Mobile Security Fall 2015

Patrick Tague #11: Mobile Sensing Benefits

[Slides c/o Dr. Jiang Zhu, slightly modified]

Carnegie Mellon University

©2015 Patrick Tague

1

- BehavioMetrics
- BehavioMetrics through mobile sensing
- Passive authentication / verification via BehavioMetrics

Why Passive Verification?

Password

A major source of security vulnerabilities. Easy to guess, reuse, forgotten, shared

Existing User Authentication

- Password management on mobile devices is either weak or unusable
 - Ex: password requirements for DHS E-file:
 - Contain from 8 to 16 characters
 - Contain at least 2 of the following 3 characters: uppercase alphabetic, lowercase alphabetic, numeric
 - Contain at least 1 special character (e.g., @, #, \$, %, & *, +, =)
 - Begin and end with an alphabetic character
 - Not contain spaces, all or part of UserID, identical consecutive characters, or a recently used password
- Most users are too lazy or ignorant to use password-aid tools (Hong et al. 2009)
- Fingerprint? Gesture? Iris recognition? Face recognition? Voice recognition?

BehavioMetrics

- Derived from Behavioral Biometrics
 - Behavioral: the way a human subject behaves
 - Biometrics: technologies and methods that measure and analyzes biological characteristics of the human body
 - Finger prints, eye retina, voice patterns
- BehavioMetrics:
 - Measurable behavior to recognize or to verify identity of a human subject or subject's certain behaviors

Mobile Sensing

- Mobile devices come with embedded sensors
 - Accelerometers, gyroscope, magnetometer
 - GPS receiver
 - WiFi, Bluetooth, NFC
 - Microphone, camera,
 - Temperature, light sensor
 - "Clock" and "Calendar"
- Connect with other sensors (e.g., EEG, EMG, GSR)
- Mobile devices are connected with the Internet
 - Upload sensor data to the cloud
 - Viewing information computing on the server side
- Users carry the device almost at all time
 - My phone "knows" where I am, what I am doing and my future activities

Mobile Sensing → BehavioMetrics

- Accelerometer
 - activity, motion, hand trembling, driving style
 - sleeping pattern
 - inferred activity level, steps made per day, estimated calorie burned
- Motion sensors, WiFi, Bluetooth
 - accurate indoor position and trace.
- GPS
 - outdoor location, geo-trace, commuting pattern
- Microphone, camera
 - From background noise: activity, type of location.
 - From voice: stress level, emotion
 - Video/audio: additional contexts
- Keyboard, taps, swipes

Specific tasks, user interactions, ...
 Carnegie Mellon University
 ©2015 Patrick Tague

- Network Factors
- Personal Factors
- Behavioral Factors
- Application Factors

BehavioMetrics → **Security**

- Monitor and track user behavior on smartphones using various on-device sensors
- Convert sensory traces and other context information to personal behavior features
- Build continuous n-gram model with these features and use it for calculation of sureness scores
- Trigger various authentication schemes when certain applications are launched

"Behavioral Text"

- Human behavior/activities share some common properties with natural languages
 - Meanings are composed from meanings of building blocks
 - Exists an underlying structure (grammar)
 - Expressed as a sequence (time-series)
- Apply rich sets of Statistical NLPs to mobile sensory data

Sensor Data → Behavioral Text

 Convert feature vector series to label streams - dimension reduction using sliding window of specified length

Behavior ↔ Language

- Generative language model: P(English sentence | model)
 - P("President Obama signed the Bill of ... "| Politics) >>
 P("President Obama signed the Bill of ... " | Sports)
 - LM reflects the n-gram distribution of the training data: domain, genre, topics.
- With labeled behavior text data, we can train a LM for each activity type: "walking"-LM, "running"-LM and classify the activity as $i^* = \arg \max P(t|a_i)$

	Predicted Activity				
	walking	running	cycling		
walking	95%	1%	4%		
running	4%	94%	2%		
cycling	2%	0%	98%		

Carnegie Mellon University

Continuous n-gram Model

- User activity at time *t* depends only on the last *n-1* activities
- Sequence of activities can be predicted by *n* consecutive activities in the past

 $P(l_i|l_{i-n+1}, l_{i-n+2}, \dots, l_{i-1})$ or $P(l_i|l_{i-n+1}^{i-1})$

- Maximum Likelihood Estimation from training data by counting: $P_{\text{MLE}}(l_i|l_{i-n+1}^{i-1}) = \frac{C(l_{i-n+1}, \dots, l_{i-1}, l_i)}{C(l_{i-n+1}, \dots, l_{i-1})}$
- MLE assign zero probability to unseen n-grams
 - Incorporate smoothing functions, discount observed grams, reserve probability for unseen grams

Carnegie Mellon University

Classification

- Build M BehavioMetrics models P₀, P₁, P₂, ..., P_{M-1}
 - Genders, age groups, occupations
 - Behaviors, activities, actions
 - Health and mental status
- For a new behavioral text string *L*, we calculate the probability of *L* being generated by model *m*

$$P(L,m) = P(l_1, l_2, \dots, l_N, m) = \prod_{i=1}^{n} P_m(l_i | l_{i-n+1}^{i-1})$$

• Classification problem formulated as

$$\hat{u} = \operatorname*{argmax}_{m} P(L, m) = \operatorname*{argmax}_{m} \sum_{i=1}^{N} \log P_m(l_i | l_{i-n+1}^{i-1})$$

Carnegie Mellon University

Anomaly Detection

- A special binary classification problem
- Given a normal BehavioMetrics model P_n , a new behavior text sequence L, and a threshold θ , calculate the likelihood L is generated by P_n and compare with θ

$$\hat{a}(L|n,\theta) = sign[P(L,n) > \theta]$$

- If the outcome is -1, flag an anomaly
- Variation caused by noise could be smoothed out statistically
- Need certain feedback to handle false positives, usually caused by unseen behaviors or sub-optimal threshold

Anomaly Detection Threshold

Sliding Window Position

Carnegie Mellon University

SenSec Certainty Scores

- SenSec uses a variety of sensor data to build user behavior models
 - Unsupervised activity segmentation and behavioral text modeling
 - Anomaly detection using risk analysis (decision) tree
 - Computes certainty score as an estimate of risk (online)
- Application access control module will decide:
 - Allow access, deny access, or ask for further authentication

Feature Selection

- Accelerometer
 - Used to summarize acceleration stream
 - Calculated separately for each dimension
 - Meta features: total time, window size

Feature	Description	D/M
RMS	The Root-Mean-Square value	D
RMSE	The Root-Mean-Square error	D
Min	The minimum value	D
Max	The maximum value	D
AvgDeltas	The average sample-by-sample change	D
NumMax	The number of local peaks	D
NumMin	The number of local crests	D
TTP	The average time from a sample to a peak	D
TTC	The average time from a sample to a crest	D
RCR	The RMS cross rate	D
SMA	The Signal Magnitude Area	D
Total Time	The Total Time of the window	Μ
Window Size	The number of samples in the window	Μ

- GPS: location string from Google Map API and mobility path
- WiFi: SSIDs, RSSIs and path
- Applications: Bitmap of well-known applications
- Application Traffic Pattern: TCP/UDP traffic pattern vectors: [remote host, port, rate]

Carnegie Mellon University

Carnegie Mellon University

Validation / Evaluation

- Offline data collection (for training and testing)
 - Pick up the device from a desk
 - Unlock the device using the right slide pattern
 - Invoke Email app from the "Home Screen"
 - Some typing on the soft keyboard
 - Lock the device by pressing the "Power" button
 - Put the device back on the desk

Classification Target	No. of Classes	Accuracy
Gender	2	0.81
Age Group	3	0.79
Occupation	4	0.76
User ID	20	0.75

SenSec App v1.0

ě Ý		B	uti	11:46
SenSec	Access			
	Save Setting			
	Android System			
\bigcirc	TTS Service			
*	Bluetooth Share			
	Browser			
=	Calculator			
	Contacts			✓
8	HTML Viewer			
	Launcher			
:)	Messaging			✓

Experiment: Detecting Theft

• 71.3% true-positive rate, 13.1% false positive

Carnegie Mellon University

Practical Issues w/ v1.0

- Alpha test Jun 2012, Google Play Store release Oct 2012
 - False Positive: 13% FPR still annoying users sometimes
- Possible Solutions
 - Use adaptive modeling
 - Adding the trace data shortly before a false positive to the training data and update the model
 - Change passcode validation to sliding pattern
 - A false positive will grant a "free ride" for a configurable duration
 - Assumption: just authenticated user should control the device for a given period of time
 - "Free Ride" period will end immediately if abrupt context change is detected.

Carnegie Mellon University

Evolution to SenSec v2.0

+ Soft Keyboard Interaction

- Hypothesis: the micro-behavior a user interacts with the soft keyboard reflects his/her cognitive and physical characteristics
 - Cognitive fingerprints: typing rhythms, correction rate, delay between keys, duration at each key...
 - Physical characteristics: area of pressure, amount of pressure, position of contact, shift ...

Drift

• When pressing a key, the lifting-up position drifts away from the touch-down position

User 1

Key Holding Time

Passive Auth via SoftKey

- Discriminative model can identify a user at 99% accuracy with just one keypress:
 - When all users' behavior is known
 - Models trained over 4000 keys each from 4 users
- Generative model to detect unauthorized use from an unknown user
 - Only the authorized user's behavior is known
 - After 15 key presses: detection rate is 86% (14% false negative) and only 2.2% false positive

 Experiments to discover anomaly usage with ~80% accuracy with only days of training data

Some Open Questions

- Extended data set for feature construction
 - TCP/UDP traffic, sound, ambient light, battery, etc.
- Data and Modeling
 - Gain more insights into the data, features and factorized relationships among various sensors
 - Try other classification methods and compare results
- Enhanced security of SenSec components
 - Integration with Android security framework and other applications
- Privacy as expectation (Liu et al., 2012)
 - Data management, usage, sharing, trust, etc.
- Energy efficiency

Oct 29: Mobile Malware

Nov 3: NO CLASS

Carnegie Mellon University