Mobile Security Fall 2015

Patrick Tague #6: More WiFi Security; WiFi Privacy Issues

Carnegie Mellon University

©2015 Patrick Tague

1

Class #6

- WiFi vulnerabilities (continued from class #5)
- WiFi information leakage
- Misusing WiFi permissions
- Discussion of next project deliverables (time permitting)

A Quick Warning

- For students at the SV campus, there will be a mandatory evacuation drill today that may or may not happen during today's class
 - If the alarms sound, please leave the classroom immediately, quickly go outside, and follow everyone else to the anchor statue in the green space in front of B23
 - I'll stop class.
 - When the drill ends, please return very quickly.
 - I'll restart class as soon as people show up.

More WiFi Security

Carnegie Mellon University

Open AP SSID "Network X"

Laptop w/ policy to Connect to "Network X"

Carnegie Mellon University

Carnegie Mellon University

Rogue Access Points

- What is a Rogue AP?
 - It depends on who you ask...
 - Any unauthorized AP that either attracts users for malicious purposes or offers network connectivity that should not be offered

Attacks in Public

- Rogue APs deployed in public areas
 - Attract users to access/control/block session traffic
 - Recovery of user credentials (user/password, etc.)
 - Denial / degradation of service
 - Bypassing additional security features

Attacks in Enterprise

- Rogue APs in enterprise networks:
 - Employee: attach to corporate network for convenience
 - Free internet access for you and your friends (what could go wrong?)
 - Creating an accidental corporate back-door
 - Assume all liability for malicious actions
 - Attacker: maliciously attract company employees
 - Data leakage
 - Corporate espionage

How to Create a Rogue AP

- Set up an AP (e.g., using Airsnarf), either with a competing or colliding SSID and configuration
- Create or modify a captive portal to redirect users to a splash page, if needed
- Visit target site or use signal amplifier, directional antenna, etc.
- Steal credentials, DoS, MitM, etc.

Detection

- If the corporate policy is "no WiFi", any WiFi signal can raise an alert
- Duplicate SSIDs
- Changed or mismatching MAC addresses
- Changed or mismatching SNR values
- Unexpected association requests or other behaviors
- Matching wireless traffic for non-corporate SSID with traffic seen inside the corporate network

Defense

- 802.11i with 802.1x
 - Strong link level authentication can protect against Rogue
 APs targeting unsuspecting users
- What about public networks?
- What about Rogue APs set up by employees?

Does 802.11i have other vulnerabilities?

Carnegie Mellon University

Some Background

• WPA2 users two types of encryption keys, the Pairwise Transient Key (PTK) and the Group Temporal Key (GTK)

Image from AirTight Networks whitepaper

Hole196

- Malicious insider can misuse the GTK
 - Ex: ARP poisoning using the GTK allows the insider to advertise itself as the gateway
 - Ex: DoS using GTK sequence number preemption

- Discovered by Ahmad et al. at AirTight Security
 - "Hole196" is named for the page number where the vulnerability is buried in the IEEE 802.11 v2007 std.
 - Implementation independent

Hole196 Patches

- Client isolation
 - Non-standardized approach to logically separate clients
- Don't use the GTK
 - Trade encrypted broadcast for multiple encrypted unicast
- WIPS

What about WiFi hotspots?

Hotspot Security

- How to bootstrap security?
- What about rogue hotspot APs?
- Left as an exercise for you to read about

What about the WiFi PHY & MAC layers?

Carnegie Mellon University

PHY/MAC Vulnerabilities

time

- Structure of WiFi MAC allows for targeted jamming, cheating, and general misbehavior
- If you're interested, take 14814/18637 in S16

Privacy Issues

WiFi Probing

- WiFi devices need to find available networks in order to connect to them. A few different ways:
 - Passive scan listen for beacon messages from APs
 - Active scan
 - Direct probe query for AP with previously known SSID
 - Broadcast probe query for AP with wildcard SSID
- Comparison:
 - Passive scan is very slow because it waits around for a while on every channel
 - Broadcast probe is faster but still listens on every ch
 - Direct probe is very fast, multiplied by #known APs

Mobile vs. Nomadic

- WiFi was really designed for nomadic devices
 - Laptops: move \rightarrow wake \rightarrow use \rightarrow sleep \rightarrow move \rightarrow ...
 - WiFi probing happens between "wake" and "use", probably only once per mobility cycle
- Mobile devices aren't nomadic
 - Smartphones: use while moving all the time, continue using while not moving
 - WiFi probing happens whenever your mobile is looking for WiFi networks to connect to
 - Since they're optimized for performance, this is quite often

Filter: (wlan.1	c.type_subtype ==	= 0x04)	▼ Expression
Time	Source	Туре	SSID
401.697011000	54:26:	■ Probe Request	
401.707384000	Apple	Probe Request	
401.855865000	bc:cf	Probe Request	
401.868368000	Apple	Probe Request	
402.093322000	Apple	Probe Request	Hooters
402.094443000	Apple	Probe Request	Internet
402.095695000	Apple	Probe Request	HarborLink - Buffalo Wi
402.096939000	Apple	Probe Request	NetScout
402.098059000	Apple	Probe Request	Rosen Guest Wireless
402.099190000	Apple	Probe Request	Student
402.100310000	Apple	Probe Request	Guest
402.101568000	Apple	Probe Request	Gdaycreations
402.106317000	Apple	Probe Request	cactusmoon_public
402.107442000	Apple	Probe Request	NOTanIphone
402.108690000	Apple	Probe Request	Gentleman Joes 3
402.109815000	Apple	Probe Request	MISSION PRIVATE

The Risk of the SSID Set

- Whenever a mobile device blasts out probe messages, we can learn its relevant SSID set
- So, what's the big deal?

Potential Fixes

- Since many threats are based on MAC-SSID pairs, MAC pseudonymy can help
 - Implies there's a trusted third party to handle pseudonyms, requires pre-existing relationship
- MAC or SSID info can be encrypted
 - Requires computation or search on mobile and/or AP to discover which keys should be used to decrypt, requires pre-existing relationship
- Don't use direct probing
 - Slow

A Better Fix

- How to prevent SSID/history leakage without sacrificing performance?
- Limit SSID probes using readily available context
 Location!
- In addition to storing the SSID/MAC, store the lat/long coordinates
 - Only send probe messages for known SSIDs within a reasonable distance (~1km?) of the device

Location-Aided Probing (LAPWiN)

Carnegie Mellon University

Minimizing SSID Leakage

What about information leakage within the mobile phone?

Carnegie Mellon University

Internal Information Leakage

 Apps Location Tracker MOBILEAPPSQUARE Accept & download 	:30
Your location Coarse (network-based) location, fine (GPS) location	>
Services that cost you money Directly call phone numbers, send SMS messages	>
Phone calls Read phone state and identity	>
Network communication Full Internet access	>

- Malware can access and exfiltrate data without detection by common tools
- How to bypass TaintDroid:
 - if location == "Atlantic City"
 untainted_location = "AC"
 end

send(location)
// flagged

send(untainted_location)
// NOT flagged

More SSID Sets

- Unlike sniffing your "favorite" SSIDs, app with the ACCESS_WIFI_STATE permission can see the SSIDs of WiFi networks nearby, regardless of connection
 - This means the app can build a time-stamped list of the networks you are/were near

Time	SSID	BSSID	RSSI		Time	SSID	BSSID	RSSI
14:28:11	MSFTWLAN	:23:c0	-85		21:05:16	HolidayInn	:a7:82	-86
14:28:11	MSFTWLAN	:a7:80	-86			-Express/Santa Clara		
14:28:11	MSFTGUEST	:23:c1	-86		21:05:16	Metro_WiFi	:23:c0	-85
14:28:11	MSFTGUEST	:a7:81	-87		21:05:25	MobileOne	:23:c1	-86
					21:05:25	HolidayInn	:a7:81	-87
14:28:47	GoogleWiFi	:85:c4	-76			-Express/Santa Clara		
14:28:47	GoogleWiFiSecure	:85:c4	-76		21:05:25	Metro_WiFi	:85:c4	-76
14:28:47	GoogleWiFi	:49:e8	-98		21:05:25	Pinkberry	:85:c4	-76
14:28:47	CHM Public	:a7:82	-86		21:05:31	Capri Motel 002	:23:c0	-85
14:28:52	GoogleWiFiSecure	:23:c0	-85		21:10:15	Sunnyvale Carwash	:23:c0	-87
14:28:52	chmoffice	:a7:80	-86			-		
14:28:52	GoogleWiFi	:23:c1	-86					
14:28:52	GoogleWiFiSecure	:a7:81	-87					
14:28:52	GoogleWiFi	:a7:82	-86			vis this a high	cleab	
14:28:52	CHM Public	:23:c0	-85	willy is this a big ucat:				

WiFi Data

Can we defend against this type of internal context leakage?

I don't know...

Carnegie Mellon University

Questions?

Carnegie Mellon University

Next Project Deliverables

- Statement of Work a detailed, properly scoped list of tasks to be achieved by the end of the semester
 - Written SoW:
 - Due October 15
 - Max 2 pages in IEEE 2-column format
 - Include nice illustrations/figures to show what your team is doing
 - SoW Presentation:
 - In class October 13 and 15 (randomly ordered)
 - Max 8 minutes per team
 - 1-slide template provided (can add 2-3 more if needed)

• Hopefully, this is ready long before the deadline... Carnegie Mellon University ©2015 Patrick Tague

Oct 1:

Tutorial II: Android Analysis Tools

Oct 6: Personal Area Networks

Carnegie Mellon University