Materials covered

- M/M/1 Example
- Queuing Models
- M/M/ ∞ (infinite servers)
- $\mathbf{M} / \mathbf{M} / \mathbf{m} / \mathbf{m}$ (finite servers and finite buffer size)
- M/M/m (m servers; infinite buffer size)
- Examples

Arrival-Service Process of M/M/k Queue

- Consider a negligibly small interval $(0, \delta]$
- Joint service time τ of k servers is exponential with parameter $\mathrm{k} \mu$
- $\mathbf{P}[\tau \leq \delta]=1-\mathrm{e}^{-\mathrm{k} \mu \delta}=\left(1-\left(1-\mathrm{k} \mu \delta+(\mathrm{k} \mu \delta)^{2} / 2!+..\right)\right)=\mathrm{k} \mu \delta+\mathbf{O}(\delta)$
- $\mathbf{P}[0$ arrival, 0 departure $]=\mathbf{P}[\mathbf{A}(\delta)=0, \tau \geq \delta]$
$=\mathbf{P}[\mathbf{A}(\delta)=0] \mathbf{P}[\tau \geq \delta]=(1-\lambda \delta) *(1-k \mu \delta)=1-\lambda \delta-k \mu \delta+O(\delta)$
- $\mathbf{P}[0$ arrival, 1 departure $]=\mathbf{P}[\mathbf{A}(\delta)=1, \tau \leq \delta]=(1-\lambda \delta) \mathbf{k} \mu \delta$ $=\mathbf{k} \mu \delta+\mathbf{O}(\delta)$
- $\mathbf{P}[1$ arrival, 0 departure $]=\mathbf{P}[\mathbf{A}(\delta)=1, \tau \geq \delta]=\lambda \delta^{*}(1-\mathrm{k} \mu \delta)$ $=\lambda \delta+\mathbf{O}(\delta)$
- Also note that
- $\mathbf{P}[1$ arrival, 1 departure $]=\mathbf{P}[\mathbf{A}(\delta)=1, \tau \leq \delta]=\lambda \delta^{*} \mu \delta=\mathbf{O}(\delta)$
- $P[\geq 1$ arrival, ≥ 1 departure $]=O(\delta) P[\geq 1$ departure $]=O(\delta)$

Queuing Models

- Useful in performance evaluation of networks
- Queuing Process Notation: A/B/C/D
- A: Arrival Process distribution: M for
- B: Service Process Distribution: Common Exponential
- C: Number of servers
- D: Customer size allowed in the system
- System Parameter Notations:
- N: Average number of customers in the system
- T: Average customer time in the system
$-\mathbf{N}_{\mathrm{Q}}$: Average number of customers waiting in queue
- W: Average customer waiting time in queue

Model Assumptions for M/M/m Q

- Arrival process $\{\mathbf{A}(\mathbf{t}) \mid \mathbf{t > 0}\}$: Poisson with rate λ
- Service process:
- Server i has service rate μ_{i} (for identical servers $\mu_{i}=\mu$)
- System service rate depends on how many servers are busy
- Assume k servers are busy
- The next departure time is given by
$\mathbf{X}=\min \left(\tau_{1}, \tau_{2}, \ldots . ., \tau_{k}\right)$
$\mathbf{P}[\mathbf{X}>t]=\mathbf{P}\left[\min \left(\tau_{1}, \tau_{2}, . ., \tau_{k}\right)>t\right]$
$=\Pi \mathbf{P}\left[\tau_{\mathrm{i}}>\mathbf{t}\right]=\Pi \mathbf{e}^{-\mu_{\mathrm{i}} \mathbf{t}}$ (for identical servers $=\mathbf{e}^{-\mathrm{k} \mu \mathrm{t}}$)
- If \mathbf{k} identical servers are busy, the service rate is $\mathbf{k} \mu$

Probability Transitions of State \underline{k} in time interval span of $\underline{\delta}$

Derivation of Steady State Q Probabilities

- Let $\mathbf{n}=$ number of customers in the system
- Let $\mathbf{p}_{\mathbf{n}}=$ steady state probability of n customers in system
- Writing Global Balance equation for $\mathbf{n}=\mathbf{0}$ leads to

$$
\mathbf{p}_{0} \lambda=\mathbf{p}_{1} \mu \rightarrow \mathbf{p}_{1}=\rho \mathbf{p}_{0}(\text { here } \rho=\lambda / \mu)
$$

- Writing Global Balance equation for $\mathbf{n}=\mathbf{1}$ leads to

$$
p_{0} \lambda+p_{2} \mu=p_{1}(\lambda+\mu) \rightarrow p_{2} \mu=p_{1} \lambda \rightarrow p_{2}=\rho p_{1}
$$

- Writing Global Balance equation for $\mathbf{n}=\mathbf{i}$ leads to

$$
\mathbf{p}_{i-1} \lambda+\mathbf{p}_{i+1} \mu=p_{i}(\lambda+\mu) \rightarrow p_{i} \mu=p_{i+1} \lambda \rightarrow p_{i+1}=\rho p_{i}
$$

- Note $\left(\mathbf{p}_{0}+\mathbf{p}_{1+} \mathbf{p}_{2+\ldots+\infty}\right.$ terms $)=1$

$$
\Rightarrow p_{0}\left(1+\rho+\rho^{2}+\rho^{3}+. .\right)=1 \quad \Rightarrow \rho<1 \Rightarrow \lambda<\mu
$$

- If $\lambda<\mu$ then $p_{0} /(1-\rho)=1$
$\rightarrow p_{0}=(1-\rho) \quad \rightarrow p_{i}=(1-\rho) \rho^{i}$

State Diagram of the M/M/1 Queuing system

Derivation Q Parameters

- Average number of customers in the system $\mathrm{N}=\Sigma \mathrm{np}_{\mathrm{n}}=\Sigma \mathrm{i} \rho^{\mathrm{i}}(1-\rho)=(1-\rho) \rho \mathrm{d} / \mathrm{d} \rho\{1 /(1-$ $\rho)\}=\rho /(1-\rho)=\lambda /(\mu-\lambda)$
- Using Little's theorem $\mathbf{N}=\lambda T$ leads to $T=1 /(\mu-\lambda)$
- $T=(\mathbf{W}+1 / \mu)$ leads to $\mathbf{W}=\lambda / \mu(\mu-\lambda)=\rho /(\mu-\lambda)$
- Number of customers in Queue $\mathbf{N}_{\mathbf{Q}}=\lambda \mathbf{W}=\rho^{\mathbf{2}} /(\mu-\lambda)$
- Comments
- Note that $\mathbf{p}_{\mathbf{0}}=(\mathbf{1 - \rho})$ is the proportion of the time system is idle
- Think of ρ as the fraction of the time system is utilized: utilization factor

Example of M/M/1

- Comparison of server powers
- \mathbf{Q}_{1} has parameters (λ, μ)
$-Q_{2}$ has parameters $(K \lambda, K \mu)$ with $K>1$
- From the table below:
- Average number of customers waiting in queue is same but the Q2 is faster by a factor of K

\mathbf{Q}	ρ	\mathbf{N}	Delay T
\mathbf{Q}_{1}	λ / μ	$\rho /(1-\rho)$	$1 /(\mu-\lambda)$
\mathbf{Q}_{2}	λ / μ	$\rho /(1-\rho)$	$1 / \mathrm{K}(\mu-\lambda)$

Modeling M/M/m Queuing system

M/M/m Q model

- Note $\left(p_{0}+\mathbf{p}_{1+} \mathbf{p}_{2+\ldots+\infty}\right.$ terms $)=1$
$\rightarrow \mathrm{p}_{0}\left\{1+\Sigma(\mathrm{m} \rho)^{\mathrm{i}} / \mathrm{i}!+\Sigma(\mathrm{m} \rho)^{\mathrm{i}} \mathrm{i} \mathrm{i}!\right\}=1$
$\Rightarrow p_{0}=\left\{\Sigma(\mathrm{m} \rho)^{\mathrm{i}} / \mathbf{i}!+(\mathrm{m} \rho)^{\mathrm{m} /(m!}(1-\rho)\right\}$
- The probability that arriving customer will be queued is \{Erlang's \mathbf{C} formula\}
$\mathbf{P}\{\mathbf{N}(\mathbf{t}) \geq \mathbf{m}\}=\Sigma \mathbf{p}_{\mathrm{i}}=\Sigma \mathbf{p}_{0} \mathrm{~m}^{\mathrm{m}} \rho^{\mathrm{i}} / \mathbf{i}$!
$\left.\mathbf{P}_{\mathbf{Q}}=\mathbf{p}_{0}(\mathbf{m} \rho)^{\mathrm{m} / \mathrm{m}}!\Sigma \boldsymbol{\rho}^{\mathbf{i}-\mathrm{m}}=\mathbf{p}_{0}(\mathrm{~m} \rho)^{\mathrm{m} /\{\mathrm{m}!(1-\rho)}\right\}$
- Average number of customers in the queue alone is
$\mathbf{N}_{\mathrm{Q}}=\Sigma \mathrm{i}_{\mathrm{m}+\mathrm{i}}=\mathbf{p}_{0}(\mathrm{~m} \rho)^{\mathrm{m}} / \mathrm{m}!\Sigma \mathrm{i} \rho^{\mathrm{i}}=\mathbf{P}_{\mathrm{Q}} \rho /(\mathbf{1}-\rho)$
- Note $N_{Q} / P_{Q}=\rho /(1-\rho)$ As long as the arriving customer has to be in the queue, the $M / M / m$ queue behaves as $M / M / 1$ queue

State Diagram of the $\mathbf{M} / \mathbf{M} / \infty$ Queuing system

Derivation of Steady State Q Probabilities

- We can view this as a truncated $\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m} \mathrm{Q}$ with variable service rate concatenated with a $\mathrm{M} / \mathrm{M} / 1 \mathrm{Q}$ with service rate $\mathbf{m} \mu$.
- With previous notations, Global Balance equation for $\mathbf{n}=\mathbf{0}: \mathbf{p}_{0} \lambda=\mathbf{p}_{1} \mu \rightarrow \mathbf{p}_{1}=\mathbf{m} \rho \mathbf{p}_{\mathbf{0}}($ here $\rho=\lambda / \mathbf{m} \mu)$
- For $\mathbf{n}=\mathbf{1}: \mathbf{p}_{0} \lambda+\mathbf{p}_{2} 2 \mu=\mathbf{p}_{1}(\lambda+\mu) \boldsymbol{p} \mathbf{p}_{2}(2 \mu)=\mathbf{p}_{1} \lambda$
$\rightarrow \mathrm{p}_{2}=(\mathrm{m} \rho)^{2} \mathrm{p}_{0} / 2!$
- Writing Global Balance equation for $\mathbf{n}=\mathbf{i}$ leads to

$$
\begin{aligned}
& p_{i}=p_{0}(\mathrm{~m} \rho)^{\mathrm{i}} / \mathrm{i}!\quad(\mathrm{i} \leq \mathrm{m}) \\
& \mathbf{p}_{\mathrm{i}}=\mathbf{p}_{0} \mathbf{m}^{\mathbf{i}} \mathrm{\rho}^{\mathbf{i} / \mathbf{m}} \mathbf{l} \quad(\mathbf{i} \geq \mathbf{m})
\end{aligned}
$$

M/M/m Q model

- Wait queue size is
$-\mathbf{W}=\mathbf{N}_{\mathbf{Q}} / \lambda=\mathbf{P}_{\mathbf{Q}} \rho / \lambda(\mathbf{1}-\rho)$
- Average customer delay
$-T=1 / \mu+W=1 / \mu+P_{Q} \rho / \lambda(1-\rho)$
- Average number of customers in the system
$-N=\lambda T=m \rho+P_{Q} \rho /(1-\rho)$

M/M/ $\infty \quad$ Q model

- Consider the result of $M / M / m$ system
- Global balance equation for $N(t)=i$ is
$\cdot p_{i-1} \lambda=(i) \mu p_{i} \quad i=0,1, \ldots$
$\cdot p_{i-1}=p_{0}(\lambda / \mu)^{i} / \mathbf{i}!\mathbf{i}=0,1, \ldots$
- Note this is Poisson Process!
$\rightarrow \mathrm{p}_{0}\left(1+\rho+\rho^{2}+\rho^{3}+..\right)=1 \rightarrow \mathrm{p}_{0}=\mathrm{e}^{-\lambda / \mu}=\mathrm{e}^{-\rho}$
$\Rightarrow p_{i}=\rho^{i} e^{-\rho}$
- Average Customers in the system $\mathbf{N}=\rho\{$ Average of the Poisson Process $\}$
- System delay $\mathbf{T}=\mathbf{N} / \lambda=1 / \mu$
Truncated Queue: $\mathbf{M} / \mathbf{M} / \mathbf{m} / \mathbf{m}$

$\mathbf{M} / \mathbf{M} / \mathbf{m} / \mathbf{m} \quad$ Q model

- Global balance equation for $N(t)=i$ is
$-\mathbf{p}_{\mathbf{i}-1} \lambda=(\mathbf{i}) \mu \mathbf{p}_{\mathbf{i}} \mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots \mathrm{m}$
$-\mathbf{p}_{\mathbf{i}}=\mathbf{p}_{0}(\lambda / \mu)^{\mathbf{i} / \mathbf{i}!\mathbf{i}=\mathbf{0}, \mathbf{1}, \ldots \mathrm{m}}$
- Note this is Poisson Process!
$\rightarrow p_{0}\left(1+\rho+\rho^{2} / 2!+\rho^{3} / 3!+\ldots+\rho^{m} / m!\right)=1$
$\rightarrow \mathrm{p}_{0}=\left[\Sigma \rho^{\mathrm{i}} / \mathrm{i}!\right]^{-1}$
$\Rightarrow p_{h}=(\lambda / \mu)^{h} / h!\left[\Sigma \rho^{i} / i!\right]^{-1} \quad h=0,1, \ldots m$
$\rightarrow \mathbf{p}_{\mathrm{m}}=(\lambda / \mu)^{\mathrm{m}} / \mathbf{m}!\left[\Sigma \rho^{\mathrm{i}} / \mathrm{i}!\right]^{-1}$ \{Erlang's Blocking Formula\}

