Wireless Network Security Spring 2016

Patrick Tague Class #13 - Network Privacy & Anonymity

Carnegie Mellon University

©2016 Patrick Tague

1

Class #13

- Privacy risks at the wireless network layer
- Several different approaches in different systems / scenarios

Privacy and Anonymity

Carnegie Mellon University

©2016 Patrick Tague

Network Privacy Issues

- Network layer interactions in wireless networks often expose information about identity, context, content, relationships, etc.
- In certain cases, cryptographic protections can help, but not always
- In certain cases, pseudonyms help, but not always

ID Matching

- Network IDs/addresses can facilitate tracking, profiling, inference, etc.
 - Ex: a network service provider sees device A connect to a network in Pgh, then to another network in DC, then to another network in SF \rightarrow the service provider can create a profile of the device owner
 - Ex: an eavesdropper sees device A show up and connects to a network at the same time every day → the eavesdropper can temporally profile the user to learn when they will be away from home

Traffic Analysis

- A curious or malicious party can observe network traffic and analyze flow patterns to infer relationships
 - Plaintext IDs can make this pretty easy
 - Something like "conservation of flow" can allow traffic flow decoupling
 - Inference capability depends on several factors:
 - Network visibility global or local view?
 - Traffic density dense or sparse traffic distributions?
 - • •

Timing Analysis

- Since network operations are typically at least somewhat delay sensitive, there are end-to-end correlations between transmission events
 - Ex: node A transmit 10 packets, then neighboring node B transmits 10 packets of similar size → maybe B is relaying A's traffic
 - Depending on visibility and density, very little other information is needed (e.g., strong hop-by-hop packet reencryption doesn't prevent timing analysis)

Understanding the Risks

- What type of network? Services? Etc.?
 - WLAN, cellular, VANET, WSN, ...
- What is the attacker's goal / purpose?
 - Real-time tracking, recovering past traces, ...
 - Robbery, personal safety, blackmail, mal-marketing, surveillance, ...
- What granularity is needed for attack success?
 - Relational, location-specific, region-specific, ...

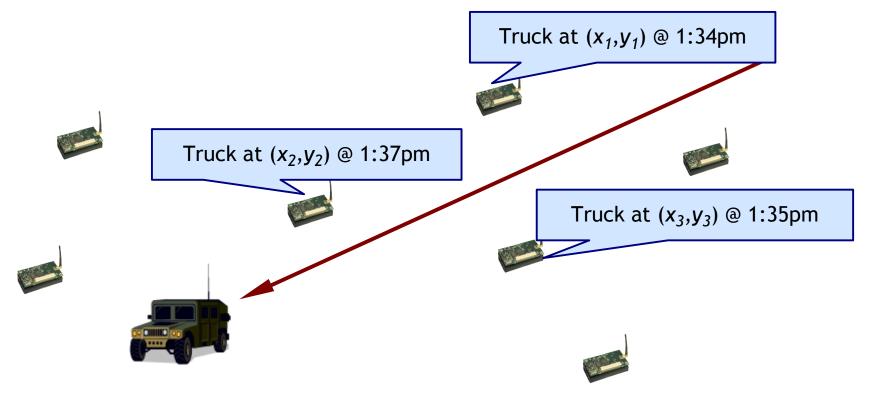
Privacy Challenges

- 1. Understanding the privacy goals
 - What needs to be protected?
 - What are the rules to be enforced?
- 2. Understanding the threat
 - What are attackers goals, capabilities, methods, ...?
 - Practicality of attacker assumptions?
- 3. Metrics
 - How to measure privacy protection and enforcement?
 - How to evaluate and incorporate risk?

Carnegie Mellon University

©2016 Patrick Tague

Different Privacy Concerns


- Profiling and tracking WiFi users
 - We already talked about this one a bit
- Event/object inference in WSN
- Unauthorized user/car tracking in VANET

Traffic Anonymization

- In multi-hop networks (MANET/WSN), transmission linking can expose what path is used for a session
 - Traffic analysis:
 - Analyzing the flow of packets through a network (with global knowledge) allows decomposition into individual flows
 - Local traffic analysis:
 - Without global knowledge, timing information can expose flow decomposition in a neighborhood

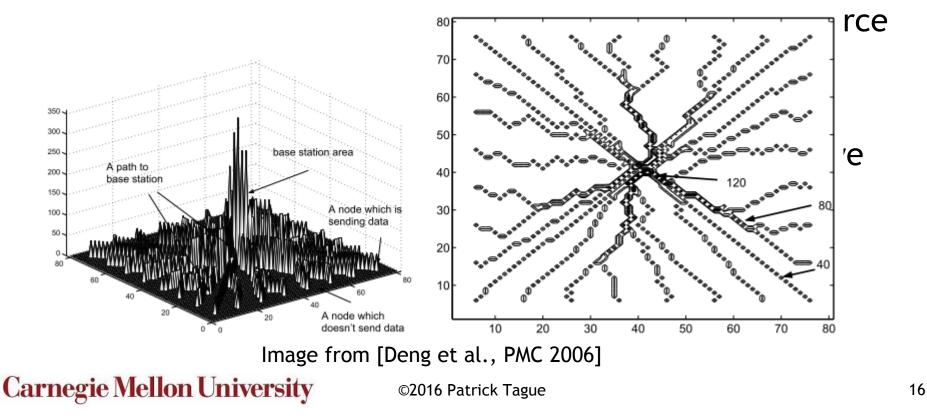
WSN Location Privacy

 In sensor networks, we're usually not concerned with protecting sensor locations, but what they're sensing may be more sensitive

Source Location Privacy

- One of the common goals in WSN is to hide the location of the sensed event from an observer
 - But, the traffic generated will immediately expose any singular event
 - Commonly called the "Panda Hunter Problem"
 - Sensors in a wildlife area are used to track/study pandas
 - Whenever a panda walks by a sensor, it generates traffic
 - A hunter can track the traffic to find the panda

Panda Hunter Problem


- Objective of the WSN / defender:
 - Properly / quickly collect panda mobility info
 - Hide the location information from the panda hunters that can eavesdrop on WSN traffic but not decrypt
- Objective of the panda hunters:
 - Learn the location of the data source (and thus the panda) by analyzing traffic flow statistics

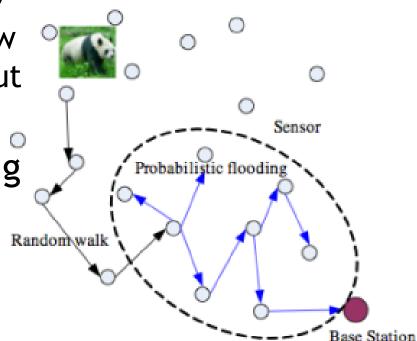
Panda Hunter Strategies

- Two approaches:
 - Choose one location in the network to monitor traffic
 - Wait for the panda to walk somewhere that creates traffic flows through the chosen location, then find the panda
 - Probably takes a long time depending on the area, but better than naïve hunting
 - Find the base station and monitor all network traffic
 - More work to find the base station, more traffic to analyze all at once, but any panda-related traffic goes here

Anti-Analysis Methods

- In the Panda Hunter context, there are two ways to mitigate the attack:
 - Prevent the hunter from finding the base station (i.e., destination location privacy)

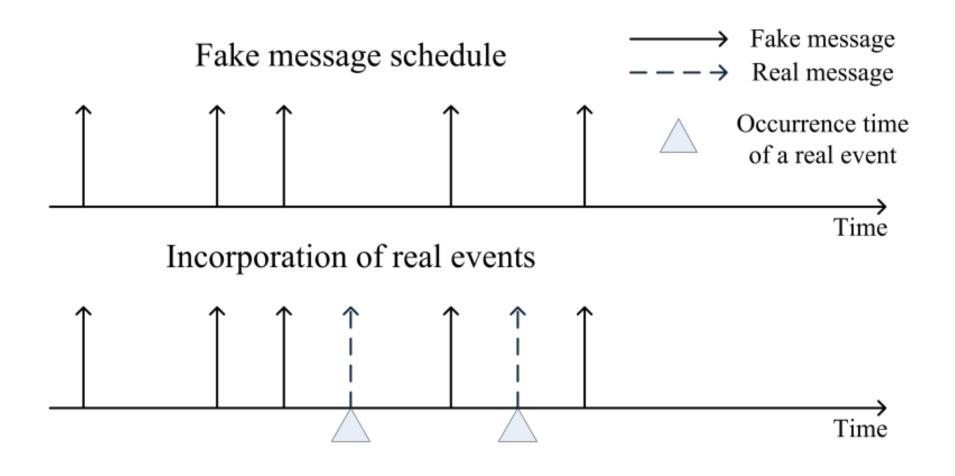
Flooding

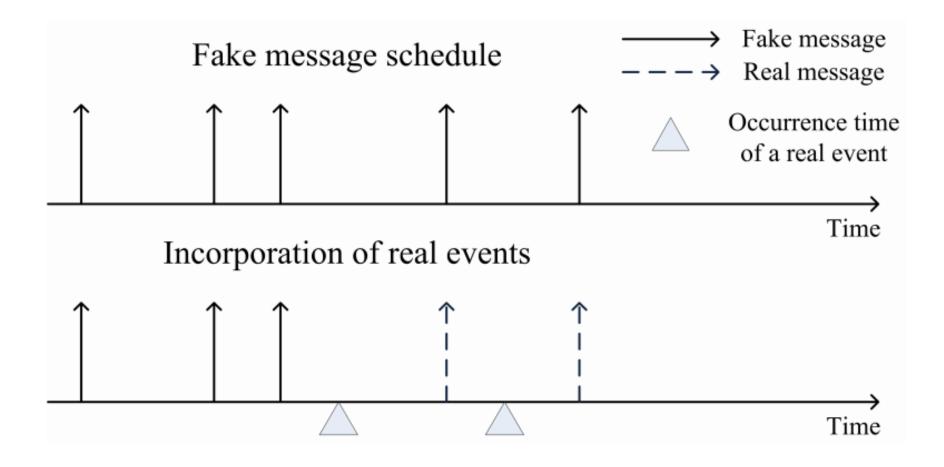

- One common approach is to hide the actual event data in dummy ("chaff") traffic
 - Flooding the network with dummy traffic prevents the attacker from figuring out what is real
 - If it looks like the panda is everywhere, where is it?
 - Of course, flooding dummy traffic is a lot of work for very little reward

Probabilistic Flooding

- Trade-offs can be made between the overhead of flooding and the resulting location privacy by instructing each node to forward dummy traffic only with probability p
 - Less dummy traffic slightly degrades privacy
 - Less dummy traffic means lower overhead
 - Nodes need to be able to distinguish dummy from real traffic, or also drop real traffic w.p. (1-p)

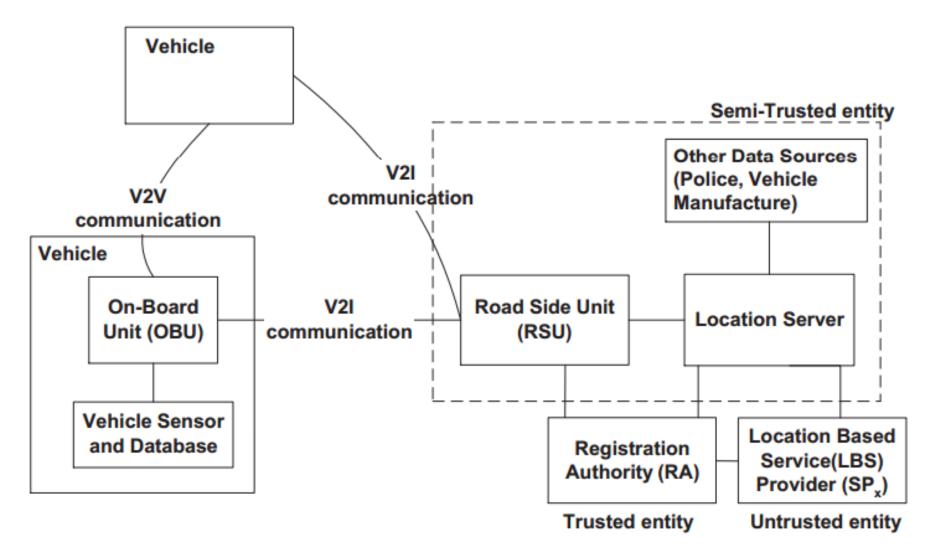
Random Routing


- Another technique to mitigate traffic analysis is random routing
 - Next hop \leftarrow rand({neighbors})
 - Non-deterministic packet flow makes the analysis harder, but increases delay
- Can combine random routing with prob flooding
 - Phantom Routing:


Transmission Correlation

- To make things harder, attackers can analyze timing at a node to further decompose flows at a point
 - Sequence of transmissions by two neighboring nodes can indicate re-transmissions \rightarrow data on same path
 - Q: how to make re-transmissions statistically uncorrelated with original transmissions?
 - (e.g., [Alomair et al., Globecom 2010])

Simple Approach



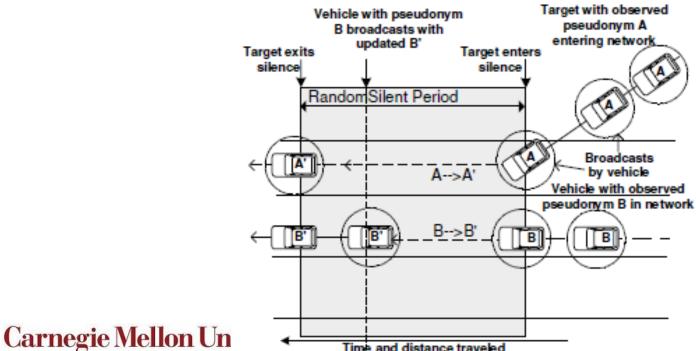
Better Approach

What about location privacy issues in mobile networks (e.g., VANETs)?

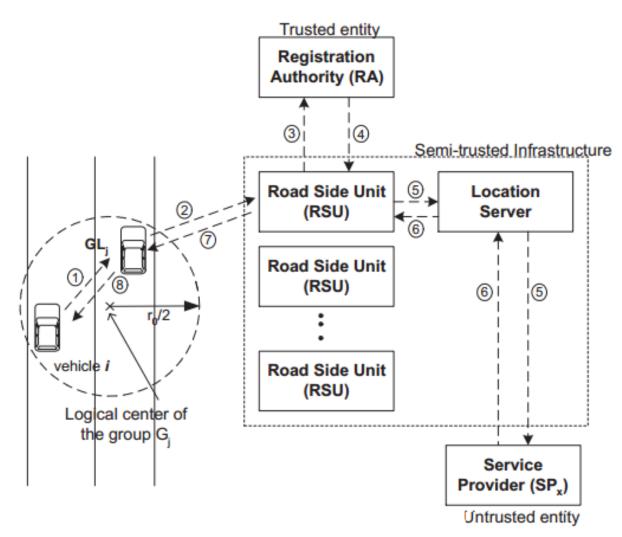
LBS in VANET

How to prevent the untrusted LBS from tracking vehicles?

AMOEBA


- Pseudonyms + group identity → location privacy among vehicles on the highway
 - Groups increase anonymity and reduce linkability
 - Pseudonym updates and silence at opportune times further reduce linkability
 - Power control allows group communication without infrastructure eavesdropping

$V2I \rightarrow G2I$


 Protect anonymity by grouping network Direct LBS request from *i* traffic LBS request throught GL_i Allow vehicles to form ad hoc groups GL - Group leader IdA, Identifiable Area of i communicates to RSU Rotate group leader randomly vehicle i

Leveraging Silence

- Road structure \rightarrow pseudonyms not enough
 - Random silent period with pseudonym update reduces linkability, but causes safety problems
 - Rely on silent periods during times of high driver attentiveness, e.g., while changing lanes or merging

Privacy and LBS

Some Issues

- Trusted group leader?
 - Compromised group leader \rightarrow no privacy
 - Rotation helps, but doesn't solve
- Trusted group?
 - Malicious group members can expose info to LBS, spoof LBS requests, etc.
- Lack of end-to-end control in V2I/LBS
 - Pay services?
 - No control over vehicles in data flow
 - Malicious leader could interfere

Summary

- We saw some unique location privacy issues in very different wireless systems
 - Additional location privacy issues exist in other domains / contexts, but no time to cover them all
- As systems continue to emerge / evolve, new privacy issues will arise

Mar 1: Trust and Reputation

Mar 3: NO CLASS

Carnegie Mellon University

©2016 Patrick Tague