Wireless Network Security Spring 2016

Patrick Tague Class #14 - Trust and Reputation

Carnegie Mellon University

©2016 Patrick Tague

1

Reminders

- No class on March 3
 - I will have some time available if you want to have a skype/hangout about hw#3
- HW#3 due on March 3
 - I will be reachable if you have questions
- HW#4 goes out soon

Class #14

- Evaluating trust in networked systems
- Network reputation systems

What are Trust and Reputation?

• Trust:

- Subjective expectation of an agent receiving positive outcomes from another in a specific context
- Reputation:
 - Global perception of an agent's trustworthiness in a system
- Why do we care about these issues?

What does that mean?

- Trusting claims made by other devices/users about identity, services, events, etc.
- Trusting others to correctly manage data and services
- Trusting others to behave as expected/promised
- Trusting others to be fair / not greedy
- And so on...

Trust in the Internet

- The Internet uses a centralized or hierarchical trust model based on identify certification
 - A certificate authority attests the identity and trustworthiness of individuals/groups by issuing a signed/certified public key
 - CA claims "X is identifiable and trustworthy"
 - X provides signed certificate from CA to Y
 - Transitive trust: $CA \rightarrow X$, $X \rightarrow Y ==> CA \rightarrow Y$
 - This type of model also provides a notion of accountability

Trust Challenges

- In MANET, the biggest challenge is lack of a centralized authority, so nobody to act as a CA
 - How to distribute and approximate the CA trust model?
 - Is there a different model that works as well/better?
- In mesh and WSN, latency and trusted paths are major challenges
 - How to bootstrap a secure/trusted path to the CA?
- In DTN, latency is a huge problem

Let's go into more detail about how to model and measure trust

Individual Trust Models

- Each agent evaluates its trust of another
 - Combines direct and indirect observations
 - Includes past behavior
- Trust is an opinion
 - It can be expressed / shared, modified, changed, etc.

Figure from [Yu et al., Proc. IEEE, 2010]

Reputation, aka System Trust

- Reputation is a globally shared view of trust in an agent
 - Sort of an aggregate of individual trust values
 - Allows for consistent action wrt non-cooperative agents

Trust Issues

- How to initialize / bootstrap trust?
 - Ex: I'm evaluating X, but I've never met them before (and none of my contacts have met them before)
- How to weigh past vs. current events?
 - Ex: X was uncooperative two weeks ago but nice since then
- How to weigh direct vs. indirect observations?
 - Ex: X cooperated with my neighbor (supposedly) but not with me

Trust Issues

- How to map events to a trust metric?
 - Ex: X cooperated 9 times and refused once
- How to capture the dynamics of trust?
 - Ex: [X cooperated 9x and refused 1x]
 vs.
 [X cooperated 4x, refused 1x, cooperated 5x]
- How to use trust metrics once evaluated?

Common Trust Themes

- Most techniques for evaluating trust use some common concepts
 - Trust is difficult to build but easy to lose
 - Importance of past events decays over time
 - Trust should be somewhat robust to "natural" events
 - E.g., can incorporate uncertainty or confidence
 - The trust mechanism itself should be robust to misbehavior
 - More on this in a bit...

Trust Metric Dynamics

- Various approaches using different evaluation policies, such as:
 - For each positive/negative action, add/subtract a constant to/from the trust value
 - For each positive action, add a constant; for each negative action, multiply by a constant fraction
 - For each positive action, add a constant; for each negative action, drop to the lower boundary (0 or -1)

Example

• From [Ganeriwal & Srivastava, 2004]

What about attacks on the trust/reputation system itself?

Trust/Reputation Attacks

- Attack model:
 - Attacker is an active insider, can cooperate/comply or choose to misbehave
 - Motivated by selfish/unfair or malicious intent
 - Can work alone or collude with others

- In general, one of three goals:
 - Falsely increasing trust values (itself or friend)
 - Falsely decreasing trust values (attack target)
 - Denial of service

Self-Promotion Attack

- Goal: obtain a higher trust among neighbors and/or reputation in the system
- **Means:** fabricate positive feedback or modify reputation values in transit, possibly at the expense of others
- Assumptions: (i) reputation system is based on positive feedback, (ii) mechanism is exploitable

Whitewashing Attack

- **Goal:** quickly repair a trust/reputation value after selfish/malicious action is performed
- Means: after abuse, re-enter or exploit the system to reset the trust values to default or previous state, possibly in combination with other attacks
- Assumptions: (i) reputation system may need negative feedback, (ii) mechanism is exploitable

Slandering Attack

- **Goal:** falsely decrease the trust/reputation value of other actor(s)
- Means: as the name suggests, spread false opinions of the other actor, often through negative feedback which can be very damaging
- Assumptions: (i) reputation system needs negative feedback, (ii) mechanism is exploitable, (iii) may require collusion

Orchestrated Attacks

- **Goal:** multiple attackers collude to force the system into a particular desired state
- Means: combine promotion, whitewashing, and slander as needed for specific goal
 - Ex: oscillation attack divide into teams, $\frac{1}{2}$ does slander and $\frac{1}{2}$ does promotion, switching occasionally
- Assumptions: (i) collusion, (ii) whatever assumptions required for component attacks

DoS Attacks

- **Goal:** prevent computation and dissemination of trust/reputation values, denying any supported protocol/application
- Means: overloading the system or blocking messages in some way (typically through some existing form of DoS attack)
 - Ex: flood reputation updates so nobody can process them all; jam/drop reputation update messages
- Assumptions: (i) sufficient resources, (ii) collusion as in DDoS

Attacks on Reputation

- Malicious or unfair negative reputation
 - "Bad-mouthing attacks" [Ganeriwal & Srivastava, 2004]
 - Potential defense: eliminate negative feedback

Carnegie Mellon University

©2016 Patrick Tague

Attacks on Reputation

- Malicious or unfair positive reputation
 - "Ballot-stuffing attacks" [Ganeriwal & Srivastava, 2004]
 - Potential defense: detect then bias future results

How to defend against these attacks on trust/reputation?

Defense of Sybil Attacks

- Problem: many of the above attacks are due to Sybil-like behavior (multiple identities per node)
 - Allows each attacker to present multiple opinions
- Potential defense:
 - Centralized or distributed identity management, potentially binding the ID to the device, address, or other static parameter
 - IDs can also be based on social "web of trust"

Mitigating False Rumors

- Problem: attackers can fabricate false rumors to alter reputation computation
- Defense #1 (mitigating generation):
 - Bind reports using cryptographic protection such as a digital signature (for accountability)
- Defense #2 (mitigating spreading):
 - Filter out reports that don't match others using voting or consistency with direct observations
 - Don't forward any reports that are inconsistent

Mitigating Short-Term Abuse

- Problem: attackers can misbehave for a relatively short time then play nice (or reset with a new ID) to restore reputation
- Potential defenses:
 - New actors start with low reputation and need to build up before getting service
 - Enforce strict penalties on misbehavior with slow rate of improvement

Mitigating DoS Attacks

- Problem: DoS attacks on trust dissemination and update can prevent reputation building
- Potential defenses:
 - Distribute dissemination/update tasks over multiple actors for diversity
 - Employ common network reliability and DoS mitigation strategies
 - ACK/NACKs, multi-path routing, gossip mechanisms, errorcorrecting codes, etc.

How do trust and reputation systems apply to networking?

Trust-Based Networking

- Network nodes can be selective about communication and networking decisions by using trust-based policies
 - A node can decide to locally communicate only with nodes that it trusts above a threshold $\boldsymbol{\tau}$
 - A node can construct/select routing paths using an aggregate path trust/reputation metric

Watchdog & Pathrater [Marti et al., 2000]

 Watchdog monitors forwarding by overhearing subsequent transmissions

- If $A \rightarrow B$ and $B \rightarrow C$, then A can listen to and analyze B's forwarding behavior
- Pathrater uses observed statistics to choose which paths are most reliable
 - Can be helpful in route selection for source routing, e.g.
 DSR

Issues with Watchdog

- Unsurprisingly, watchdog+pathrater is not robust to misbehavior or network error on its own
 - Collisions, fading, asymmetric links, and many other events are treated as misbehavior
- Not robust to many types of attacks
 - Slander/framing attacks by a watchdog affect the aggregated path rates

CORE

[Michiardi and Molva, CMS 2002]

- CORE combines direct and indirect trust values wrt a collection of different functions
 - E.g., forwarding, route discovery, network management, location management, etc.
 - Builds on the Watchdog mechanism using a requesterprovider model

CORE Requests

- When a requester makes a service request:
 - Watchdog monitors the request and reply
 - Provider accepts request only if reputation value of requester is high enough
 - Watchdog can update provider of reputation value if it changes, e.g. if requester is DoS-ing provider
- CORE prevents some attacks by only allowing positive reports to propagate; negative reports only go 1 hop

CORE Limitations

- CORE adopts all the limitations of the watchdog
- Not scalable, as a watchdog is needed in every neighborhood
 - Also, watchdogs need global (or at least E2E) info
- Mobility can break CORE

Carnegie Mellon University

©2016 Patrick Tague

Trusted MANET Routing

[Theodorakopoulos and Baras, JSAC 2006]

- Routers report trust of each next hop, including confidence in the estimate
- Source computes an aggregate over each of several paths to inform path selection

Data-Centric Trust in VANETs

[Raya et al., Infocom 2008]

- In highly dynamic environments like VANETs, trust can be computed on the data Event-specific instead of the actors $f(\tau(v_k), \lambda_j) \rightarrow G(s(v_k), f(\tau(v_k), \lambda_j), \mu_l(v_k, \lambda_j))$ Decision Logic
 - Including dynamic factors such as location and time
 - All relevant factors and and and and can be individually event type weighted to come up with a trust value in each piece of data

Carnegie Mellon University

Dynamic trust metric

Node id

and event type

 $\mu_i(v_k,\lambda_i)$

Reports on events of type λ ,

from nodes v,

Report

contents

(trust levels)

Security status

Node id

 $s(v_{\iota})$

Data Trust Evaluation

- Paper provides a framework for evaluating the trust levels using a number of different statistical methods
 - Different techniques provide resilience against certain types of attacks

Open Questions

- How to choose the right type of reputation dynamics for a given system/task/data type?
- How to detect the events that cause reputation to increase and decrease?
- How to mitigate the effects of detection error?
- Is reputation effective given the well-known attacks (slander, lying, etc.)?

Mar 3, 8, 10: NO CLASS - SPRING BREAK!

Mar 15: Wireless Transport Security

Carnegie Mellon University

©2016 Patrick Tague