Wireless Network Security Spring 2016

Patrick Tague Class #18 - Location Service Security

Carnegie Mellon University

©2016 Patrick Tague

1

Class #18

- Location services and how they work
- Attacks on location services

GPS

- Global Position System was developed by the US DoD initially in the 1970s and completely operational in 1994
 - Similar to other systems deployed by Russia, EU, China, India, and others
- Satellites broadcast current time and their location to allow receivers on Earth (and elsewhere) to localize

Things using GPS

- GPS is used for:
 - Automobile navigation (and autonomous driving)
 - Mobile geo-location (for LBS, etc.)
 - Livestock / wildlife tracking
 - Aircraft and ship navigation and autopilot
 - Power grid synchronization
 - Financial transactions & trading
 - Telecom system operations

So, how does GPS actually work?

GPS Signals

- GPS satellites send several different signals
 - On the L1 band (1575.42 MHz), coarse-acquisition (C/A) signal, encrypted precision (P(Y)) signal, L1 civilian (L1C) and military (M) codes
 - On the L2 band (1227.60 MHz), P(Y) code, L2C and M
 - Three other bands (L3, L4, L5) used for other purposes
 - Nuclear detonation detection, atmospheric correction, civilian safety-of-life

Multilateration

- GPS satellites serve as mobile reference points for Earth-based receivers
 - All satellites have high-precision, tightly synchronized clocks and precisely known locations
 - Each receiver hears a coordinate and timestamp from each transmitter, measures the distance based on the transmission time

Dist of from

Carnegie Mellon University

Dist d_1 from (x_1, y_1)

- How to measure distance from the satellite?
- Well, *distance* = *speed of light* * *time*, so just measure time...

- Satellites themselves use atomic clocks to maintain ground truth
 - Receivers have to synchronize with the satellites
 - Remember, 1ns time error \rightarrow 1ft distance error
- With clever processing, an extra satellite signal provides required synchronization
 - 3 satellites for space, 4 for space+time

Errors

- Errors arise for many different reasons
 - Scattering through Earth's atmosphere, reflection off buildings, time sync errors, etc.

- Much of this can be handled by incorporating proper models in the distance estimation process
 - But, no longer just *distance* = *speed* * *time*
- Some receivers get diversity from using military & civilian signals

Military v. Civilian GPS

- Civilian GPS uses an unencrypted and unauthenticated signal for location and time synchronization
- Military GPS devices can be keyed to use an encrypted and authenticated signal for high assurance location and timing
 - Military GPS requires key management, often in the form of manually entering long keys into handsets
 - Use of the military signal can provide much higher accuracy, error correction, etc.

Military GPS Rumors

 Since manual key management is often an impediment to mission-critical activities, there have been reports that a large number of soldiers use GPS in civilian mode

Selective Availability

- When GPS was originally designed, it was intended to provide coarse-grained location for civilians and fine-grained location for military
 - Does anyone remember when GPS accuracy was 20-30 meters and that was good enough for most things?
- Selective Availability was eliminated around 2000 to provide higher accuracy for civilian applications
 - Usually, we can get <5 meter accuracy

Differential GPS

- For applications that require even better accuracy
 - Differential GPS uses an additional signal sent from a ground station to compensate for errors in data sent by satellites
 - E.g., DGPS stations can send difference between location claimed by satellite and its observed location
 - Accuracy of ~10cm can be achieved using DGPS
 - Appropriate for autonomous / swarm vehicle applications

Jamming

- GPS is based on wireless communication, so it's subject to interference
- GPS RSS is on the order of femtowatts (~10⁻¹⁵ W or -120 dBm) [some sources say .1fW or 100 attoWatts]
 - Jamming is pretty easy

What are the possible security issues with GPS?

Carnegie Mellon University

©2016 Patrick Tague

Replay Attacks

- Replay of GPS transmissions would involve stale timestamps and location information
- The content of the message would be good
- But the time sync step would fail and most likely give unreasonable results
 - Unless the timing is precisely controlled...more in a minute

GPS Spoofing

- Instead of replaying old GPS signals, fabricate new ones and pretend to be a satellite
 - Spoofing leverages lack of authentication in civilian GPS signals
- Provides invalid information to the receiver to force it to compute an incorrect location
- Practical spoofers have been demonstrated

Timed Replay Spoofing

- Todd Humphreys's team built a spoofer (see [Humphreys et al., ION GNSS 2008])
 - It receives signals, analyzes them, and replays them after a precise delay
 - The delay affects the distance measurement, thereby affecting the location result
 - Precise control of delay allows gradual error accumulation or "drifting", so detection is difficult

Many More Attacks

- GPS receivers are also vulnerable to a number of signal- and software-based attacks
 - e.g., Middle-of-the-Earth attack
 - See [Nighswander et al., CCS 2012]

How could you protect against these GPS attacks / threats...

without replacing or upgrading the satellite systems?

Carnegie Mellon University

©2016 Patrick Tague

Deployment Constraints

- Because of the deployment cost, upgrading or replacing satellites is not really an option
 - Maybe very slowly over time, but not any time soon
 - So authentication is out
- GPS receivers have to respect what the GPS transmitters are sending even if they cannot authenticate them

Alternatives

- Several defense / mitigation strategies have been proposed by the GNSS community
 - Modifying GPS receivers to use multiple antennas to verify angle of arrival consistency
 - Augment receiver software to compare changes in location over time
 - Incorporate sensor data (GPS says you're moving but gyro says you're not \rightarrow ?)
 - Incorporate other GNSS systems for diversity

Carnegie Mellon University

©2016 Patrick Tague

What about devices or scenarios where GPS is inappropriate?

Sensor networks, underground, etc.

Time & Location in WSN

• Many applications and protocols require finegrained node location and event timestamping

WSN Sync & Loc

- Time and location services for WSN must be:
 - Energy efficient energy spent for sync & loc should be minimized (noting significant cost for continuous CPU use and radio listening)
 - Scalable large networks should be supportable
 - Robust adaptable to network dynamics
 - Ad hoc functionality without prior configuration or infrastructure

Many of the techniques used in synchronization and localization are similar

Relative Measurements

- Just as in GPS and NTP/PTP, time sync and localization mechanisms for wireless networks are based on relative measurements from others
 - Receive a message from a neighbor
 - Content in message gives some information
 - Measurement about signal reception gives more

Relative Measurements

Each localizing device collects geometric relationships relative to several reference points (x_i, y_i)

Securing Relative Measurements

- Measurements taken with respect to reference points should be:
 - Authentic
 - Measurements from authorized reference points only
 - Verifiable
 - Integrity of measurement should be guaranteed
 - If possible, physical measurement should be unforgeable
 - Highly available
 - Location information should be ready when needed
 - Protected from various forms of attack

Threats to Loc & Sync

- Most of the threats are related to lying
 - In both services, nodes act as references for each other
 - Malicious nodes can simply give false reference information
 - Bad information may be worse than no information, so this can be more serious than DoS

Secure Sync & Loc

Is it possible to secure the sync and loc processes?

- Processes are based on reference data
 - Is the source trustworthy?
 - Can the data be verified?
 - Is the data reliable?
- Reference data may be
 noisy or imprecise
 - How to incorporate redundancy for reliable estimation?

- Sync & loc estimation services can be attacked
 - Vulnerabilities?
 - How to mitigate them?

- System or devices may be tightly constrained
 - How efficient is the estimation algorithm?
 - What are the trade-offs?

Simple WSN Time Sync

[Sichitiu & Veerarittiphan, 2003]

- Approximate *i*'s clock as: $t_i(t) = a_i t + b_i$
 - -t is true time, a_i is drift rate, b_i is offset
- Relative clocks 1,2 related as: $t_1(t) = a_{12}t_2(t) + b_{12}$

Sync Offset

 Two nodes can then estimate the coefficients using a sequence of inequalities

Secure Pairwise Sync

[Ganeriwal et al., TISSEC 2008]

- Goal of secure SPS is to estimate clock difference and transmission delay pairwise
 - If the transmission delay is within an expected amount, then adjust the clock using the difference

Secure Pairwise Synchronization (SPS) 1. $A(T1) \rightarrow (T2)B: A, B, N_A, sync$ 2. $B(T3) \rightarrow (T4)A: B, A, N_A, T2, T3, ack,$ $MAC_{K_{AB}}[B, A, N_A, T2, T3, ack]$ 3. A calculates delay $d = \frac{(T2-T1)+(T4-T3)}{2}$ If $d \leq d^*$ then $\delta = \frac{(T2-T1)-(T4-T3)}{2}$ else abort

Benefits of SPS

• Protects against the "pulse-delay attack" or at least limits the effect to the threshold transmission delay

When it Exceeds $30\mu s$, the Attack is Always Detected

Experiment	Average error	Maximum error	Minimum error	Attack detection probability
Non Malicious	$12.05 \ \mu s$	$35 \ \mu s$	$1 \ \mu s$	NA
$\Delta = 10 \ \mu s$	$19.44 \ \mu s$	$44 \ \mu s$	$1 \ \mu s$	1%
$\Delta = 20 \ \mu s$	$30.92 \ \mu s$	$61 \ \mu s$	$1 \ \mu s$	37%
$\Delta = 25 \ \mu s$	$35.67 \ \mu s$	$75 \ \mu s$	$16 \ \mu s$	82%
$\Delta = 30 \ \mu s$	NA	NA	NA	100%

Limitations of SPS

- SPS assumes the radio can include an authenticated response in a timely manner before replying to the initial sync message
 - Hardware limitations that may not be supportable by sensor platforms
 - Software support provided by TinySec ([Karlof et al., SenSys 2004])
 - Most likely works only for low-rate radios (e.g., CC1000, not CC2420)

Pairwise to Global Sync

- If connectivity is fairly dense:
 - Redundant pairwise synchronization can lead to global synchronization
- If connectivity is not dense enough:
 - Attempts at global synchronization will lead to excessive error propagation

SeRLoc

[Lazos & Poovendran, 2004]

• SeRLoc = Secure Range-independent Localization

 $L_{i}: \{ (X_{i}, Y_{i}) \parallel (\theta_{i,1}, \theta_{i,2}) \parallel (H^{n-j}(PW_{i})), j, ID_{Li} \}_{K0}$

SeRLoc Security Mechanisms

- Authenticity of references:
 - Encryption of location signals implies signal comes from a valid node - prevents external attack
 - Also limits scalability due to key mgmt requirements
- Identify verification of references:
 - Use of secret "password" with hash chain protects against location spoofing by internal attackers - forces attacker to compromise a valid locator

SeRLoc Security Mechanisms

- Majority voting further protects against internal attack, forces attacker to compromise more than ½ of the locators heard by a sensor
- Consistency checking of location reference information helps protect against replays, spoofing, Sybil, and wormhole attacks
- Provides a recovery mechanism for use when attacks are detected

Verifiable Multilateration

[Čapkun & Hubaux, 2005]

• Basic idea of VM:

 Using distance bounding, an attacker can only increase the measured distance

- VM benefit:
 - Increasing distance measurements will either have negligible effect on location or be large enough to detect misbehavior

Mobility Helps Localization

Open Questions

- Secure localization and synchronization are still open research areas, especially in some aspects of BSN, VANET, etc.
- What aspects of relative measurement and reporting can actually be verified?
- How to trust reports of relative measurements?

Mar 29: NO CLASS

Mar 31: Progress Presentations

Apr 5: Exam