Wireless Network Security Spring 2016

Patrick Tague Class #17 - Statistical Attack Detection

Carnegie Mellon University

©2016 Patrick Tague

1

Reminders

- HW#4 is due Thursday, Mar 24
- No class, Mar 29
- Progress presentations Thursday, Mar 31
- Exam Tuesday, Apr 5

Progress Presentation

- Important updates since SoW presentation
 - Any changes to project scope, planned deliverables, schedule of deliverables, etc.
 - Brief overview of what has been done so far
 - Preliminary results, possibly a quick demo
 - Every team member should present
 - MAX 12 minutes

Class #17

- Challenges in attack/intrusion detection
- Trade-offs between detection, security, privacy, performance, etc.

Attack/Intrusion Detection

 Most work on network attack/intrusion detection has focused on the Internet

Ta	able 2: Application categorie	10	00 -						P2P FTP		
Category	Application/protocol								DNS Mail/News		
web	http, https	8	30 -						Streaming Net. oper.	2777	
p2p	FastTrack, eDonkey, BitTorrent, Ares	(%)					7777	7777	Encryption Games	2111	
	Gnutella, WinMX, OpenNap, MP2P	si e	50 -						Chat Attack	KXXXXX	
	SoulSeek, Direct Connect, GoBoogy	10 a			····				Unknown		
	Soribada, PeerEnabler	ltage									
ftp	ftp	4 arcer	10 -								
dns	dns	ď									
mail/news	smtp, pop, imap, identd, nntp		20								
streaming	mms(wmp), real, quicktime, shoutcast										
	vbrick streaming, logitech Video IM					×××××	~~				
network operation	netbios, smb, snmp, ntp, spamassassin		0	 	s 4	to	to to	t			
	GoToMyPc			~4,	74. JOK	· · · · · · ·	50, NS	NY NS	24		
encryption	ssh, ssl								1		
games	Quake, HalfLife, Age of Empires, Battle	fi ele	d Vi	ietnam							
chat	AIM, IRC, MSN Messenger, Yahoo messenger					From [Kim et al					
attack	address scans, port scans								. c al	,	
unknown	-					CoN	EXT	200	81		

Carnegie Mellon University

MARARAL

©2016 Patrick Tague

- Many Internet-type models and defenses don't translate to wireless networks, even those that are part of the Internet
 - Attacks on WiFi APs don't look like attacks on an Internet router or wired gateway
 - Attacks launched from mobile devices over LTE may look similar once traffic is on the Internet, but look different in the LTE network itself

- Mobility breaks many of the assumptions of traditional detection/defense systems
 - Paths change much more quickly, preventing networklayer fingerprinting of sessions and complicating traffic analysis
 - However, mobility may provide additional information, if the detector is smart enough to look for it
 - Ex: if the detector is in the LTE core, it doesn't know much about device mobility, while if little detectors are in the base stations, mobility info may be available

- Where are the detectors?
 - In many of the traditional Internet-based detection / defense models, networks are nicely partitioned using gateways, firewalls, etc. with a domain-based detector behind each one
 - What about a MANET / WSN?
 - Where should the detector go? How much visibility does it need?
 - What should it monitor?

- Security measures at various layers may actually prevent or interfere with attack detection
 - Goals of data secrecy, network privacy, anonymity, etc. are in direct conflict with certain attack detection techniques
 - Ex: many corporations are struggling with wide adoption of TLS/SSL/HTTPS because it breaks their packet inspection-based models for attack detection
 - Ex: if anti-traffic-analysis techniques make all traffic look the same, how to differentiate normal and attack traffic?

Common Approaches

- Attack detection must be context-appropriate
 - Ex: in a sensor network, there's much less variance expected in network traffic, so anomaly detection may be easier, possibly making tradeoffs more reasonable
- Attack detection may require collaboration
 - Dependencies between layers mean detection is not a layered activity, may need monitoring across various layers of the protocol stack and various locations in the network

Open Questions

- Due to wide variety of network types and need for context-appropriate detection mechanisms, this is a hard problem.
 - What specific detection mechanisms are needed for specific network / application scenarios?
 - How much can detection mechanisms be generalized?
 - Can detection schema be learned / trained in situ?

...

Let's look at an example as an exercise

Carnegie Mellon University

©2016 Patrick Tague

13

Example

- Consider a large-scale Wi-Fi network with dense deployment of monitors (watchdogs)
- Attack: [each malicious client, while moving around randomly]
 - 1) spoof a valid identity
 - 2) connect to a nearby AP
 - 3) flood SYN packets targeting a particular web server for a random duration
 - 4) stop flooding, disconnect, wait small random duration, go to 1).
- What useful statistics can the monitors collect?
- What useful analytics can be computed?

Mar 24: Location Service Security