Mobile Security Fall 2015

Patrick Tague

#5: WiFi Security

Class #5

Wrap-up one last part of our telecom discussion

Basic security considerations in WiFi

Evolution of WiFi security

WiFi vulnerabilities (time permitting)

Rogue Base Stations & & MitM Attacks

Rogue BTS

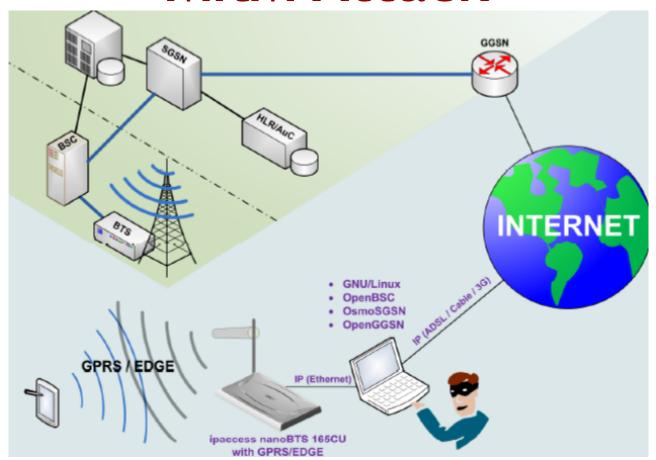
- An adversary can deploy a rogue BTS that attempts to spoof the service provided by a valid BTS, attracting users for various reasons
- Possible to launch a MitM attack on 2G/3G mobile connections

Applies to GPRS, EDGE, UMTS, and HSPA capable devices

Cheap

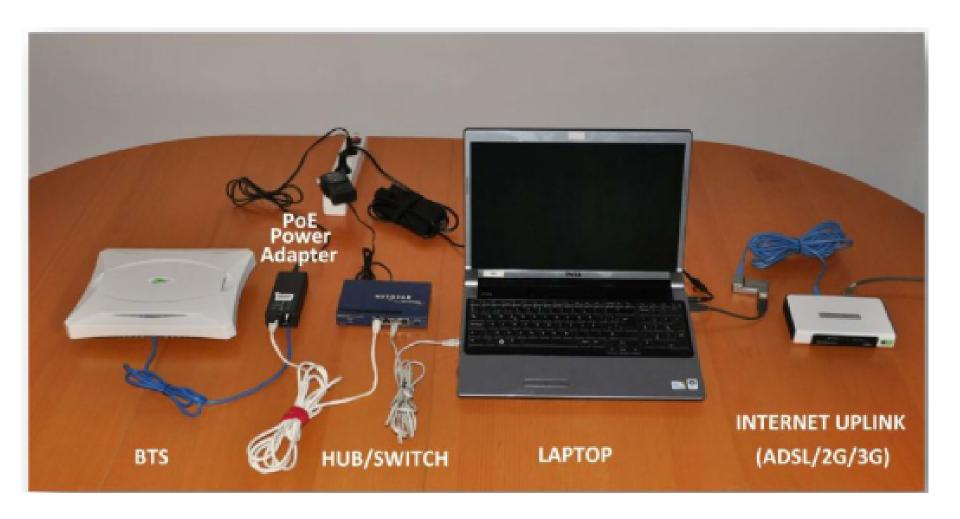
Lack of Authentication

- GPRS and EDGE use 2G GSM authentication
 - Devices are required to prove their identity to the BTS
 - BTS is NOT required to prove its identity to the device


Null Encryption Support

- GPRS / EDGE devices are required to support A5/0 null encryption (i.e., plaintext)
 - BTS can only offer to support null encryption
 - Most devices will accept the offer and send data in the clear

Fallback Support

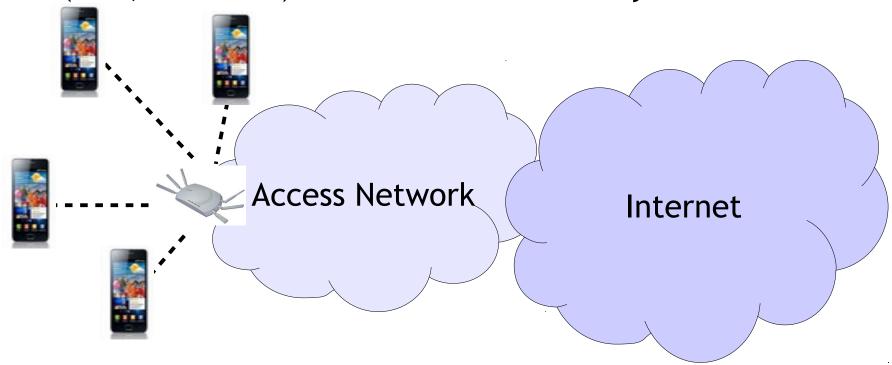

- Devices running UMTS/HSPA (3G/3.5G) are often configured to fall back to GPRS/EDGE if no UMTS/HSPA service is available
 - Sometimes occurs in network fringes, rural areas, etc.
 - Also, if someone is jamming the UMTS/HSPA frequencies or certain channels

MitM Attack

- Attacker positions BTS in range of the target
 - Range can be improved by using a high-gain directional antenna or amplifier

Setting up a Rogue BTS

[Perez & Pico, BlackHat 2011]


Defenses

- Major modifications would be needed to make GSM/GPRS/EDGE secure against rogue BTS
- Higher level protections can be used to secure data against MitM attack
- UMTS/HSPA devices can be configured to not fall back to 2G/2.5G

WiFi

What is WiFi?

- WiFi is a wireless LAN connectivity suite based on the 802.11 family of standards
 - WiFi (802.11a/b/g/n/...) provides lower-layer services
 (PHY, link/MAC) for host-AP connectivity

WiFi Physical Layer

 The WiFi PHY is responsible for transmission of raw bits/symbols between host and AP

 PHY has to manage transmission and reception, perform bit-to-symbol (and inverse) mappings, and bit-stream hand-off with layer 2

WiFi PHY Services

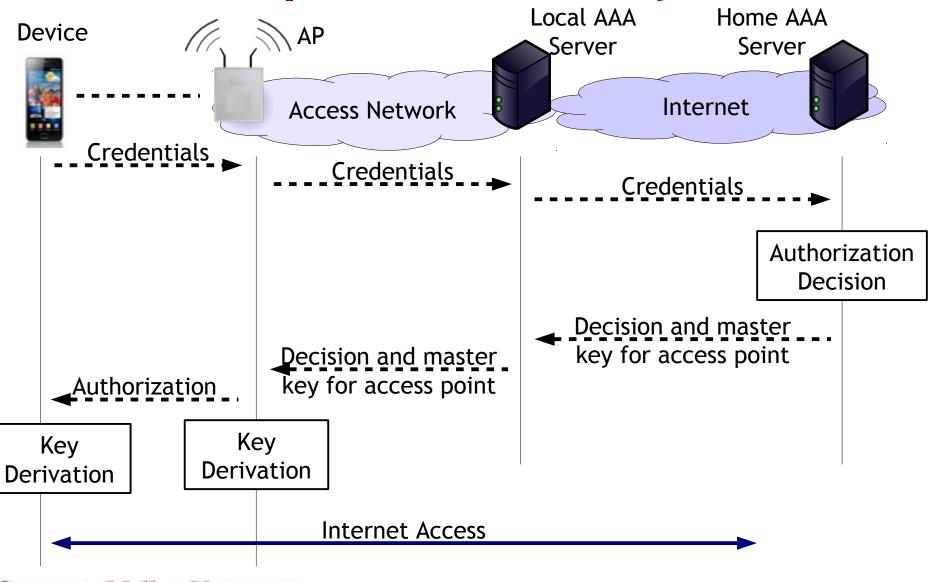
- Transmission and reception of symbols or bits
- Managing the radio interface:
 - Spectrum allocation, signal strength, bandwidth, phase synchronization, carrier sensing, etc.
- Signal processing:
 - Equalization, filtering, training, pulse shaping, etc.
- Modulation
- Coding (FEC, channel, etc.)

PHY Security Challenges

- How can we prevent a curious or malicious party from
 - eavesdropping on WiFi transmissions?
 - injecting messages at the link layer?
 - interfering with WiFi transmission and reception?

WiFi Link/MAC Layer

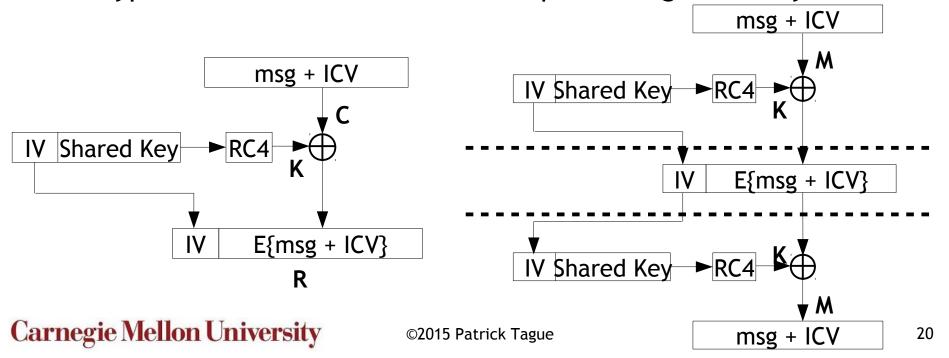
 The WiFi link layer is responsible for managing interaction between mobile terminal and AP


- Link layer has to manage:
 - Channel / link formation and management
 - Medium access ("MAC sublayer")
 - Network access control (NAC)

WiFi Link Security

- WiFi link security focuses primarily on access control and encryption
 - In private WiFi systems, access is controlled by a shared key, identity credentials, or proof of payment
 - Most often, authentication is of user/device only, but mutual authentication may be desired/required by some users/devices
 - Confidentiality and integrity over the wireless link
 - Shared medium among untrusted WiFi users

For now, let's assume everything is good at the PHY and MAC layers and focus on the WiFi link.


Subscription-Based Systems

Wired Equivalent Privacy

- As name suggests, WEP aims to make the easy task of accessing WLAN traffic much more difficult, as in wired
- WEP provides encryption and authentication
- Authentication is challenge-response to prove knowledge of a shared secret key

Encryption is based on RC4 stream cipher using same key

WEP Authentication

- Challenge-response authentication w/ XOR
 - Issue 1: auth is not mutual
 - Issue 2: auth + enc use same secret key
 - Issue 3: auth only occurs on initial connection
 - Issue 4: RC4 w/ XOR
 - Attacker can obtain C and R = C XOR K, thereby getting K
 - Can authenticate in future sessions using same IV from R
 - Since secret key is shared, attacker can spoof anyone

WEP Integrity Protection

- Integrity protection is based on the Integrity Check Value (ICV) which is based on CRC
 - Encrypted message is (M | | CRC(M)) XOR K
 - CRC is linear, i.e., CRC(X XOR Y) = CRC(X) XOR CRC(Y)
 - Uh oh...

```
((M \mid | CRC(M)) \times CRK) \times CRC(\Delta M) \mid | CRC(\Delta M))
= ((M \times CRC(M)) \mid | (CRC(M) \times CRC(\Delta M)) \times CRC(\Delta M)) \times CRC(\Delta M)
= ((M \times CRC(M)) \mid | CRC(M \times CRC(\Delta M)) \times CRC(\Delta M)) \times CRC(\Delta M)
```

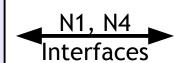
Also, WEP doesn't provide replay protection

WEP Confidentiality

- Confidentiality is handled by the WEP IV
 - Issue 1: 24 bits → IVs repeat every few hours per user
 - All users have the same secret key...
 - Issue 2: IV = 0; for each packet: IV++;
 - Pseudo-random sequences are same for every user
 - Attacker can inject messages on time
 - Issue 3: Inappropriate use of RC4
 - "Weak keys" as RC4 seeds allow inference of key bits
 - Experts: always throw away first 256B of RC4 output
 - WEP doesn't do this + small number IVs = weak keys encountered
 - → attacker can recover entire secret key

So, how to solve the WEP problem?

IEEE 802.11i


- IEEE specification for Robust Network Security
 - Authentication and access control based on 802.1x
 - Integrity protection and confidentiality mechanisms based on AES to replace RC4

802.1x

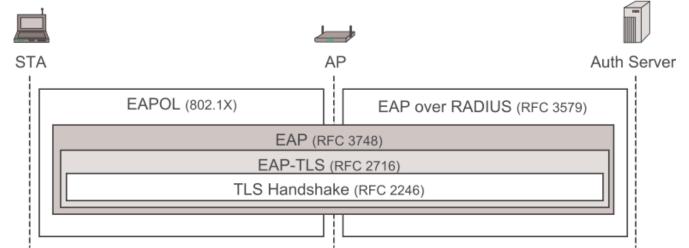
- Authentication and access control standard
 - Designed for wired LAN, but extended to WLAN

Supplicant:

authentication and authorization entity on the wireless device requesting access

Authenticator:

authentication and authorization entity in the wired access network (AP/BS or router)



Account Authority: trusted third party in the access network or Internet; can authenticate credentials and authorize service types; may handle key management

NAC Protocols

- Protocols involved in NAC
 - Extensible Authentication Protocols (EAP)
 - End-to-end auth. between device and account authenticator
 - Supports a variety of client-server authentication methods
 - IEEE 802.1x (extended to 802.11i)
 - Carries EAP over the wireless LAN link (EAPoL) between device and AP
 - 802.11i requires session key per station, not in wired due to per-wire ports
 - Radius
 - Transports EAP between AP and account authenticator
 - Carries provisioned keys, etc. between AP and account authenticator

802.11i Keys

- STA and AP share pairwise master key (PMK) used to derive pairwise transient key (PTK)
 - PTK = data encrypt key (DEK), data integrity key (DIK), key encrypt key (KEK), key integrity key (KIK)
 - Four-way handshake using nonces
 - AP sends nonce to STA, STA computes PTK
 - STA sends nonce and MIC using KIK to AP
 - AP computes PTK, verifies MIC, sends MIC + SN (for replay protection) to STA, ready
 - STA verifies MIC, ACK for ready

But, RC4 and AES are implemented in hardware, so WEP to 11i upgrade couldn't happen overnight

WiFi Protected Access

- Temporal Key Integrity Protocol
 - TKIP ← 11i using RC4 instead of AES
 - Immediate firmware upgrade allowed for use of TKIP
 - WPA implements the subset of 11i using TKIP
 - Auth and access control in WPA and 11i are the same
 - Integrity and confidentiality are TKIP-based
- WPA2 implements full 802.11i
 - WPA2 still has some weaknesses

Sept 22-24: Project Intro Presentations

Sept 29:

More WiFi Security; WiFi Privacy Issues