Wireless Network Security Spring 2016

Patrick Tague Class #15 - Wireless Transport Security

Carnegie Mellon University

©2016 Patrick Tague

1

Class #15

- Fun issues at the wireless transport layer
- Transport-oriented attacks

Transport Layer

- Transport layer is responsible for managing end-toend content delivery
 - Connection-oriented communication
 - Reliability
 - Flow control
 - Congestion avoidance
 - Multiplexing
 - Ordered delivery

Wireless Multihop Transport

- Transport performance is affected by all protocols living below it
 - Physical layer
 - Errors can be misinterpreted by transport mechanisms: one of the big reasons TCP has difficulties in wireless
 - MAC
 - Transport flows suffer from inter- and intra-flow contention
 - Network layer
 - Transport sessions live only as long as routing paths; path maintenance → session maintenance
 - Mobility: path disconnection/loss causes different behaviors in different routing protocols, all of which affect transport

Phy → Transport Impact

- TCP interprets errors and tries to mitigate their effects using congestion control
 - But, it usually can't distinguish congestion loss from transmission errors
 - Congestion control may be invoked when not needed
 - TCP + transmission errors \rightarrow reduced throughput

MAC → Transport Impact

- More hops/path means more medium usage
 - Increased competition for medium, even among nodes in the same routing path
 - Higher interference and hidden/exposed terminals

- Node mobility leads to route changes
 - Route can fail, data lost on old route, new route formed, TCP timeout starts data on new path

Mobility → Transport Impact

- Node mobility leads to route changes
 - Route can fail, shorter route formed

Image source: [Karaliopoulos, ETH lecture 2007]

Carnegie Mellon University

©2016 Patrick Tague

- Route caching interferes with TCP (e.g., in DSR)
 - Multiple routes stored to reduce discovery overhead
 - At network layer, source scans for a live route
 - Older routes may have been broken due to mobility, etc.
 - Successive TCP timeouts, lack of data traffic during scan
 - Instead:
 - Deactivate route caching
 - Explicit link failure notification (TCP-ELFN)
 - Explicit congestion notification or ICMP unreachable messages (ATCP)

Split TCP

- In mixed wired/wireless:
 - TCP runs only at the end-points and at a proxy at the wired/wireless border
 - Proxy accelerates traffic through wired domain
- In wireless multihop:
 - Proxies can be similarly used to split into short paths

Split TCP Pros/Cons

• Pros:

- Improves multi-hop TCP opportunity using shorter loops and faster evolution
- Retransmissions follow shorter paths, saving energy and reducing interference
- Cons:
 - Breaks E2E, so no longer compatible with end-to-end security such as IPSec
 - Increased buffering at proxies, required greater intelligence at intermediate nodes
 - Route changes/breaks require proxy changes

Misbehavior

Carnegie Mellon University

©2016 Patrick Tague

JellyFish Attacks

[Aad, Hubaux, and Knightly; MobiCom 2004]

- JellyFish (JF) attacks target congestion control used in many TCP and UDP variants
 - JF attacks comply with all control and data plane protocol requirements except for targeted malicious actions including:
 - Re-ordering packets
 - Periodically dropping packets
 - Increasing delay variance

JF Re-ordering

- TCP uses cumulative ACKs for efficiency and rely on duplicate ACKs to detect loss or out-of-order reception
 - All TCP variants assume that packet re-ordering is a relatively rare and short-lived event
- JF Re-ordering attack
 - Deliver all packets but using a re-ordering queue instead of a FIFO sr queue

Impact of JF Re-ordering

JF Periodic Dropping

- If packet loss occurs periodically near the retransmission time out scale (~1s to address severe congestion), then E2E throughput is nearly zero
- JF periodic dropping attack
 - Drop packets for a very short duration with period near the retransmission time out

Impact of JF Per. Dropping

JF Delay Variance

- Round-trip times vary due to congestion, and this variance is measured to estimate important protocol parameters
- JF delay variance attack
 - Inject random delay in forwarding each packet, maintaining order, but increasing delay variance

JF-jitter-delay node

Impact of JF Delay Variance

Detection of JF Attacks

- Detection relies on ability to monitor forwarding behavior
 - Using passive ACK or "overhearing" (e.g., Watchdog)
 - Lots of analysis and simulation in the paper
- Upon detection, victim can:
 - Change routing path
 - Switch to multi-path routing
 - Create backup routes to use when performance drops

What about transport protocols other than TCP and UDP?

WSN Transport Reliability

[Buttyán and Csik; PerSens 2010]

- Researchers have proposed many alternative transport mechanisms for WSNs
 - ACK-based approaches, either on an end-to-end or hopby-hop basis
- Transport-layer attacker
 - Eavesdrops on communications in the network, forges and injects transport-layer control messages
 - 1. Attacks against reliability
 - 2. Energy depletion attacks

Protocols Analyzed

- PSFQ Pump Slowly, Fetch Quickly
 - NACK-based hop-by-hop mechanism to recover from errors quickly by fetching fragments from neighbors
- DTC Distributed TCP Caching
 - SACK-based hop-by-hop reliability (up- and down-stream) using a combination of ACKs and NACKs
- Garuda
 - NACK-based approach with localized recovery using special-purpose CORE nodes
- RBC Reliable Bursty Convergecast
 - Window-less ACK scheme for hop-by-hop recovery with efficient out-of-order delivery

Carnegie Mellon University

©2016 Patrick Tague

General Observations

- ACK/NACK based schemes are vulnerable to control packet injection
 - ACK primarily vulnerable to reliability attacks
 - NACK primarily vulnerable to resource depletion
 - SACK or hybrid ACK/NACK inherit both vulnerabilities
- Preventing resource depletion in NACK-based schemes likely needs strong authentication or welldesigned reputation system
- Any protection is subject to trade-offs

Summary

- Transport-layer misbehavior types and potential defenses
 - Jellyfish attacks and protocol-compliant misbehavior in TCP and reliable UDP settings
 - [Aad et al.; MobiCom 2004]
 - Misbehavior in alternative transport protocols for wireless sensor networks
 - [Buttyan and Csik; PerSens 2010]

Mar 17: Cross-Layer Attack & Defense