-end performance degrades
- To audit a path, the source constructs a disjoint audit path to a node on the path and uses this path to carry audit request/response

Carnegie Mellon University

Efficient Auditing

- Upon request, a node generates a proof of which packets it has seen
 - Reporting a list of all packets is inefficient, so compression is required
 - Bloom Filter does lossy packet list compression:
 - A 2ⁿ-bit vector can be indexed by an n-bit hash function
 - Each of k such hash functions maps a packet to a bit
 - Any "0": the corresponding packet was not received
 - All k "1"s: corresponding packet was probably received



Random Audits

- REAct = Resource Efficient ACcounTability
 - Audits are triggered by performance degradation
 - Source S audits a node N on the path
 - If the returned Bloom filter from N is sufficiently close to that of S, then audit a node downstream
 - Else, audit a node upstream of N

Carnegie Mello

- Eventually, search will converge to the lossy link
- Source can change route around the lossy link to identify which node is misbehaving

30

Limitations

- REAct assumes that attackers have a static attack strategy
 - Dropping packets only when not being audited will work, but it will allow detection in other ways
- REAct assumes that multiple attackers do not collude
 - Colluding attackers can trade duties when being audited, thereby throwing off the search process

Feb 25: SoW Presentations; Network Privacy & Anonymity

Carnegie Mellon University