Mobile Security Fall 2015

Patrick Tague

#9: NFC & Mobile Payment

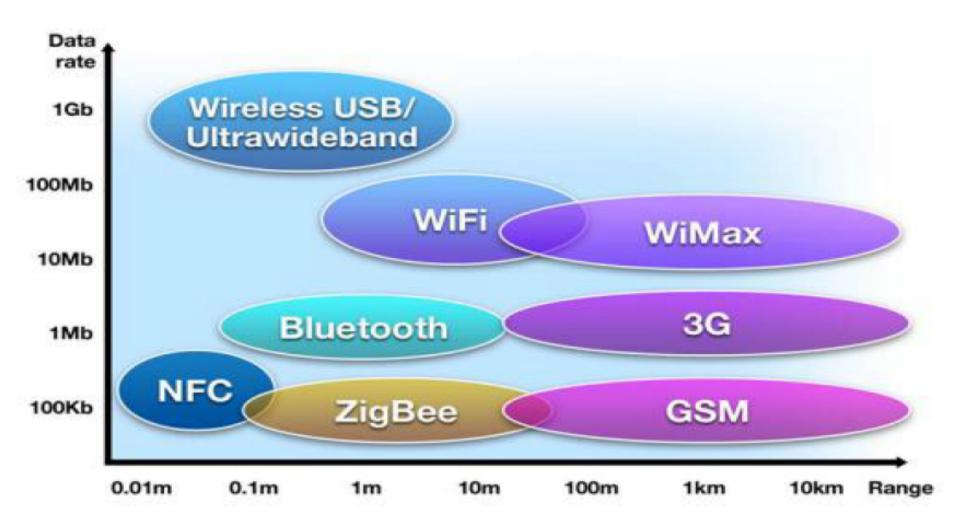
Announcements

• Reminder: assignment #3 due Oct 22

Assignment #4 will be assigned Oct 22, due Nov 5

Class #9

Near Field Communication


- A few case studies
 - Google Wallet
 - Smart Posters (time permitting)

Near Field Communication

 NFC is a short-range, low-rate wireless connectivity that enables communication between devices in close proximity without initiation

Wireless Comparison

NFC Characteristics

Uses 13.56MHz RF signal

Communication over distances up to 4"

Data transfer speeds of 106, 212, 424 kbps

 NFC chip/tag can store small amount of data (e.g., 96B, 512B tags)

Modes of Communication

• Active Mode:

- Initiator and target devices have power supplies and can communicate with each other by alternate signal transmission
- Both parties use half duplex

Passive Mode:

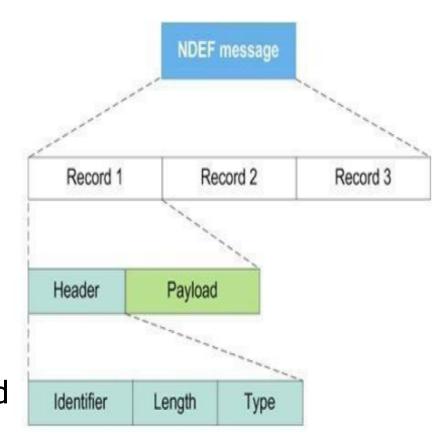
- Initiator device generates a signal that the target observes and modulates data on
- Initiator: full duplex

Modes of Interaction

- Reader/Writer:
 - Use an active NFC device to read/write a passive NFC tag

- Peer-to-Peer:
 - Active NFC devices interact with each other bidirectionally

- Card Emulation:
 - An NFC device takes the role of a passive NFC tag to be read by an active NFC device


NFC Comm Standards

- ISO/IEC 18092 / ECMA-340:
 - Standards for communication modes for NFC Interface and Protocol NFCIP-1 such as modulation schemes, coding, transfer speeds, frame format, collision control parameters, transport protocol

- ISO/IEC 21481 / ECMA-352:
 - Standards for NFCIP-2, specifies communications modes to minimize interference with other contact-less card devices

NFC Data Standards

- NFC Data Exchange Format (NDEF)
 - Structure for writing data to tags or exchanging between devices
 - NFC tag contains 1+ NDEF messages
 - NDEF message contains multiple records
 - NDEF record contains header (type, ID, length) and payload (MIME, URL, NFC-specific type, etc.)

NFC Tag Standards

NFC Type definition				
	Type 1	Type 2	Type 3	Type 4
ISO/IEC standard	14443 A	14443 A	JIS 6319-4	14443 A / B
Compatible Product	Innovision Topaz	NXP MIFARE	Sony FeliCa	NXP DESFire, SmartMX- JCOP,
Data rate	106 kb/s	106 kb/s	212, 424 kb/s	106/212/424 kb/s
Memory	96 bytes, expandable to 2 kbyte	48 bytes, expandable to 2 kbyte	Variable, max. 1Mbyte	Variable, max. 32 kbyte
Anti-collision	No	Yes	Yes	Yes
arms I had been a sure a sure a sure a	2222			

NFC Uses

NFC Security / Threats

- NFC is a wireless communication interface, so it adopts all of the standard wireless threats
 - Eavesdropping
 - Data corruption / modification / insertion
 - Man-in-the-middle attacks

- Main difference from RF:
 - In active mode, both devices are full duplex so they can monitor while transmitting
 - In passive mode, the initiator is full duplex and the respondent/tag is half duplex

Eavesdropping

NFC itself provides no explicit protection against eavesdropping

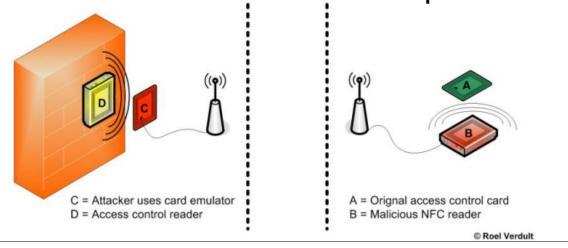
- Active-vs-Passive:
 - It's much harder to eavesdrop on passive exchange
 - Mainly because of range (<1m passive, <10m active), but also depends on environment, transmitter's RF field characteristics, quality of attacker antenna and decoder, setup location, ...

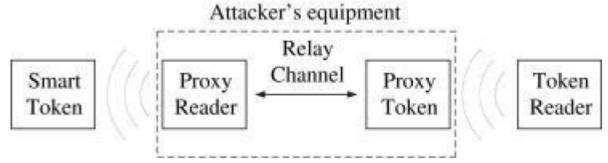
Data Corruption/Modification

- Attacker can attempt to modify bits in flight based on standardized encoding, e.g., high power pulses can flip 0s to 1s
- In full-duplex mode, this can be detected easily because the pulse needs to be high power
- Difficult to detect in half-duplex mode

Data Injection

- In a message-response mode, an attacker can inject data by responding faster than the intended target
 - Only works if intended target needs time to construct reply, otherwise messages will collide (→ DoS)
- Possible defenses:
 - Secure handshake w/ verifiable response


Man-in-the-Middle Attacks


- MitM is difficult in NFC due to:
 - Close proximity (MitM needs to be closer than tag)
 - Full duplex can detect some aspects
- But, what if the MitM attacker modifies the medium?
 - If the attacker blocks the original signal, it can create two sessions needed for MitM attack
 - Turns out that a sheet of aluminum or a few pieces of paper will block the signal...

NFC Relay Attack

- Modified version of the MitM attack
 - Proximity is assumed but not proven

Relay channel used to create two separate sessions

More NFC Issues

- Other than these basic wireless communication concerns, most other NFC security issues are scenario- or application-dependent
 - i.e., how NFC is used introduces vulnerabilities
 - Some apps using NFC don't correctly address basic concerns, which can open up additional issues
- Let's look at a few special cases

Case Studies

Mobile Payment

Smart Posters

Mobile Payment

 Mobile payment typically uses NFC to initiate the transaction, often using a handshake with the payee before the actual transaction

- Why use NFC?
 - Proximity makes it easier to verify payee
 - Simplifies the transaction process
 - Convenient: store all credentials inside the phone
 - Integrates with other mobile services: eBooks, music downloads, barcodes, etc.

Mobile Payment Systems

- Implementations vary
 - Softcard (fka ISIS)
 - Google Wallet
 - Paypal Here
 - Square Wallet
 - Apple Pay

– ...

Let's look at a couple of examples

Google Wallet

- How to use Google Wallet (initially):
 - Add cards credentials to the app (offline)
 - Approach payment surface (POS terminal)
 - Open Google Wallet app
 - Input 4-digit PIN
 - Put phone very near payment surface

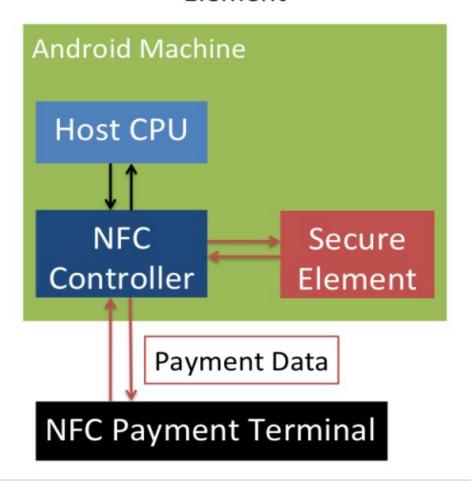
Behind Google Wallet

- NFC radio + "secure element"
 - Stores data / runs programs
 - Encrypted storage, separate from Android phone memory
- When card added, credentials locked in the secure element
- PIN unlocks secure element
- App serves as NFC-based tunnel between secure element and POS terminal

Google Wallet Vulnerability

- PIN Exposure Vulnerability, February 2012
 - Publicized by Zvelo
 - PIN hash stored on phone memory used to validate PIN and give access to secure element
 - SHA256 w/ 4-digit PIN → 10,000 tries to brute force
 - Rooted phone can run Wallet Cracker app, unlock secure element in seconds
- Patched by Google
 - Hash now stored in secure element
 - Managed by banks, so PIN security is banks' responsibility, not Google's

Why Google Wallet Failed...


- Google Wallet (probably) didn't fail because of security issues / vulnerabilities
- The fact that certain carriers were blocking its installation prevented adoption
 - Verizon was unhappy with Google Wallet's interaction with the specialized hardware (secure element)
 - Verizon was involved in developing a carrier-provided payment system that was at the time called ISIS
 - ISIS used a hardware secure element

Android Pay

- Google Wallet → Android Pay
- Android Pay will use secure element if it exists or use host card emulation if not
 - Carriers no longer seem to care about apps using secure element, or agreements have been made

How it Works

Card Emulation With A Secure Element

Host Card Emulation Android Machine **Host CPU** NFC Controller Payment Data **NFC Payment Terminal** [Image from businessinsider.com]

Apple Pay

- Apple Pay is Apple's long-awaited dive into NFCbased mobile payment
 - According to Apple, it's perfectly secure
 - According to Forbes.com, it's better than previous NFC payment systems because they're doing revolutionary things like using "a dedicated chip on the device that Apple calls 'Secure Element'"...
- FireEye recently published a blog post with a "security analysis" of Apple Pay
 - While it's not analysis, there's some good insight about complexity of payment ecosystem

A Few Comments

- While the FireEye blog post mentions the whole ecosystem, too much focus is on NFC itself
- Once the sensitive info / control is in the hands of the phone, it's up to the OS and the developer to handle things correctly
- As an example, host card emulation is vulnerable to MitM attacks on a rooted phone
 - A team in class last year helped to expose this

Case Studies

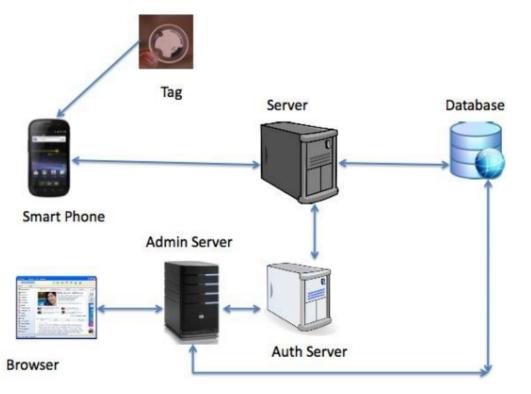
Mobile Payment

Smart Posters

Smart Posters

- A smart poster combines a standard visual display with user/mobile interaction and feedback relevant to the specific display, location, context, etc.
 - Achievable using NFC, QR code, ...
- In a typical deployment, program a small amount of content or a link on a tag, then stick the tag to the display

Smart Poster Issues


- What if someone reprograms a tag?
- What if someone removes a tag and sticks a new one in its place?
- What if someone covers a tag with a few sheets of paper then sticks a new one in its place?
- What if someone moves a tag to a different location?
- You get the point...it's really hard to protect tag contents, context, etc.

Challenges

- Very low data rate from tag to reader
- Very small data storage on tag
- Difficult to authenticate tag or validate contents without prior relationship with tag provider

Possible Solution

- S-SPAN: Secure Smart Posters w/ Android NFC
 - Instead of validating the tag or the data programmed on the tag, point the user to something they can validate. It shouldn't matter where the content is.

S-SPAN uses existing web-based mechanisms to validate tag contents, control access to contents, tag revocation / expiry, monitor usage, etc.

Oct 22: Mobile Sensing