
Transport Layer 1

Transport Layer

Computer Networking: A
Top Down Approach
4th edition.
Jim Kurose, Keith Ross
Addison-Wesley, July
2007.

These slides adapted from those made
available by the text authors.

All material copyright 1996-2007
J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 2

Transport Layer (Chapter 3 in
KR)
Our goals:

understand principles
behind transport layer
services:

multiplexing/demultiple
xing
reliable data transfer
flow control
congestion control

learn about transport layer
protocols in the Internet:

UDP: connectionless
transport
TCP: connection-oriented
transport
TCP congestion control

Transport Layer 3

Outline

Transport-layer services
Multiplexing and
demultiplexing
Connectionless
transport: UDP
Principles of reliable
data transfer

Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

Principles of congestion
control
TCP congestion control

Transport Layer 4

Transport services and protocols
provide logical communication
between app processes
running on different nodes
transport protocols run in end
systems

send side: breaks app
messages into segments,
passes to network layer
rcv side: reassembles
segments into messages,
passes to app layer

more than one transport
protocol available to apps

Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport

Transport Layer 5

Internet transport-layer protocols

reliable, in-order delivery
(TCP)

congestion control
flow control
connection setup

unreliable, unordered
delivery: UDP

no-frills extension of “best-
effort” IP

services not available:
delay guarantees
bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

logical end-end transport

Transport Layer 6

Outline

Transport-layer services
Multiplexing and
demultiplexing
Connectionless
transport: UDP
Principles of reliable
data transfer

Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

Principles of congestion
control
TCP congestion control

Transport Layer 7

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

Transport Layer 8

How demultiplexing works
receive packet from network
layer

source, destination
addresses
1 segment per packet
source, destination port
numbers

addresses & port numbers
direct segment to appropriate
socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Transport Layer 9

Connectionless demultiplexing
UDP socket identified by (destination address,
destination port number)
Upon receipt of UDP segment, message is delivered to
corresponding port
Packets from different source address and/or port
number are treated the same

Node B

P2

Node A

P1P1P3

Node C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

Transport Layer 10

Connection-oriented demux
TCP socket identified by 4-tuple (source IP address,
source port number, dest IP address, dest port number)
All four values direct segment to appropriate socket
Each node may support many TCP sockets/sessions

Node B

P1

Node A

P1P2P4

Node C
SP: 9157
DP: 80

S: A

SP: 9157
DP: 80

S: B

P5 P6 P3

D: C D: C

SP: 5775
DP: 80

S: B
D: C

Transport Layer 11

Outline

Transport-layer services
Multiplexing and
demultiplexing
Connectionless
transport: UDP
Principles of reliable
data transfer

Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

Principles of congestion
control
TCP congestion control

Transport Layer 12

UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones” Internet
transport protocol
“best effort” service, UDP
segments may be:

lost
delivered out of order to app

connectionless:
no handshaking between
UDP sender, receiver
each UDP segment handled
independently of others

Why is there a UDP?
no connection establishment
(which can add delay)
simple: no connection state
at sender, receiver
small segment header
no congestion control: UDP
can blast away as fast as
desired

Transport Layer 13

UDP: more

often used for streaming
multimedia apps

loss tolerant
rate sensitive

other UDP uses
DNS
SNMP

reliable transfer over UDP:
add reliability at application
layer

application-specific error
recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Transport Layer 14

UDP checksum

Sender:
treat segment contents as
sequence of 16-bit integers
checksum: addition (1’s
complement sum) of
segment contents
sender puts checksum
value into UDP checksum
field

Receiver:
compute checksum of received
segment
check if computed checksum
equals checksum field value:

NO - error detected
YES - no error detected

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Transport Layer 15

Outline

Transport-layer services
Multiplexing and
demultiplexing
Connectionless
transport: UDP
Principles of reliable
data transfer

Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

Principles of congestion
control
TCP congestion control

Transport Layer 16

Principles of Reliable data transfer
Reliable message delivery between applications provided by transport
layer

Characteristics of unreliable channel below determines complexity of
reliable data transfer protocol

Sound familiar? Link layer provides reliable single-hop data transfer
over unreliable physical layer

Similar to reliable delivery
service to network layer
provided by link layer

protocol over unreliable
physical layer

Transport Layer 17

Principles of Reliable data transfer
Stop-and-wait, Go-Back-N, and Selective repeat protocols are used at
transport layer.

We’ve already covered these protocols, so we’re not going to do it
again.

Review details of these protocols at link layer on your own.

Similar to reliable delivery
service to network layer
provided by link layer

protocol over unreliable
physical layer

Transport Layer 18

Outline

Transport-layer services
Multiplexing and
demultiplexing
Connectionless
transport: UDP
Principles of reliable
data transfer

Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

Principles of congestion
control
TCP congestion control

Transport Layer 19

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

full duplex data:
bi-directional data flow in
same connection
MSS: maximum segment
size

connection-oriented:
handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

flow controlled:
sender will not overwhelm
receiver

point-to-point:
one sender, one receiver

reliable, in-order byte
steam:

no “message boundaries”

pipelined:
TCP congestion and flow
control set window size

send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

Transport Layer 20

TCP seq. #’s and ACKs
Seq. #’s:

byte stream
“number” of first
byte in segment’s
data

ACKs:
seq # of next byte
expected from other
side
cumulative ACK

Q: how receiver handles
out-of-order segments

A: TCP spec doesn’t
say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of

‘C’, echoes
back ‘C’

time
simple telnet scenario

Transport Layer 21

TCP Round Trip Time and Timeout
Q: how to set TCP

timeout value?
longer than RTT

but RTT varies
too short: premature
timeout

unnecessary
retransmissions

too long: slow reaction to
segment loss

Q: how to estimate RTT?
SampleRTT: measured time from
segment transmission until ACK
receipt

ignore retransmissions
SampleRTT will vary, want
estimated RTT “smoother”

average several recent
measurements, not just current
SampleRTT

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially
fast
typical value: α = 0.125 Transport Layer 22

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

Transport Layer 23

TCP Round Trip Time and Timeout

Setting the timeout
EstimtedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin
first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

Transport Layer 24

Outline

Transport-layer services
Multiplexing and
demultiplexing
Connectionless
transport: UDP
Principles of reliable
data transfer

Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

Principles of congestion
control
TCP congestion control

Transport Layer 25

TCP reliable data transfer

TCP creates reliable
service on top of
unreliable service
provided by network
layer
Pipelined segments
Cumulative acks
TCP uses single
retransmission timer

Retransmissions are
triggered by:

timeout events
duplicate acks

Initially consider
simplified TCP sender:

ignore duplicate acks
ignore flow control,
congestion control

Transport Layer 26

TCP sender events:
data rcvd from app:

Create segment with
seq#
seq# is byte-stream
number of first data
byte in segment
start timer if not already
running (think of timer
as for oldest unacked
segment)
expiration interval:
TimeOutInterval

timeout:
retransmit segment that
caused timeout
restart timer

Ack rcvd:
If acknowledges
previously unacked
segments

update what is known to
be acked
start timer if there are
outstanding segments

Transport Layer 27

TCP: retransmission scenarios
A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
eq

=9
2

tim
eo

ut

ACK=120

A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

lost ACK scenario

B

X

Seq=92, 8 bytes data

ACK=100

time

S
eq

=9
2

tim
eo

ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

SendBase
= 100

Transport Layer 28

TCP retransmission scenarios (more)
A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

Cumulative ACK scenario

B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

Transport Layer 29

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 30

Fast Retransmit

Time-out period often
relatively long:

long delay before
resending lost packet

Detect lost segments
via duplicate ACKs.

Sender often sends
many segments back-to-
back
If segment is lost, there
will likely be many
duplicate ACKs.

If sender receives 3
ACKs for the same data,
it supposes that segment
after ACKed data was
lost:

fast retransmit: resend
segment before timer
expires

Transport Layer 31

A

tim
eo

ut

B

time

X

resend 2nd segment

Resending a segment after triple duplicate ACK

Transport Layer 32

Outline

Transport-layer services
Multiplexing and
demultiplexing
Connectionless
transport: UDP
Principles of reliable
data transfer

Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

Principles of congestion
control
TCP congestion control

Transport Layer 33

TCP Flow Control

receive side of TCP
connection has a
receive buffer:

speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

Transport Layer 34

TCP Flow control: how it works

(Suppose TCP receiver
discards out-of-order
segments)
spare room in buffer

= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

Rcvr advertises spare
room by including value
of RcvWindow in
segments
Sender limits unACKed
data to RcvWindow

guarantees receive buffer
doesn’t overflow

Transport Layer 35

Outline

Transport-layer services
Multiplexing and
demultiplexing
Connectionless
transport: UDP
Principles of reliable
data transfer

Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

Principles of congestion
control
TCP congestion control

Transport Layer 36

TCP Connection Management
Recall: TCP sender, receiver

establish “connection” before
exchanging data segments
initialize TCP variables:

seq. #s
buffers, flow control info
(e.g. RcvWindow)

client: connection initiator

server: contacted by client

Three way handshake:

Step 1: client sends TCP SYN
segment to server

specifies initial seq #
no data

Step 2: server receives SYN,
replies with SYNACK segment

server allocates buffers
specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Transport Layer 37

TCP Connection Management (cont.)

Closing a connection:
client closes socket

Step 1: client sends TCP FIN
control segment to server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

tim
ed

 w
ai

t

Transport Layer 38

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

Enters “timed wait” - will
respond with ACK to
received FINs

Step 4: server receives ACK.
Connection closed.

Note: with small modification,
can handle simultaneous
FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim
ed

 w
ai

t

closed

Transport Layer 39

Outline

Transport-layer services
Multiplexing and
demultiplexing
Connectionless
transport: UDP
Principles of reliable
data transfer

Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

Principles of congestion
control
TCP congestion control

Transport Layer 40

Principles of Congestion Control

Congestion:
informally: “too many sources sending too much data
too fast for network to handle”
different from flow control!
manifestations:

lost packets (buffer overflow at routers)
long delays (queueing in router buffers)

Transport Layer 41

Causes/costs of congestion: scenario 1

two senders, two
receivers
one router, infinite
buffers
no retransmission

large delays
when congested
maximum
achievable
throughput

unlimited shared
output link buffers

A
λin : original data

B

λout

Transport Layer 42

Causes/costs of congestion: scenario 2

one router, finite buffers
sender retransmission of lost packet

finite shared output
link buffers

A λin : original data

B

λout

λ'in : original data, plus
retransmitted data

Transport Layer 43

Causes/costs of congestion: scenario 3
four senders
multihop paths
timeout/retransmit

λ
in

Q: what happens as
and
increase?

λ
in

finite shared output
link buffers

A
λin : original data

B λout

λ'in : original data, plus
retransmitted data

Transport Layer 44

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
when packet dropped, any “upstream transmission
capacity” used for that packet was wasted!

A

B

Transport Layer 45

Approaches towards congestion control

End-end congestion
control:
no explicit feedback from
network
congestion inferred from
end-system observed loss,
delay
approach taken by TCP

Network-assisted
congestion control:
routers provide feedback to
end systems

single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)
explicit rate sender
should send at

Two broad approaches towards congestion control:

Transport Layer 46

Outline

Transport-layer services
Multiplexing and
demultiplexing
Connectionless
transport: UDP
Principles of reliable
data transfer

Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control
connection management

Principles of congestion
control
TCP congestion control

Transport Layer 47

TCP congestion control: additive increase,
multiplicative decrease

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

Approach: increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

additive increase: increase CongWin by 1 MSS
every RTT until loss detected
multiplicative decrease: cut CongWin in half after loss

timeco
ng

es
tio

n
w

in
do

w
 s

iz
e

Saw tooth
behavior: probing

for bandwidth

Transport Layer 48

TCP Congestion Control: details

sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin
Roughly,

CongWin is dynamic, function of
perceived network congestion

How does sender
perceive congestion?
loss event = timeout or
3 duplicate acks
TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:
AIMD
slow start
conservative after
timeout events

rate = CongWin
RTT Bytes/sec

Transport Layer 49

TCP Slow Start

When connection begins,
CongWin = 1 MSS

Example: MSS = 500 bytes
& RTT = 200 msec
initial rate = 20 kbps

available bandwidth may
be >> MSS/RTT

desirable to quickly ramp
up to respectable rate

When connection begins,
increase rate
exponentially fast until
first loss event

Transport Layer 50

TCP Slow Start (more)

When connection
begins, increase rate
exponentially until first
loss event:

double CongWin every
RTT
done by incrementing
CongWin for every ACK
received

Summary: initial rate is
slow but ramps up
exponentially fast

A

one segment

R
TT

B

time

two segments

four segments

Transport Layer 51

Refinement: inferring loss

After 3 dup ACKs:
CongWin is cut in half
window then grows
linearly

But after timeout event:
CongWin instead set to
1 MSS;
window then grows
exponentially
to a threshold, then
grows linearly

3 dup ACKs indicates
network capable of
delivering some segments

timeout indicates a
“more alarming”
congestion scenario

Philosophy:

Transport Layer 52

Refinement
Q: When should the

exponential
increase switch to
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout.

Implementation:
Variable Threshold
At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

C
on

ge
st

io
n

W
in

do
w

S

iz
e

Transport Layer 53

Summary: TCP Congestion Control

When CongWin is below Threshold, sender in slow-
start phase, window grows exponentially.

When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Threshold set
to CongWin/2 and CongWin set to Threshold.

When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

Transport Layer 54

TCP sender congestion control
State Event TCP Sender Action Commentary

Slow Start
(SS)

ACK receipt
for previously
unacked
data

CongWin = CongWin + MSS,
If (CongWin > Threshold)

set state to “Congestion
Avoidance”

Resulting in a doubling of
CongWin every RTT

Congestion
Avoidance
(CA)

ACK receipt
for previously
unacked
data

CongWin = CongWin+MSS *
(MSS/CongWin)

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

SS or CA Loss event
detected by
triple
duplicate
ACK

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Fast recovery,
implementing multiplicative
decrease. CongWin will not
drop below 1 MSS.

SS or CA Timeout Threshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

SS or CA Duplicate
ACK

Increment duplicate ACK count
for segment being acked

CongWin and Threshold not
changed

Transport Layer 55

TCP throughput

What’s the average throughout of TCP as a
function of window size and RTT?

Ignore slow start
Let W be the window size when loss occurs.
When window is W, throughput is W/RTT
Just after loss, window drops to W/2,
throughput to W/2RTT.
Average throughout: .75 W/RTT

Transport Layer 56

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

Transport Layer 57

Why is TCP fair?
Two competing sessions:

Additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
g h

pu
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 58

Fairness (more)
Fairness and UDP

Multimedia apps often
do not use TCP

do not want rate throttled
by congestion control

Instead use UDP:
pump audio/video at
constant rate, tolerate
packet loss

Research area: TCP
friendly

Fairness and parallel TCP
connections
nothing prevents app from
opening parallel
connections between 2
hosts.
Web browsers do this
Example: link of rate R
supporting 9 connections;

new app asks for 1 TCP, gets
rate R/10
new app asks for 11 TCPs,
gets R/2 !

