Cybersecurity Research Seminar Fall 2015

Patrick Tague #7: Paper Writing Tips & Tricks

Carnegie Mellon University

©2015 Patrick Tague

1

Tips for Writing a Good Technical Paper/Report

Carnegie Mellon University

Questions

- What is the goal of the paper?
- What is your story?
- How to tell it clearly, simply, effectively, etc?
 - Some basic guidelines

Goals

- What is the goal of your paper?
 - Summarizing or detailing the results of a project
 - Communicating your problem, approach, results, etc. to someone else
 - Clarifying your research and process

Project Output

- Papers are seen as an output of a project
 - That doesn't mean to do all the writing at the end
 - Don't just focus on the results
 - Writing and thinking are tightly coupled

Written Communication

- Results not communicated well aren't very valuable
 - Moreover, a well-written paper with weaker results may be far more valuable than a poorly written paper with strong results
 - Essentially, the writer has to make it easy for the reader to listen and understand what is being said

Writing for Clarification

- Since writing and thinking are coupled, writing your thoughts, ideas, approach, etc. during the process can lead to improvement
 - Taking the effort to try to explain yourself often exposes gaps or weaknesses
 - Another major reason why waiting to do any writing until the end of a project can be disastrous

Story

- A lot of these things can be simplified / supported by having a good story for your work
 - Every paper should tell a story
 - The story can (and usually does) change over the course of the project
 - Not only does the story shape the paper, but it can also shape the trajectory of the project

Story Composition

- The art to paper writing is largely independent of the technical / non-technical nature
 - All of the major factors of composition from literature apply to writing a technical report, but how it's executed may be a bit different
 - Note: composition, not grammar
 - Most importantly: the "flow" of the ideas can make or break a paper, especially when things get very technical
 - Big picture \rightarrow smaller pieces \rightarrow fitting the pieces together \rightarrow emerging big picture

Carnegie Mellon University

©2015 Patrick Tague

Composition Tips

- Start by formulating / understanding your big picture story
 - Similar in spirit to thinking about the pitch or commercial idea we discussed earlier
- Plan an outline that follows your story, then add depth iteratively
 - Start with section outline, then subsections, clusters of topic sentences, then finally full paragraph text
 - Outline \rightarrow "deep outline" \rightarrow "fat outline" \rightarrow paper
 - Going directly to full paragraphs often doesn't go where you want it to go, leads to poor flow

Carnegie Mellon University

Budgeting in the Outline

- Somewhere in the outline phase, after main ideas are set out but before full text is written:
 - Assess how much of your paper each section deserves
 - Some parts are more important, some just require more pages for content
 - This allows you to allocate text appropriately, figure out what content to cut, etc.

Signposts

- The outline is valuable for the reader as well
 - Instead of just using the outline to map your story to your paper, use it to help the reader navigate the story
 - "Signposts" help point to lead the reader in the right direction, instead of leaving them to reach the same conclusions that you did
 - Explaining how the sections of your paper relate to the story
 - Transitioning from one topic to the next
 - Highlighting key ideas, points, phrases
 - Relating results back to the original goal

Carnegie Mellon University

Conventions

- Different disciplines, communities, venues, etc.
 have different conventions following them is good
 - Once readers are comfortable with something, it's easier for them to follow and better for you
 - Most of these are subtle-but-important details:
 - Related work at the beginning or end
 - Passive or active voice
 - Styles of figures and tables
 - Mathematical styles

Carnegie Mellon University

First Impression

- Readers will form a first impression of your paper from the title, abstract, intro, and figures
 - These are key components that deserve special attention
 - And set the expectations for the rest of the paper...
 - The introduction is a summary of your story and is probably the most important part of the paper
 - If people don't understand the story or follow the introduction, they'll stop reading

When to Write the Intro

- Writing the introduction first:
 - Some writers start with the introduction, to map their story to the work that they are doing / have done
- Writing the introduction last:
 - Some writers finish with the introduction, to appropriately reflect what is in the rest of the paper
- Writing the introduction first and last:
 - Drafting the introduction first helps capture the story motivation, challenges, prior work, approach - then filling it in later captures and reflects the rest of the paper

- The final version often won't look like the original

Carnegie Mellon University

©2015 Patrick Tague

Formulaic Introductions

- Most communities have standard formulas for what an introduction should look like, e.g.:
 - Paragraph ~1 gives the motivation and context for your problem area
 - Paragraph ~2 narrows the paper to your particular problem considered in the paper
 - Paragraph ~3 highlights the key contributions, general approach, etc. into a sales pitch
 - Bullet points are often useful here
 - Paragraph ~4 frames above against related work
 - Paragraph ~5 provides a (non-redundant) outline

A Compelling Abstract

- The abstract is almost always written last
 - It captures the most important points from the story in a clear and clean way
 - Often includes a few "take-away" bullet points that come from the approach, results, or conclusions

A Descriptive Title

- A title itself can make or break a paper, depending on who is reading it
 - Avoid short, generic titles, e.g., "On Cloud Computing"
 - Use keywords and/or buzzwords with enough detail to show some uniqueness in your work
 - Use descriptive modifiers to hint at contributions and story-lines (e.g., noting an approach is "Efficient" means you care about performance, not just security)
 - Don't be afraid to have a two-line title or a subtitle

Write for Readability

- There's a really big difference between writing that is correct and writing that is easy to read
- There are tons of guidelines about what makes something easy or difficult to read
 - Use short, easy-to-read sentences instead of multiplycompound sentences
 - Don't use complicated words when simple words will do (this is especially important if your community is international), e.g., "utilize" → "use"
 - "Omit needless words" in a nutshell, don't use N+k words when N will do

Precision of Results

- A general rule of thumb in describing an experimental approach is that it should be detailed enough to be repeated
 - Detailed descriptions of context, assumptions, setup, tools, data, algorithms, etc. - this should be purely factual but stay relevant to the story
- Avoid being vague
 - Don't say something is "more efficient", say how much more efficient and back it up with data / figures

Figures

- Figures are important and can be very helpful, but they serve a different purpose than in a presentation
 - Figures often serve as a summary of a block of text or as illustration of a key concept
 - Tables, graphs, etc. also provide snapshots of data or results that you don't want to express textually
 - You may still want to summarize the data/results in text
- More on "good" figures in a later session

Other Important Stuff

- I didn't touch on any standard writing stuff, but it's implied
 - Use good grammar, proper usage, consistent tense, consistent terminology, etc.
 - Bad language skills can impact a good story with good results

Length Limits

- Most venues impose page limits on papers
 - Common in conferences, journals, course project reports, and just about everywhere
 - Most of them are reasonable, but require some thought

Writing for Length

- Write it all, then cut it down
 - Some writers prefer to write their entire paper (within reason), then cut down content to fit the page length
- Write within the bound
 - Some writers prefer to tightly constraint themselves within the allotted pages
- Somewhere in between (most of us are here)
 - Write a complete draft that follows a planned, budgeted outline (hopefully will get you close to the limit)
 - If under the limit, ok
 - If over the limit, reduce unnecessary content

Carnegie Mellon University

©2015 Patrick Tague

Common Formats

- If you read enough papers, you'll quickly identify the common formats and lengths
 - IEEE, ACM, and other societies / communities have standard styles or templates
 - E.g., IEEE 2-column, ACM 2-column, draft single-column doublespace, plain LaTeX article, etc.
 - Most conferences specify a style and a page limit
 - E.g., 9 pages in IEEE 2-column, 15 pages in ACM 2-column, 35 pages in draft single-column double-space, etc.
 - These are largely imposed for desired scope and level of detail (e.g., journals have more detail than conferences)
 - In most cases, these are <u>upper bounds</u>

A Few Pointers

- The best way to learn how to write good papers is to read good papers
 - Some particularly good writers in areas of CS include Jennifer Rexford and Nick Feamster
 - Read a few of their papers, and you'll quickly see why

Questions?

Carnegie Mellon University

©2015 Patrick Tague