Mobile Security - Tutorial 1

Android Tips and Tricks
Brian Ricks
Fall 2015

Before we begin...

| took your Wireless ncluallu'malle it to morning class for
T———
Network Security -
course In Spring... ' |
are you gonna have
memes In this?

- No

LjaLINdg+eea.l ﬂ."'

f

- e
SKip rest of the day as'a reward

Quick Reminder

GUESS | BETTER START;IT-

What are we doing?

e Learn some groovy
stuff beyond the
basics

R 'I'L "1"‘5..’ |
- We assume you have
some Android Yllll SHAllNIIT PASS
fundamentals already, — ‘r
and sorta* know Java =]

e Learn some groovy
relevant background

— and the course
projects also

Lets Get Started

* Topics D" -
" IPYOUR'ANSWER WAS

— Activities Exl‘l_m WHY
- Processes ’ | ‘
- Threads 2 »

- Services “g”

- Intents *

CHANGE ANSWER TONO

Activities

 Component that provides user interaction to
accomplish some task

— Any screen you see when running an app Iis an
activity, and each activity has a screen associated
with it

- These interact with each other (and possibly other
components) to form apps

Activity Lifecycle

e |n terms of state

Starting

onCreate()
onStart()
onResume()

Running
onRestart() onSavelnstanceState|)
onStart() onPause()
onResume() CnResume
Stopped € Paused

onSavelnstanceState|)

Destroy() onStop()
onDestro
or ! =process killed=
zprocess killed=
Destroyed

Shamelessly ripped from: http://www.edureka.co/blog/android-tutorials-for-
beginners-activity-component/

Activity Lifecycle

* In terms of visibility

4)

—)(onCreate())

s Y N

C onStart())(—(onRestart())
v A

onRestorelnstanceState()

Y
(onResume())(—
Y

onSavelnstanceState()

Y
(onPaluse())—/

C onStop())

Entire Lifetime
Visible Lifetime

/—Foreground Lifetime

_ : /
——(onDestroy())
. Shamelessly ripped from:
_ J/ http://www.techotopia.com/index.php/Ha
ndling_Android_Activity_State_Changes

Activity Lifecycle

* A note about onPause() vs onStop() In terms of
visibility
- onPause() - Activity still has visible scope. This
means some other activity will capture the

foreground (user interaction), but is not taking up
the entire screen

e This can occur if a dialog pops up, or another activity
which doesn't fully cover the screen.

- onStop() - This activity is about to be covered
entirely (the screen) by another activity

Activities - Starting

 WWhen you start an activity:

- The activity which called it is stopped
 Its onPause() method is called

- The starting activity is pushed onto a stack (called
the back-stack)

* Its onCreate() method is called (followed by onStart() and
onResume())

* Now it has foreground visibility
- If the calling activity is no longer visible
* Its onStop() method is called

Activities — Back Stack

[Starting Activity }

* Push
i T

Activity exits or
I T PD . t
Active Activity - USEr navigates
y to "Previous Active
Activity"
o ::; Previous Active
S |g Activity
N o
- s)
= Activity
g 5 ’
L]
L]
L]
5 Killed Terminated
g[Oldest Activity } > to free
L) memaory

Shamelessly ripped from:
http://www.techotopia.com/index.php/Understanding_Android_Application_
and_Activity_Lifecycles

Activities — Saving State

* When an activity loses foreground visibility, its
state Is saved (until killed)

- What if the activity is killed and you want to save
state?

* onSavelnstanceState() - write state info as key/value pairs
to a Bundle (container of key/value pairs)

- No guarantees for its calling — persistent data should be saved
during onPause() - Ul state saved during onSavelnstance()

* onRestorelnstanceState() and onCreate(), this Bundle is
passed

— Null Bundle implies activity created for the first time

Activities — Saving State

 Why Is this important?

- Activities are destroyed during
events you may not consider

 When the user turns the phone, and
the screen reorients, this causes the

activity to be destroyed and
recreated

Activities — Saving State

 What If I'm too lazy to save
state?

« Some Ul state Is saved anyways, SO '
maybe being lazy is fine?

Processes

» Talking about Linux processes here

- Everything that makes up an app (components) are
run from the same process and thread (main
thread)

e Can spawn other threads

e Can change which process a component runs in by
messing with the manifest (android:process)

Process Lifecycle

Foreground Process

Visible Process

Service Process

Background Process

Empty Process

Highest Priority

Lowest Priority

Shamelessly ripped from:
http://www.techotopia.com/index.php/Understanding_Android_Application_
and_Activity_Lifecycles

Process Lifecycle

 What does a visible process mean?

- One that Is technically visible to the user, but is not
In the foreground

« An activity from another process that does not take up
the entire screen

- Think the messenger window from FB messenger, or a dialog

- An activity (from another process) which takes up
the entire screen would make the activity under it
not visible

Process Lifecycle

 What Is the difference between a service and
background process?

— A background process contains activities not visible
to the user, but is not hosting any services that
would qualify it for service process priority

- Some subtle differences

e Service processes may not contain activities

e Background processes always contain activities not
visible to the user

- Otherwise, it would be an empty process

Threads

e Lets talk about
threads!

Threads - Creating

 How do | create
threads?

- Same way as you
would in Java

- Android threads are
Java threads

Threads - Termination

* Under what conditions will a spawned thread
terminate?

— Containing process terminates

 In Linux, threads cannot survive without their parent
process

- Threads created using AsyncTask will terminate Iif
the activity does

 What is AsyncTask? Glad you asked! We'll get to that.
- Thread's run() method exits
 Due to normal termination, flag set, etc...

Threads - Termination

* Threads created manually may still be running

- If its parent process is not killed

— After your activity Is recreated (say by turning the
screen orientation)

e Don't assume the JVM will reclaim the thread

Threads and Android

* Android apps by default follow a single thread
model
- But you can spin off your own threads

- But.... the Ul toolkit Is not thread safe
 WWhat does this all mean?

- All Ul update operations need to be done from the
main thread (also called the Ul thread)

- Any other tasks can be spun off to their own
threads

e But don't call any Ul updating methods from these
threads!!!!

Threads and Android

* Painful yes?

- But no worries,
there are some

AUNIDIWAS
nice ways to | —
'handle’ this Ll N pe

Threads And Android

* If you need to update the Ul thread from a
worker thread:

- Use Handlers
- Use ASyncTask

Threads - Handler

 The Handler class provides a callback
framework to handle operations in a different
thread from the one invoking the callback.

- Basic steps:
 Instantiate some subclass of Handler in the Ul thread
e Pass this instance to the worker thread which will update

the Ul

 When you want to update Ul in this worker thread, call
the handler's sendMessage method, which will in turn
Invoke the callback (in the Ul thread)

Threads - ASyncTask

 The AsyncTask class provides a nice wrapper
for updating Ul components

- Provides a separation of tasks in terms of

overridden methods according to which thread they
should run in:

e dolnBackground(Params...): run in the worker thread.
Do the computationally heavy stuff here.

« onPostExecute(Result): run in the Ul thread. The
results/output/etc from dolnBackground() is passed here.

Threads — When to Use

* To save time and mess, follow these guidelines

- Do you need to run a background task for a short
duration, and it's related to an activity?

« AsyncTask created threads

- Do you need to run a background task for a long
duration, and it's related to an activity?

e AsyncTask created threads, or set it up manually and
make sure to terminate the thread in the activity's
onDestroy() method

- Do you need to run a background task not related
to a specific activity?

e Use a service

Services

A component that doesn't have user Interaction,
usually longer-running tasks.

— Can be used to do background processing of some
task by an app
* Note: services do not run in their own threads by default

- Can be shared with other apps

Service Lifecycle

Call to

startService()
v

onCreate()

.

onStartCommand()

v

Service
running

The service |s stopped
by itsell or a client

onDestroy()

v

f Service

Unbounded
service

\ shut down |

- call to '|

:

onCreate()

!

onBind()

v

Clients are y
bound to |
service
|
All clients unbind by calling
unbindService()

b

onbnbind()

;

onDestroy()

v

Service ."l
| shut down

Bounded
service

Shamelessly ripped from:
http://www.tutorialspoint.com/android/and
roid_services.htm

Services - Starting

e startService()
- Creates the service, calls onCreate(), then
onStartCommand()

« Command (intent) is passed from whatever requested
the service

* bindService()

- Used to create a connection to a service
« Will create service if not already running
e Does not call onStartCommand()

» Services (not-bounded) will run even if the
starting app Is terminated

Services - Stopping

e stopService()
— Services can also use stopSelf()

 Bound services: If any components have a
connection (bound) to the service, it will keep
running until all connections are terminated

— A service Is considered a bound service If it was
created using bindService(), and
onStartCommand() was not called

Services vs Threads

 Which should | use for background tasks?

- Depends on what you wanna do
* Do you need something to be running even if your app is
not?
— Services perhaps

* Do you only need something to be running if your app is
currently running?

- Threads perhaps
e Services should be In their own threads

— You can use the IntentService class to accomplish
this

Services and Threads

 Why should | put my services in their own
threads?

- If they are In your main thread, then they can block
Ul related tasks (and cause ANR issues)

* ANR?

— Application Not Responding — Android will pop up a
really nasty dialog alerting the user to how much
your app sucks if a foreground activity does not
react to user input within 5 seconds

Services and Threads

 Can | be lazy and not care about ANR issues?
- | won't be running your code, so why not?

* Why only mention ANR now? ANR can be
caused without using services in our Ul thread
right?

- Yep, any computationally heavy block of code in
the Ul thread can cause ANR, but a common
misconception Is that services always run in a
separate thread :-)

Intents

* Now on to Intents

- The 'Intent’ of these
slides is to fill you in on
why intents are
awesome

Intents

 Messengers between components

- Usually between activities, but can be any context
- class

- Three main use cases
e Starting activities
e Starting services
» Deliver broadcasts

Intents — Starting Activities

 startActivity() method

* |f you want a result sent back to your activity,
use startActivityForResult() instead

- WIll receive another intent, passed to your
onActivityResult() callback method, when the calling
activity finishes

Intents — Explicit vs Implicit

» Explicit — Here, you know exactly which
component you want to send the intent too.
You specify the component name by Iits class.

- Usually used when starting activities within a
common app

* Implicit — Here, you may not know (or care)
which component can handle a request, so you
specify in the intent what you need done

- You want the ability to import camera shots to your
app, so you use an implicit intent to request a
component which can take the shots

Intents - Implicit

/

J Intent] J Intent \
, b

startActivity()

A
N

onCreate()

\4

Activity B

The android system acts as
a matchmaker

Shamelessly ripped from: http://developer.android.com/guide/components/intents-filters.html

Intents - Implicit

 How does android know which components will
match my request?

- Compare contents of intent to intent-filters specified
In other apps' manifests
 If only one match is found, that component is started

 If multiple matches are found, system prompts user to
pick

Intents - Implicit

 What criteria does the matching use?

- Intent action: Action specified in the intent must
match one of the actions specified in the manifest

- Intent category: Each category specified in the
Intent must match a category specified in the
manifest

- Intent data (URI/MIME): Matching based on which
URI/MIME types are present in the intent compared
to what Is present in the manifest

Intents - Implicit

 What about If | use an implicit intent to start a
service?

- If multiple services can handle the intent, one of
them will start, and the user will not know which one

- Best to use explicit intents in the case of services

Intents - Implicit

 So If | declare In my app’'s manifest that
component X can handle intent-filter Y, | will
receive these requests?

- Maybe. If your app Is the only app installed that
can handle intent-filter Y, then it will

- Or, your app will be one of many in a list for the
user to choose from

e Apps can force the chooser dialog to display

Intents - Implicit

 How can | determine if the device has any
iInstalled components that can handle a specific
Intent request?

- PackageManager class

« Can query the system about installed apps and services
which can handle a given intent

The End

THE LONG LONG STI]IIING"
HER WEIGHT IS NEGATIVE

Disclaimer: Meme is in no way presented here to disrespect Dennis Ritchie or his legacy, only your mother.

