Transport Layer

Computer Networking: A
Top Down Approach

4t edition.

Jim Kurose, Keith Ross
Addison-Wesley, July

All material copyright 1996-2007 2007.
J.F Kurose and K.W. Ross, All Rights Reserved

These slides adapted from those made
available by the text authors.

Transport Layer 1

Transport Layer (Chapter 3 in

KR)

Our goals:

O understand principles
behind transport layer
services:

o multiplexing/demultiple
xing

O reliable data transfer

o flow control

O congestion control

O learn about transport layer
protocols in the Internet:
o UDP: connectionless
transport
O TCP: connection-oriented
transport
o TCP congestion control

Transport Layer

2

Outline

O Transport-layer services 0 Connection-oriented

O Multiplexing and transport: TCP
demultiplexing O segment structure

7 Connectionless O reliable data transfer
transport: UDP o flow control

. . . O connection management
O Principles of reliable 3 Princiol ¢ i
data transfer rinciples of congestion

control
O TCP congestion control

Transport Layer 3

Transport services and protocols

O provide logical communication
between app processes
running on different nodes

O transport protocols run in end
systems

o send side: breaks app
messages into segments,
passes to network layer

O rev side: reassembles
segments into messages,
passes to app layer

0 more than one transport
protocol available to apps

O Internet: TCP and UDP

Transport Layer

4

Internet transport-layer protocols

O reliable, in-order delivery
(TCP)
o congestion control

network

e
o flow control c;, x —
O connection setup < o%o /
i ; nemor K |
O unreliable, unordered m? Fee YO
. A} [onysical]
delivery: UDP T e
[ohysical |
o no-frills extension of “best-
" [Cdata inc | Il
effort” IP) ‘ram
. . it [data ink | T
0 services not available: Y \\fﬁ’
o delay guarantees MQ fg @—/ -

o bandwidth guarantees

Transport Layer 5

Outline

O Transport-layer services

O Multiplexing and
demultiplexing

0 Connectionless
transport: UDP

O Principles of reliable
data transfer

O Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management
O Principles of congestion
control

0 TCP congestion control

Transport Layer

6

Multiplexing/demultiplexing

Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Demultiplexing at rcv host:

delivering received segments
to correct socket

[=socket O = process
application (P3) (PL) application @) (P4) application
1 —]
transport “ransport transport
network nepvork network
link ink link
physical physicat physical
host 1 host 2 host 3

Transport Layer

7

How demultiplexing works

O receive packet from network
layer
O source, destination
addresses
o 1 segment per packet
O source, destination port
numbers
O addresses & port numbers
direct segment to appropriate
socket

32 bits

source port # dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 8

Connectionless demultiplexing

O UDP socket identified by (destination address,
destination port number)

0 Upon receipt of UDP segment, message is delivered to
corresponding port

O Packets from different source address and/or port
number are treated the same

DP: 9157{[]

—‘—1 SP: 9157 —]
Node A Node C

Node B

Transport Layer

9

Connection-oriented demux

O TCP socket identified by 4-tuple (source IP address,
source port number, dest IP address, dest port number)

O All four values direct segment to appropriate socket
0 Each node may support many TCP sockets/sessions

e
SP: 5775
DP: 80
S:B
D:C
L
SP: 9157 SP: 9157
Node A | DP:80 DP:80 | Node B
S:A Node C S:B
D:C D:C

Transport Layer 10

Outline

0 Transport-layer services 0 Connection-oriented

0 Multiplexing and transport: TCP
demultiplexing O segment structure

3 Connectionless O reliable data transfer
transport; UDP o flow control

. . . O connection management
O Principles of reliable 3 Princiol ; i
data transfer rinciples of congestion

control
0 TCP congestion control

Transport Layer

11

UDP: User Datagram Protocol [RFC 768]

3 “no frills,” “bare bones” Internet

transport protocol Why is there a UDP?

O “best effort” service, UDP O no connection establishment
segments may be: (which can add delay)
O lost 0 simple: no connection state

O delivered out of order to app at sender, receiver

0 small segment header

O connectionless: T no congestion control: UDP
o no handshaking between can blast away as fast as
UDP sender, receiver desired

o each UDP segment handled
independently of others

Transport Layer 12

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

Sender:

0 treat segment contents as
sequence of 16-bit integers

0 checksum: addition (1's
complement sum) of
segment contents

O sender puts checksum
value into UDP checksum
field

Receiver:

O compute checksum of received
segment

O check if computed checksum
equals checksum field value:
o NO - error detected
o YES - no error detected

Transport Layer 14

UDP: more
O often used for streaming .
multimedia apps 32 bits
o loss tolerant Length, in [SOurce port # dest port #
o rate sensitive bytes of UDP[~length checksum
segment,
0 other UDP uses including
o DNS header
o SNMP
O reliable transfer over UDP: Application
add reliability at application data
layer (message)
o application-specific error
recovery!
UDP segment format
Transport Layer 13
Outline

O Transport-layer services

O Multiplexing and
demultiplexing

O Connectionless
transport: UDP

O Principles of reliable
data transfer

O Connection-oriented
transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management
O Principles of congestion
control

O TCP congestion control

Transport Layer 15

Principles of Reliable data transfer

0O Reliable message delivery between applications provided by transport

layer

O Characteristics of unreliable channel below determines complexity of

reliable data transfer protocol

O Sound familiar? Link layer provides reliable single-hop data transfer

over 1inreliahle nhvesical laver

Principles of Reliable data transfer

O Stop-and-wait, Go-Back-N, and Selective repeat protocols are used at

transport layer.

O We've already covered these protocols, so we're not going to do it

again.

O Review details of these protocols at link layer on your own.

(=
o

6 —

2 % recelver
a8

o)

o

= (Jreliable channel

c o

g2

Similar to reliable delivery
service to network layer
provided by link layer
protocol over unreliable
physical layer

Transport Layer 17

C
ko]
=
g2 Similar to reliable delivery
al service to network layer
8 provided by link layer

protocol over unreliable
= (Jreliable channel physical layer
cCo
g2

Transport Layer 16
Outline

0 Transport-layer services

O Multiplexing and
demultiplexing

0 Connectionless
transport: UDP

O Principles of reliable
data transfer

O Connection-oriented

transport: TCP
O segment structure
o reliable data transfer
o flow control
O connection management

O Principles of congestion

control

0 TCP congestion control

Transport Layer 18

TCP: Overview rrcs: 793, 1122, 1323, 2018, 2581

O point-to-point: O full duplex data:
O one sender, one receiver O bi-directional data flow in
0 reliable, in-order byte same connection
steam: o MSS: maximum segment
size
0 connection-oriented:

o handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

O flow controlled:

o sender will not overwhelm
receiver

O no “message boundaries’
O pipelined:
o TCP congestion and flow
control set window size

O send & receive buffers

socket
door

socket
door

O

Transport Layer 19

TCP seq. #'s and ACKs

Seq. #'s: @ Host A
O byte stream

“number” of first User Seq

9=42, A
B), types : ACK=7g
byte in segment’s e N
data host ACKs

receipt of

= Coicr
3, date. C, ech'oyes
qu,P\C back ‘C’
sed”

ACKs:
O seq # of next byte
expected from other

side host ACKs
o cumulative ACK receipt Se,

. of echoed 943, Ack<,
Q: how receiver handles o W‘
out-of-order segments
o A: TCP spec doesn’t

say, - up to

X simple telnet scenario
implementor

Transport Layer

time

20

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?
timeout value? 0 SampleRTT: measured time from
o longer than RTT segment transmission until ACK

O but RTT varies receipt
O too short: premature O ignore retransmissions
timeout 0 SampleRTT will vary, want

estimated RTT “smoother”
O average several recent
measurements, not just current
SampleRTT

O unnecessary
retransmissions

O too long: slow reaction to
segment loss

EstimatedRTT = (1- a)*EstimatedRTT + o*SampleRTT

O Exponential weighted moving average

0 influence of past sample decreases exponentially
fast

0 typical value: o = 0.125 Transport Layer 21

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

It 1

18 15 2 29 3% 4 50 5 64 71 78 8 92 99 106
time (seconnds)

—+— SampleRTT = Esimated RTT

Transport Layer

22

TCP Round Trip Time and Timeout

Setting the timeout

0 EstimtedRTT plus “safety margin”
O large variation in EstimatedRTT -> larger safety margin

0 first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
pB*|SampleRTT-EstimatedRTT|

(typically, p = 0.25)
Then set timeout interval:

Timeoutinterval = EstimatedRTT + 4*DevRTT

Transport Layer 23

Outline

0 Transport-layer services 0 Connection-oriented

O Multiplexing and transport: TCP
demultiplexing O segment structure

7 Connectionless O reliable data transfer
transport: UDP o flow control

. . . O connection management
O Principles of reliable 3 Princiol ; "
data transfer rinciples of congestion

control
0 TCP congestion control

Transport Layer

24

TCP reliable data transfer

O TCP creates reliable
service on top of
unreliable service
provided by network
layer

O Pipelined segments

O Cumulative acks

O TCP uses single
retransmission timer

O Retransmissions are
triggered by:
o timeout events
o duplicate acks
O Initially consider
simplified TCP sender:
o ignore duplicate acks

o ignore flow control,
congestion control

Transport Layer 25

TCP sender events:

data rcvd from app:

O Create segment with
seq#

O seq# is byte-stream
number of first data
byte in segment

O start timer if not already
running (think of timer
as for oldest unacked
segment)

O expiration interval:
TimeOutinterval

O retransmit segment that
caused timeout

O restart timer

Ack revd:

O If acknowledges
previously unacked
segments

o update what is known to
be acked

o start timer if there are
outstanding segments

Transport Layer

26

TCP: retransmission scenarios

B - @

+«— timeout ——
X
\&
0
i
S (2

[+— Seq=92 timeout —j+— Seq

SendBase
=100

e
lost ACK scenario

SendBase

SendBase

SendBase

&
&

92 timeout —

=100

=120

=120 premature timeout

Ef
o

Transport Layer 27

TCP retransmission scenarios (more)

@A B@

SendBase
=120

«~———— timeout ——

time
Cumulative ACK scenario

Transport Layer

28

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 29

Fast Retransmit

O Time-out period often
relatively long:
o long delay before
resending lost packet
0 Detect lost segments
via duplicate ACKs.
o Sender often sends

many segments back-to-
back

o If segment is lost, there
will likely be many
duplicate ACKs.

O If sender receives 3
ACKs for the same data,
it supposes that segment
after ACKed data was
lost:

o fast retransmit: resend
segment before timer
expires

Transport Layer

30

timeout

Ieseny
2" se,
Imen;

time
Resending a segment after triple duplicate ACK

Transport Layer 31

Outline

0 Transport-layer services 3 Connection-oriented

O Multiplexing and transport: TCP
demultiplexing O segment structure

0 Connectionless O reliable data transfer
transport: UDP o flow control

. . . O connection management
O Principles of reliable 3 Princiol f i
data transfer rinciples of congestion

control
0 TCP congestion control

Transport Layer 32

TCP Flow Control

flow control

. . sender won't overflow
O receive side of TCP receiver's buffer by

connection has a transmitting too much,
receive buffer: too fast

b— RevWindow —a

0 speed-matching

data from T application A)
i e [t peocess service: matching the
send rate to the
* RevBuffer o receiving app’s drain

rate
0 app process may be

slow at reading from

TCP Flow control: how it works

b— RovWindow —d

O Rcvr advertises spare

data from Tcp splicaion TOOM by including value
w SPAES TR dats * process = .
in buffer of RevWindow in
segments
* RevBuffer o

) 0 Sender limits unACKed
(Suppose TCP receiver data to RevWindow
discards out-of-order o guarantees receive buffer
segments) doesn't overflow
0 spare room in buffer
= RevWindow
= RcvBuffer-[LastByteRcvd -
LastByteRead]

Transport Layer 34

buffer
Transport Layer 33
Outline
0 Transport-layer services 0 Connection-oriented
0 Multiplexing and transport: TCP
demultiplexing O segment structure

o reliable data transfer

o flow control

O connection management
O Principles of congestion

control

0 TCP congestion control

0 Connectionless
transport: UDP

O Principles of reliable
data transfer

Transport Layer 35

TCP Connection Management

Recall: TCP sender, receiver ~ 1hree way handshake:
establish “connection” before .
exchanging data segments Step 1: client sends TCP SYN

O initialize TCP variables: segment to server
O specifies initial seq #

O seq. #s
o buffers, flow control info O no data
(e.g. RevWindow) Step 2: server receives SYN,

O client: connection initiator replies with SYNACK segment
o server allocates buffers
O specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

O server: contacted by client

Transport Layer 36

TCP Connection Management (cont.)

Closing a connection: 18 cient senver (@)

client closes socket close

Fin

Step 1: client sends TCP FIN
control segment to server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

cK

= close
/
k

timed wait

closed

Transport Layer 37

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client server @

replies with ACK. closing y
. . . N
o Enters “timed wait” - will

respond with ACK to
received FINs

/ closing
Step 4: server receives ACK. /
Connection closed.
N‘
Note: with small modification,
can handle simultaneous closed

FINs.

timed wait

closed

Transport Layer 38

Outline

O Transport-layer services 0 Connection-oriented

O Multiplexing and transport: TCP
demultiplexing O segment structure

O reliable data transfer

o flow control

O connection management
O Principles of congestion

control

O TCP congestion control

O Connectionless
transport: UDP

O Principles of reliable
data transfer

Transport Layer 39

Principles of Congestion Control

Congestion:
0 informally: “too many sources sending too much data
too fast for network to handle”

O different from flow control!

0 manifestations:
O lost packets (buffer overflow at routers)
o long delays (queueing in router buffers)

Transport Layer 40

Causes/costs of congestion: scenario 1

o orginal data

A
a two senders, two e] SN
receivers 1 ¢
I one router, infinite —— Bt I
buffers - —
0 no retransmission -
c2 — - ; 0 large delays
5 i 3 when congested
3 i o H i
< i 0 maximum
, . achievable
c/2 ci2 throughput
ln lln

Transport Layer 41

Causes/costs of congestion: scenario 2

O one router, finite buffers
0 sender retransmission of lost packet

A iy - Original data Teout
‘ i 2,: original data, plus N
i data |
B finite shared output
I link buffers
\ .
=t
i— nasa

Transport Layer 42

Causes/costs of congestion: scenario 3

o foulrie"dersh Q: what happens as.,
O multihop paths and X'

O timeout/retransmit

. n
increase?
A,,: original data

W', original data, plus
retransmitted data

finite shared output
~link buffers,

Transport Layer 43

Causes/costs of congestion: scenario 3

C/2

=]
[s]
<

l‘
in
Another “cost” of congestion:

0 when packet dropped, any “upstream transmission
capacity” used for that packet was wasted!

Transport Layer 44

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted

control: congestion control:
O no explicit feedback from O routers provide feedback to
network end systems
0 congestion inferred from o single bit indicating
end-system observed loss, congestion (SNA,
delay DECDbit, TCP/IP ECN,
O approach taken by TCP ATM)

o explicit rate sender
should send at

Transport Layer 45

Outline

O Transport-layer services 0 Connection-oriented

O Multiplexing and transport: TCP
demultiplexing O segment structure

3 Connectionless o reliable data transfer

transport: UDP o flow control

i . O connection management
O Principles of reliable 3 Principl ¢ i
data transfer rinciples of congestion

control
O TCP congestion control

Transport Layer 46

TCP congestion control: additive increase,
multiplicative decrease
0 Approach:_increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

O additive increase: increase CongWin by 1 MSS
every RTT until loss detected

o multiplicative decrease: cut CongWin in half after loss

2 Koytes

Saw tooth
behavior: probing
for bandwidth

16 Kbytes

8 Kbytes

congestion window size

time

Transport Layer 47

TCP Congestion Control: details

0 sender limits transmission:
LastByteSent-LastByteAcked

How does sender
perceive congestion?

< CongWin O loss event = timeout or
O Roughly, 3 duplicate acks
_ CongWin 0 TCP sender reduces
rate = RTT bytesisec rate (CongWin) after

0 CongWin is dynamic, function of loss event

perceived network congestion ~ three mechanisms:
o AIMD
o slow start
O conservative after
timeout events

Transport Layer 48

TCP Slow Start

O When connection begins, 3 When connection begins,
CongWin =1 MSS increase rate
o Example: MSS = 500 bytes exponentially fast until
& RTT = 200 msec first loss event
O initial rate = 20 kbps
O available bandwidth may
be >> MSS/RTT

o desirable to quickly ramp
up to respectable rate

Transport Layer 49

TCP Slow Start (more)

0 When connection 1@ CH]

begins, increase rate
exponentially until first
loss event:
o double CongWin every
RTT
o done by incrementing
CongWin for every ACK
received
0 Summary: initial rate is
slow but ramps up
exponentially fast

W

%

Ur segments

«—RTT—

time

Refinement: inferring loss

0 After 3 dup ACKs:
o CongWin is cut in half

o window then grows
linearly

O But after timeout event:
o CongWin instead set to
1 MSS;
o window then grows
exponentially

Philosophy:

0 3 dup ACKs indicates
network capable of
delivering some segments
Q timeout indicates a
“more alarming”
congestion scenario

O to a threshold, then
grows linearly

Transport Layer 51

Summary: TCP Congestion Control

O When CongWin is below Threshold, sender in slow-
start phase, window grows exponentially.

0 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

O When a triple duplicate ACK occurs, Threshold set
to CongWin/2 and CongWin set to Threshold.

O When timeout occurs, Threshold set to CongWin/2
and CongWin is setto 1 MSS.

Transport Layer 53

Transport Layer 50
Q: When should the
exponential
i i A\l
I!’]CI’EBSE switch to : TCP Saries 7 Bers
linear? g ™M =1
A: When CongWin £ 07 Pl .
P S g Meeshod T -
gets to 1/2 of its c 8
S® i o i
value before g
timeout S 4 d
. < £ TEP Seres 1 Taboe
S
(&) 2 o L
Implementation: 01— T T T T
N 1 2 34 B 7 B 9101112131415
O Variable Threshold Trarnueiwion round
O Atloss event, Threshold is
set to 1/2 of CongWin just
before loss event
Transport Layer 52
State Event TCP Sender Action Commentary
Slow Start ACK receipt | CongWin = CongWin + MSS, | Resulting in a doubling of
(SS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked 1MSS every RTT
data
SSorCA Loss event Threshold = CongWin/2, Fast recovery,
detected by | CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
SSorCA Timeout Threshold = CongWin/2, Enter slow start
CongWin =1 MSS,
Set state to “Slow Start”
SSorCA Duplicate Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed
Transport Layer 54

TCP throughput

0 What's the average throughout of TCP as a
function of window size and RTT?
o Ignore slow start
O Let W be the window size when loss occurs.
O When window is W, throughput is W/RTT

0 Just after loss, window drops to W/2,
throughput to W/2RTT.

0 Average throughout: .75 W/RTT

Transport Layer

55

TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

connection 2 capacity R

Transport Layer 56

Why is TCP fair?

Two competing sessions:
O Additive increase gives slope of 1, as throughout increases
O multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase

Connection 2 throughput

Connection 1 throughput R

Transport Layer

57

Fairness (more)

Fairness and parallel TCP
connections
O nothing prevents app from
o do not want rate throttled opening parallel
by congestion control connections between 2
O Instead use UDP: hosts.
o pump audio/video at 7 Web browsers do this
constant rate, tolerate [m] EXample: ||nk Of rate R

packet loss supporting 9 connections;
0 Research area: TCP O new app asks for 1 TCP, gets

friendly rate R/10

o new app asks for 11 TCPs,
gets R/2!

Fairness and UDP

O Multimedia apps often
do not use TCP

Transport Layer 58

