Mobile Security Fall 2015

Patrick Tague #10: Mobile Sensing Risks

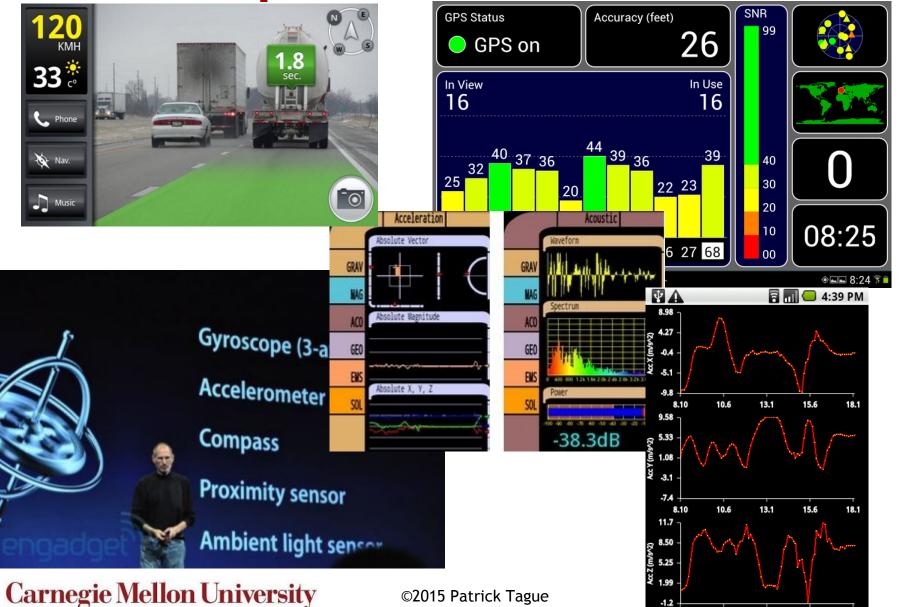
Carnegie Mellon University

©2015 Patrick Tague

1

Announcements

• Reminder: assignment #3 due today


Classes #10-11

- Sensing in mobile devices
- Risks of mobile sensing
- Benefits of mobile sensing

- Smartphone Sensing
 - What sensors are included in mobile phones, and what are they used for?
 - Smartphone sensor networks
 - Security and privacy risks, threats, benefits, etc.

Smartphones have Sensors?

8.10

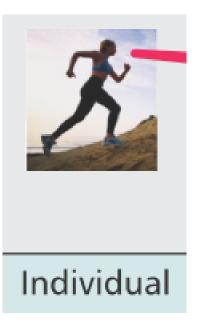
10.6

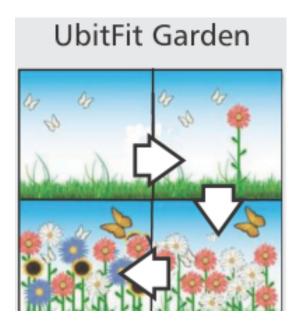
13.1

15.6

18.1

Intended Sensor Uses


- Most commonly:
 - Accelerometers, for UI and camera use (initially)
 - Gyroscope and compass, for orientation and mobility tracking (e.g., for location-based services)
 - Proximity sensor, for features like turning off the screen when against your ear or in your pocket
 - Light sensor, for auto-brightness and others
 - GPS, for navigation, LBS, photo tagging, etc.
 - Microphone(s), for measuring sound or noise levels
 - Camera(s), for taking pictures, sensing colors, reading IR beacons, measuring heartbeat, etc.
 - Other radios (WiFi, Bluetooth, etc. can help LBS)


Carnegie Mellon University

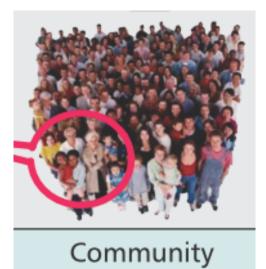
©2015 Patrick Tague

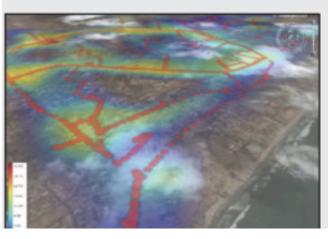
Sensing Apps

- Mobile apps that leverage sensor data range from small- to large-scale
 - Individual sensor data, used on the phone, can monitor a personal environment

Images from [Lane et al., IEEE Comm. Mag., Sept 2010]
Carnegie Mellon University
©2015 Patrick Tague

Sensing Apps


- Mobile apps that leverage sensor data range from small- to large-scale
 - Group sensor data, shared among a small number of individuals, can enable data- or service-sharing


Images from [Lane et al., IEEE Comm. Mag., Sept 2010]
Carnegie Mellon University ©2015 Patrick Tague

Sensing Apps

- Mobile apps that leverage sensor data range from small- to large-scale
 - Community sensor data, shared among a large number of individuals can enable larger-scale data collection and richer analytics (e.g., Weather Underground)

Participatory Urbanism

- Images from [Lane et al., IEEE Comm. Mag., Sept 2010]

Carnegie Mellon University

©2015 Patrick Tague

Large Scale Sensing

- A few interesting large-scale sensing apps of note were discussed in [Lane et al., IEEE Comm. Mag., Sept 2010]
 - Traffic monitoring and navigation assistance (e.g., MIT VTrack or Mobile Millenium)
 - Mobile social networking (more on this later)
 - Environmental/pollution monitoring and aggregation (e.g., UCLA PEIR)
 - Health monitoring (e.g., UbiFit Garden, VMA)

Cloud/Crowd Sensing

- Instead of restricting sensor access to the mobile apps themselves, smartphones can be used as nodes in a large-scale sensor network
 - Each phone reports its sensor measurements to a cloud service or crowd-sourcing system
 - Aggregate information is used instead of base measurements
 - Protects the privacy of individual user data???

Sense-Making Systems

- In some cases, the sensor data itself isn't very helpful, but deeper analytics can help us make sense of the sensor data
- More on this during the next class

Unintended Sensor Uses

- Most of the sensors on a mobile phone are treated as "non-sensitive" information sources, and some OS models don't require apps to get permission to access the sensors directly
 - E.g., in Android, the accelerometer isn't a permissionrestricted resource
- Malicious apps may be able to access sensor feeds directly to learn about device or user behaviors
- Cloud/crowd services can also use sensor data for purposes other than stated

Sensor Security Issues

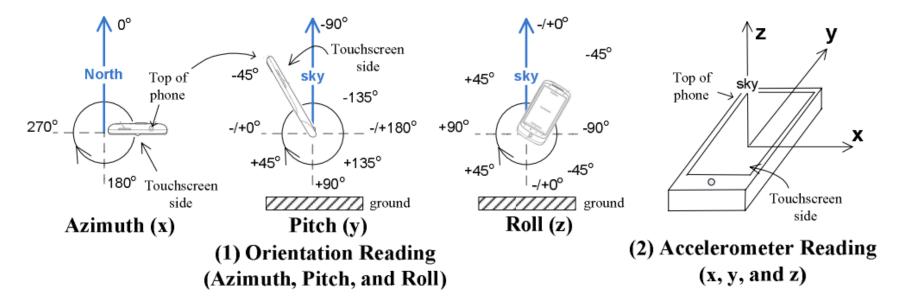
- Use of data is difficult to track (basically a supplychain problem)
- Integrity of sensor data is difficult (impossible?) to verify
 - Crypto-based integrity protection guarantees that the data packet content is as intended, but nothing ensures the measurement was generated correctly and the hardware is functioning as designed
- Scalability
- Privacy of user data

Security Issues

- Potential adversaries can target a number of different aspects of the system, including:
 - Environmental factors: changes to the environment (putting ice around temp sensors, spoofing GPS signals, etc.) affect measurements, need consistency?
 - Sensors: tampered, fabricated, spoofed, malware?
 - Cloud / network: eavesdropping, interception, injection, tracing, etc.?

Approaching Secure Solutions

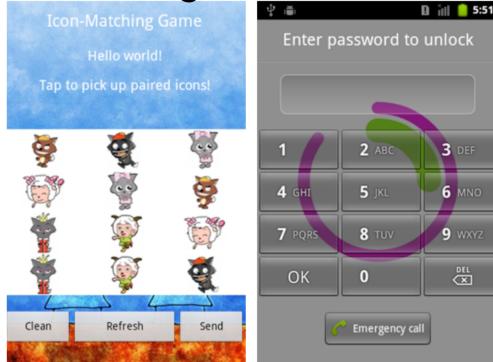
- Consistency checks on all (correlated) data can detect tampering, forgery, etc.
 - Correlation can be geographic (nearby temperature sensors should be similar), temporal (subsequent measurements should be similar), or otherwise
- Strong crypto (device authentication, data integrity, encryption, pub/sub access control)
- Trust management
 - If a sensor gives a bad measurement, give them a bad rating; ignore data from poorly rated devices

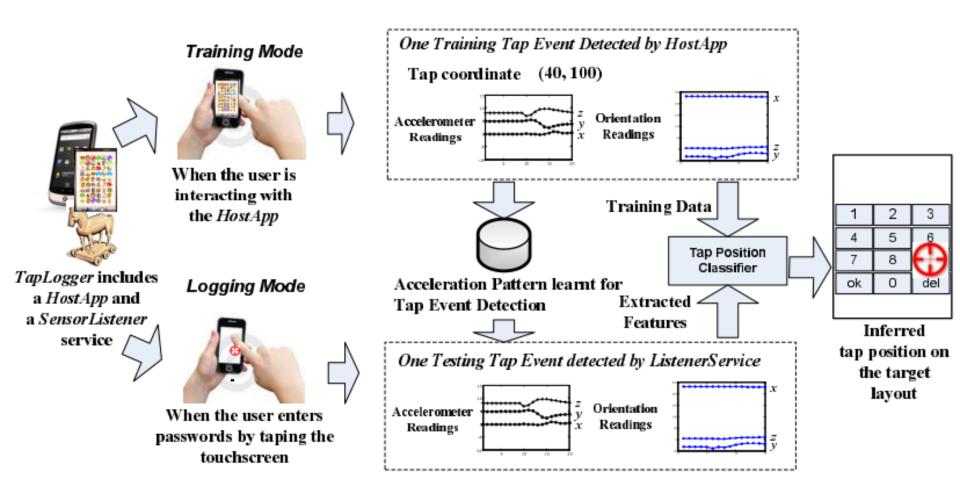

Carnegie Mellon University

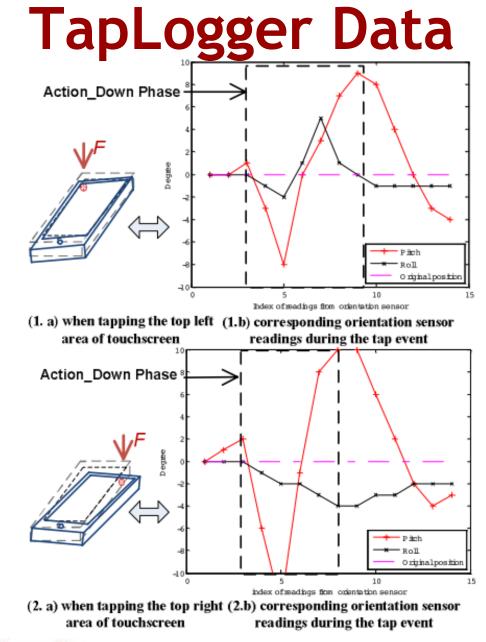
©2015 Patrick Tague

Ok, so what about the issues in standalone smartphone apps?

Local Sensor Scenario


• Suppose an attacker gains access to accelerometer and gyro/orientation sensor data


• What can they do?


TapLogger Threat

- Xu, Bai, and Zhu [WiSec 2012] designed TapLogger to demonstrate possible sensor data risks
- TapLogger tricks users into providing training data, then uses the training data to learn PINs

How Does it Work?

Carnegie Mellon University

©2015 Patrick Tague

How Well Does it Work?

	Coverage rate with Top 1 ranked label				Coverage rate with Top 1 & 2 ranked labels			
	0.2759	0.4643	0.5185		0.7931	0.75	0.7037	
	0.4138	0.1200	0.3333		0.6897	0.4400	0.6061	
Layout of Number Pad	0.2069	0.1250	0.2500		0.4483	0.2917	0.6250	
1 2 3 4 5 6	0.4348	0.3462	0.8750		0.6087	0.4615	0.9583	
7 8 9 * 0 #	1	-	age rate with		Coverage rate with			
	Top 1 & 2 & 3 ranked labels				Top 1 & 2 & 3 & 4 ranked labels			
	0.9310	0.8214	0.9259		0.9310	0.9286	0.9259	
	0.8621	0.7200	0.9091		0.9655	0.8400	0.9394	
	0.6897	0.5833	0.8333		0.8966	0.6250	1.0	
	0.6522	0.6154	0.9583		0.8261	0.7692	1.0	

Why Does it Work?

- We've been training users to always check the permissions the apps are asking for before clicking install (which they still don't do)
- In this case, it doesn't help, because the accelerometer is an unprotected resource, so no permissions are needed
- Should the accelerometer be a protected resource? What else should be protected?

More Sensor-Based Threats

- CMU researchers also showed that accelerometer readings can be used to expose:
 - Text entered into soft keyboards; ACCessory uses techniques sort of similar to what TapLogger did for 10key pad
 - Driving route and starting location; ACComplice does location inference using probabilistic inertial navigation with map matching

What are the open research questions related to smartphone sensing security?

Sensing Challenges

- As in any sensor system, the quality and correctness of sensor measurements are fundamentally questionable
 - Consistency checks have been widely adopted in the WSN community and quickly spreading elsewhere
- Scalability of secure sensing platforms is hard
 - Key management, energy limits, bandwidth limits, computation limits, trust issues, ...
- Privacy is a huge problem
 - Privacy of the data versus privacy of what can be learned from the data...

Oct 27: Mobile Sensing Benefits

Carnegie Mellon University

©2015 Patrick Tague