Wireless Network Security Spring 2016

Patrick Tague Class #19 - Vehicular Network Security & Privacy

Carnegie Mellon University

©2016 Patrick Tague

1

Class #19

- Review of some vehicular network stuff
- How wireless attacks affect vehicle safety
- Brief mention of vehicle network privacy challenges

Vehicular Networks

- Vehicular (ad hoc) network
 - Cars talk amongst each other, w/ roadside units and w/ devices within the vehicles

- Applications of interest:
 - Automated driver safety management
 - Passive road quality / condition monitoring
 - In-car entertainment
 - Navigation services
 - Context-aware rec's:
 - "This alternate route would be faster, and it would go past your favorite Primanti Bros."

Vehicular Network Components

- User devices interact with the vehicle using WiFi, Bluetooth, NFC, visual channels, etc.
- On-board sensors communicate with a controller using low-power RF, e.g., 802.15.4 for TPMS
- Mobile network connectivity (e.g., GSM, LTE)

Safety messaging systems between vehicles

802.11p and DSRC

- 802.11p extends the 802.11 standard to include vehicular communications in the 5.9 GHz band
 - Allows dynamic comms without setting up a BSS (i.e., no SSID) for fast decentralized operation
 - No association, no authentication, no access control...
 - Also includes mechanisms for channel management and synchronization
- Dedicated Short Range Communication
 - One- and two-way communication based on the 802.11p standard
 - Builds on the older ASTM E2213-03 PHY standard

- Wireless Access in Vehicular Environments
 - Wireless stack for vehicle-to-vehicle and vehicle-toinfrastructure communications
 - Based on IEEE P1609 standard family
 - Built on top of the 802.11p / DSRC foundation

What kinds of vehicle safety systems are built on top of this wireless stack?

Carnegie Mellon University

©2016 Patrick Tague

7

Vehicle Safety Systems

- New vehicles have various wireless subsystems
 - Driver alerts, ex: tire pressure monitoring
 - Valve sensors report to a TPMS controller wireless because they're inside the wheels...
 - Adaptive cruise control, Platooning
 - Controller receives signals from a variety of sources, including other vehicles, RSUs, road beacons/monitors, etc.
 - Crash avoidance, Self-braking
 - Alerts come from other vehicles, sensors, etc.
 - Self-driving
 - All of the above and more...

Networked Controllers

- Any time you put a network inside a control loop, the network affects the controller
 - Lost packets ==> lost control
 - Spoofed packets ==> poor decisions
 - GPS errors ==> wrong controller world view
 - Network/compute overhead ==>control delay ==> reduced accuracy
 - All of these have potentially bad side-effects in the context of vehicle safety systems

Other than general wireless comms issues, what are some potential threats?

Carnegie Mellon University

©2016 Patrick Tague

11

Ghost Vehicles

[Bißmeyer et al., VANET 2012]

- Ghost vehicles result from falsified reports, often by a Sybil attacker
 - Insider can properly sign and protect reports, so detection must rely on somehow invalidating reports
 - Trust and reputation system?

Misbehavior Evaluation

- Misbehavior detection systems can detect inconsistencies in reported mobility data
 - Local detection is limited to observable area (i.e., limited by communication range)
 - Also limited to short validity lifetime of mobility data
 - Subject to ID changes by attackers, dynamic tactics

Some Assumptions

- Vehicles can switch between pseudonym certificates arbitrarily
- Position information is very accurate
 - GPS, relative positioning approaches
 - Additional sensors: cameras, radar
- The availability of connection between local nodes and the central entity is not guaranteed
 - Excluding attackers is the goal over the long run
 - Latency is not a big concern

Reputation Evaluation

- Reputation is computed centrally by a Misbehavior Evaluation Authority (MEA) using misbehavior reports from witnesses and info from suspects
 - Trust: the observed tendency to behave as expected, takes values in [-1,1], defaults to 0
 - Confidence: level of certainty in the trust value, essentially a weighting in [0,1]
 - Reputation: essentially trust x confidence, values in [-1,1]

Carnegie Mellon University

©2016 Patrick Tague

Ghost Identification

- Vehicles with "beyond a threshold" negative reputation can be identified as ghosts
- **Q:** How serious is a <u>false negative</u> (declaring a real car when it's a ghost)?
- **Q:** How serious is a <u>false positive</u> (declaring a ghost when it's a real car)?

Evaluation

Carnegie Mellon University

©2016 Patrick Tague

Evaluation

Evaluation

DSRC Evaluation

- UIUC DSRC Simulator: accurate modeling of vehicular networking environment
 - 5 vehicles: 1 leader, 4 followers
 - 10m ideal and initial spacing
 - Lead vehicle accelerates at 1 m/s²
- Compare control (no failure) to jamming scenario
 - Attacker knows preceding vehicle's state

Control (No Jammer)

Carnegie Mellon University

©2016 Patrick Tague

Effect of Jammer

- DSRC position broadcast at 20 Hz
- Leader speed limit: 50 m/s
- Jammer turns on at 100s

More Interesting Jamming

- New jammer strategy: jam during acceleration
 - 50% duty cycle, variable period in {2, 5, 10}s
 - Jammer turns on at 100s
- More interesting lead vehicle behavior as well:
 - Starts at 30m/s
 - Accelerate/decelerate at 1m/s² from 120-150s

What about privacy issues in vehicular networks?

Carnegie Mellon University

©2016 Patrick Tague

Vehicular Network Privacy

- Everything we talked about previously regarding network privacy applies to vehicles
- However, vehicles have many wireless subsystems combined into a single platform
 - Several wireless identities (DSRC, WiFi, LTE, TPMS, etc.) and non-wireless identities being used (license plate number, visual identity, etc.)
 - Many apps/services operating simultaneously with different requirements
 - Identity/pseudonym management may need to consider all of these jointly, consider many trade-offs

Carnegie Mellon University

©2016 Patrick Tague

Conclusions

- Some of the most fundamental threats / misbehaviors in wireless have serious and sometimes unpredictable effects on vehicles
- Open problem: how to design vehicle controllers that are robust to wireless threats? ... wireless protocols that provide guarantees for vehicle control?

Apr 12: IoT Security & Privacy