Mobile Security Fall 2015

Patrick Tague #3: Brief History of Telecom Security

Carnegie Mellon University

©2015 Patrick Tague

1

And now...

A brief history of telecom security

Carnegie Mellon University

Basics of Telecom Security

- Different players in the mobile ecosystem have different security concerns
- Security concerns and techniques have evolved along with the infrastructure
- Let's go through that evolution, starting with some of the basic concerns that different players may have

Users' Security Goals

- No user/entity should be able to bill calls on another user's behalf
- Stolen mobile devices shouldn't be able to make calls
- The network shouldn't record calls, only enough info to perform billing functions
- No records of digital service usage should be made
- Voice eavesdropping should be impossible
- A mobile user's location should be private until disclosed (except in emergencies)
- A device's user should not be identifiable until disclosed

Providers' Security Goals

- Communication service billing should be correctly managed
- All types of fraud should be prevented and mechanisms should be updated as necessary
- Correct naming and addressing of devices must be implemented; routing functions must be secure
- Providers should be able to add services / functions and provide desired security for them

Government Security Goals

- Location information must be provided to emergency services
- Robust infrastructure should be available in emergencies
- Communication and information must be accessible to law enforcement
- Useful measures must be in place for monitoring and protection of essential assets and infrastructures

Let's walk through some history to see how these goals were (not) met

Early Cell Systems - "1G"

- Most well known system is AMPS (advanced mobile phone system)
 - AMPS was introduced in 1978 (FCCapproved and first used in 1983)
 - First use of the hexagonal cell structure (W. R. Young @ Bell Labs)

1G Security

- Security provided by AMPS
 - User/device authentication and call authorization in AMPS is very simple:
 - Device provides the 10-digit telephone number (MIN: mobile identity number) and the 32-bit serial number (ESN: electronic serial number = 8-bit manufacturer code + 6-bit unused + 18-bit mfg-assigned serial number)
 - If MIN/ESN matches (in home or visiting register), connection is made
 - No encryption is provided
 - See any vulnerabilities?

From 1G to 2G

- Primary difference between 1G and 2G is the switch from analog to digital
 - Better mechanisms for authentication / authorization were also mandated, due to weakness of MIN/ESN matching protocol
 - Digital also means voice can be encrypted for over-the-air transmission

2G GSM/CDMA Architecture

adapted from [M. Stepanov; http://www.gsm-security.net/]

Carnegie Mellon University

2G GSM Security

- Secure access
 - User authentication for billing and fraud prevention
 - Uses a challenge/response protocol based on a subscriberspecific authentication key (at HLR)
- Control and data signal confidentiality
 - Protect voice, data, and control (e.g., dialed telephone numbers) from eavesdropping via radio link encryption (key establishment is part of auth)
- Anonymity
 - Uses temporary identifiers instead of subscriber ID (IMSI) to prevent tracking users or identifying calls

Carnegie Mellon University

Radio Link Encryption

Temporary ID Management

- User and device identity:
 - IMEI: Int'l Mobile Equipment ID device
 - IMSI: Int'l Mobile Subscriber ID user
 - TMSI: Temporary Mobile Subscriber ID pseudonym

Carnegie Mellon University

C?

SIM

Algorithm Implementations

- A3 and A8 are implemented on the SIM, operatordependent
 - Most use COMP128 algorithm
- A5 is efficiently implemented in hardware
 - Design was never published (security through obscurity...), but it leaked to R. Anderson and B. Schneier
 - Variants A5/1 (strong), A5/2 (weak), A5/3 (similar to KASUMI used in 3G), and A5/4 (also based on KASUMI)

Attacks on GSM Security

- April 1998
 - Smartcard Developer Association and UC-Berkeley researchers crack COMP128 and recover K in hours
 - Discovered Kc is only 54 bits (instead of 64)
- Aug 1999
 - A5/2 was cracked using a single PC within seconds
- December 1999
 - Biryukov, Shamir, and Wagner publish break of A5/1 2 minutes of intercepted call and 1 second attack

Attacks on GSM Security

• May 2002

 IBM Research group extracts COMP128 keys using sidechannel attack

- More details:
 - M. Stepanov, http://www.gsm-security.net/
 - G. Greenman, http://www.gsm-security.net/
 - Traynor et al., Security for Telecommunications Networks

Carnegie Mellon University

More GSM Attacks

- In-network attacks
 - Transmissions are only encrypted MS \rightarrow BTS
 - Any attacker between BTS-MSC (such as an eavesdropper on a microwave back-haul) or inside the operator's network has read/modify data access
 - Signaling network (SS7) is completely unsecured
 - Access to HLR \rightarrow retrieve all K keys
- Over-air attack
 - Repeated MS queries for RES values can be used to recover K via cryptanalysis - potential attack by a rogue base station

Later Developments

- GPRS security
 - Same authentication and key agreement architecture
 - Encryption extends further into network core
 - Updated encryption algorithms
- SIM security toolkit
 - Establish secure channel from SIM to a network server
 - Extends GSM security to sensitive applications
 - E-commerce applications
 - Secure remote SIM/MS management

3G Evolution

- 3G: mixed switching, MMS, location services
 - UMTS, TD-CDMA, WCDMA, CDMA-3xRTT, TD-SCDMA
- 3.5G: increased download speeds
 - HSDPA (high speed downlink packet access)
- 3.75G: increased upload, multimedia
 - HSUPA (" uplink ") \rightarrow HSPA
 - Multimedia broadcast \rightarrow mobile TV
- 3.9G: ~2x UL/DL rates
 - HSPA+
 - Often marketed as 4G...

Example: VZW's 3G Network

image from [VZW "CDMA Network Security" whitepaper]

Carnegie Mellon University

Re-Design in 3G

- 3G security model builds on GSM
- Protection against active attacks
 - Integrity mechanisms to protect critical signaling
 - Enhanced (mutual) authentication w/ key freshness
- Enhanced encryption
 - Stronger (public) algorithm, longer keys
 - Encryption deeper into the network
- Core security signaling protection
- Potential for secure global roaming (3GPP auth)

Enhanced Auth. & Keying	
RAND SQNhe K 3G Auth Suite V XRES CK IK AUTN	RAND K 3G Auth Suite AUTN SQNms 3G Auth Suite RES CK IK AUTN check
3G Auth Suite = { F1 , F2 , F3 , F4 , F5 ,}	
XMAC = $F1_{\kappa}(RAND SQN AMF)$ XRES = F2 (RAND)	$MAC = F1_{K}(RAND SQN AMF)$ RFS = F2_(RAND)
$CK = F3_{\kappa}(RAND)$	$CK = F3_{\kappa}(RAND)$
IK = F4 _K (RAND) AK = F5 _K (RAND)	IK = F4 _K (RAND) AK = F5 _K (RAND)
AUTN = SQN [xor AK] AMF XMAC SQN > SQNhe	$\frac{K}{SQN} = MAC ?$
Carnegie Mellon University ©2015 Patrick Tague	

Enhanced Confidentiality

Enhanced Integrity

Algorithm Implementation

- KASUMI
 - Based on MISTY block cipher (Mitsubishi)
 - Two operational modes
 - f8 for encryption
 - f9 for integrity
 - Externally reviewed (positively)
 - Published
 - Broken
 - Dunkelman, Keller, and Shamir January 2010
 - Interestingly, MISTY isn't affected by this technique...

Sept 10: Telecom System Security Issues

Sept 15: Tutorial 1: Android Tips & Tricks

Carnegie Mellon University