

Mobile Security - Tutorial 1

Android Tips and Tricks
Brian Ricks
Fall 2015

Before we begin...

● I took your Wireless
Network Security
course in Spring...
are you gonna have
memes in this?
– No

Quick Reminder

● HW1 due Tonight!!!!!!!

What are we doing?

● Learn some groovy
stuff beyond the
basics
– We assume you have

some Android
fundamentals already,
and sorta* know Java

● Learn some groovy
relevant background
– ….. and the course

projects also

Lets Get Started

● Topics
– Activities

– Processes

– Threads

– Services

– Intents

Activities

● Component that provides user interaction to
accomplish some task
– Any screen you see when running an app is an

activity, and each activity has a screen associated
with it

– These interact with each other (and possibly other
components) to form apps

Activity Lifecycle

● In terms of state

● Shamelessly ripped from: http://www.edureka.co/blog/android-tutorials-for-
beginners-activity-component/

Activity Lifecycle

● In terms of visibility

● Shamelessly ripped from:
http://www.techotopia.com/index.php/Ha
ndling_Android_Activity_State_Changes

Activity Lifecycle

● A note about onPause() vs onStop() in terms of
visibility
– onPause() - Activity still has visible scope. This

means some other activity will capture the
foreground (user interaction), but is not taking up
the entire screen

● This can occur if a dialog pops up, or another activity
which doesn't fully cover the screen.

– onStop() - This activity is about to be covered
entirely (the screen) by another activity

Activities - Starting

● When you start an activity:
– The activity which called it is stopped

● Its onPause() method is called

– The starting activity is pushed onto a stack (called
the back-stack)

● Its onCreate() method is called (followed by onStart() and
onResume())

● Now it has foreground visibility

– If the calling activity is no longer visible
● Its onStop() method is called

Activities – Back Stack

Shamelessly ripped from:
http://www.techotopia.com/index.php/Understanding_Android_Application_
and_Activity_Lifecycles

Activities – Saving State

● When an activity loses foreground visibility, its
state is saved (until killed)
– What if the activity is killed and you want to save

state?
● onSaveInstanceState() - write state info as key/value pairs

to a Bundle (container of key/value pairs)
– No guarantees for its calling – persistent data should be saved

during onPause() - UI state saved during onSaveInstance()
● onRestoreInstanceState() and onCreate(), this Bundle is

passed
– Null Bundle implies activity created for the first time

Activities – Saving State

● Why is this important?
– Activities are destroyed during

events you may not consider
● When the user turns the phone, and

the screen reorients, this causes the
activity to be destroyed and
recreated

Activities – Saving State

● What if I'm too lazy to save
state?

● Some UI state is saved anyways, so
maybe being lazy is fine?

Processes

● Talking about Linux processes here
– Everything that makes up an app (components) are

run from the same process and thread (main
thread)

● Can spawn other threads
● Can change which process a component runs in by

messing with the manifest (android:process)

Process Lifecycle

Shamelessly ripped from:
http://www.techotopia.com/index.php/Understanding_Android_Application_
and_Activity_Lifecycles

Process Lifecycle

● What does a visible process mean?
– One that is technically visible to the user, but is not

in the foreground
● An activity from another process that does not take up

the entire screen
– Think the messenger window from FB messenger, or a dialog

– An activity (from another process) which takes up
the entire screen would make the activity under it
not visible

Process Lifecycle

● What is the difference between a service and
background process?
– A background process contains activities not visible

to the user, but is not hosting any services that
would qualify it for service process priority

– Some subtle differences
● Service processes may not contain activities
● Background processes always contain activities not

visible to the user
– Otherwise, it would be an empty process

Threads

● Lets talk about
threads!

Threads - Creating

● How do I create
threads?
– Same way as you

would in Java

– Android threads are
Java threads

Threads - Termination

● Under what conditions will a spawned thread
terminate?
– Containing process terminates

● In Linux, threads cannot survive without their parent
process

– Threads created using AsyncTask will terminate if
the activity does

● What is AsyncTask? Glad you asked! We'll get to that.

– Thread's run() method exits
● Due to normal termination, flag set, etc...

Threads - Termination

● Threads created manually may still be running
– If its parent process is not killed

– After your activity is recreated (say by turning the
screen orientation)

● Don't assume the JVM will reclaim the thread

Threads and Android

● Android apps by default follow a single thread
model
– But you can spin off your own threads

– But.... the UI toolkit is not thread safe

● What does this all mean?
– All UI update operations need to be done from the

main thread (also called the UI thread)

– Any other tasks can be spun off to their own
threads

● But don't call any UI updating methods from these
threads!!!!

Threads and Android

● Painful yes?
– But no worries,

there are some
nice ways to
'handle' this
problem

Threads And Android

● If you need to update the UI thread from a
worker thread:
– Use Handlers

– Use ASyncTask

Threads - Handler

● The Handler class provides a callback
framework to handle operations in a different
thread from the one invoking the callback.
– Basic steps:

● Instantiate some subclass of Handler in the UI thread
● Pass this instance to the worker thread which will update

the UI
● When you want to update UI in this worker thread, call

the handler's sendMessage method, which will in turn
invoke the callback (in the UI thread)

Threads - ASyncTask

● The AsyncTask class provides a nice wrapper
for updating UI components
– Provides a separation of tasks in terms of

overridden methods according to which thread they
should run in:

● doInBackground(Params…): run in the worker thread.
Do the computationally heavy stuff here.

● onPostExecute(Result): run in the UI thread. The
results/output/etc from doInBackground() is passed here.

Threads – When to Use

● To save time and mess, follow these guidelines
– Do you need to run a background task for a short

duration, and it's related to an activity?
● AsyncTask created threads

– Do you need to run a background task for a long
duration, and it's related to an activity?

● AsyncTask created threads, or set it up manually and
make sure to terminate the thread in the activity's
onDestroy() method

– Do you need to run a background task not related
to a specific activity?

● Use a service

Services

● A component that doesn't have user interaction,
usually longer-running tasks.
– Can be used to do background processing of some

task by an app
● Note: services do not run in their own threads by default

– Can be shared with other apps

Service Lifecycle

● Shamelessly ripped from:
http://www.tutorialspoint.com/android/and
roid_services.htm

Services - Starting

● startService()
– Creates the service, calls onCreate(), then

onStartCommand()
● Command (intent) is passed from whatever requested

the service

● bindService()
– Used to create a connection to a service

● Will create service if not already running
● Does not call onStartCommand()

● Services (not-bounded) will run even if the
starting app is terminated

Services - Stopping

● stopService()
– Services can also use stopSelf()

● Bound services: If any components have a
connection (bound) to the service, it will keep
running until all connections are terminated
– A service is considered a bound service if it was

created using bindService(), and
onStartCommand() was not called

Services vs Threads

● Which should I use for background tasks?
– Depends on what you wanna do

● Do you need something to be running even if your app is
not?

– Services perhaps
● Do you only need something to be running if your app is

currently running?
– Threads perhaps

● Services should be in their own threads
– You can use the IntentService class to accomplish

this

Services and Threads

● Why should I put my services in their own
threads?
– If they are in your main thread, then they can block

UI related tasks (and cause ANR issues)

● ANR?
– Application Not Responding – Android will pop up a

really nasty dialog alerting the user to how much
your app sucks if a foreground activity does not
react to user input within 5 seconds

Services and Threads

● Can I be lazy and not care about ANR issues?
– I won't be running your code, so why not?

● Why only mention ANR now? ANR can be
caused without using services in our UI thread
right?
– Yep, any computationally heavy block of code in

the UI thread can cause ANR, but a common
misconception is that services always run in a
separate thread :-)

Intents

● Now on to Intents
– The 'intent' of these

slides is to fill you in on
why intents are
awesome

Intents

● Messengers between components
– Usually between activities, but can be any context

→ class

– Three main use cases
● Starting activities
● Starting services
● Deliver broadcasts

Intents – Starting Activities

● startActivity() method
● If you want a result sent back to your activity,

use startActivityForResult() instead
– Will receive another intent, passed to your

onActivityResult() callback method, when the calling
activity finishes

Intents – Explicit vs Implicit

● Explicit – Here, you know exactly which
component you want to send the intent too.
You specify the component name by its class.
– Usually used when starting activities within a

common app

● Implicit – Here, you may not know (or care)
which component can handle a request, so you
specify in the intent what you need done
– You want the ability to import camera shots to your

app, so you use an implicit intent to request a
component which can take the shots

Intents - Implicit

Shamelessly ripped from: http://developer.android.com/guide/components/intents-filters.html

The android system acts as
a matchmaker

Intents - Implicit

● How does android know which components will
match my request?
– Compare contents of intent to intent-filters specified

in other apps' manifests
● If only one match is found, that component is started
● If multiple matches are found, system prompts user to

pick

Intents - Implicit

● What criteria does the matching use?
– Intent action: Action specified in the intent must

match one of the actions specified in the manifest

– Intent category: Each category specified in the
intent must match a category specified in the
manifest

– Intent data (URI/MIME): Matching based on which
URI/MIME types are present in the intent compared
to what is present in the manifest

Intents - Implicit

● What about if I use an implicit intent to start a
service?
– If multiple services can handle the intent, one of

them will start, and the user will not know which one

– Best to use explicit intents in the case of services

Intents - Implicit

● So if I declare in my app's manifest that
component X can handle intent-filter Y, I will
receive these requests?
– Maybe. If your app is the only app installed that

can handle intent-filter Y, then it will

– Or, your app will be one of many in a list for the
user to choose from

● Apps can force the chooser dialog to display

Intents - Implicit

● How can I determine if the device has any
installed components that can handle a specific
intent request?
– PackageManager class

● Can query the system about installed apps and services
which can handle a given intent

The End

Disclaimer: Meme is in no way presented here to disrespect Dennis Ritchie or his legacy, only your mother.

