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Materials covered
• M/M/1 Example
• Queuing Models
• M/M/∞ (infinite servers)
• M/M/m/m (finite servers and finite buffer size)
• M/M/m  (m servers; infinite buffer size)
• Examples

Queuing Models
• Useful in performance evaluation of networks
• Queuing Process Notation: A/B/C/D

– A: Arrival Process distribution: M for  
– B: Service Process Distribution: Common Exponential
– C: Number of servers
– D: Customer size allowed in the system

• System Parameter Notations:
– N: Average number of customers in the system
– T: Average customer time in the system
– NQ: Average number of customers waiting in queue
– W: Average customer waiting time in queue 

Model To be studied
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Model Assumptions for M/M/m Q 
• Arrival process {A(t)|t>0}: Poisson with rate λ
• Service process: 

– Server i has service rate µi (for identical servers µi = µ)
– System service rate depends on how many servers are busy

– Assume k servers are busy
– The next departure time is given by

X = min (τ1, τ2, ….., τk)
P[X>t] = P[min (τ1, τ2,.., τk) >t]
=Π P[τi >t] = Π e-µit (for identical servers = e-kµt)

– If k identical servers are busy, the service rate is kµ

Arrival-Service Process of M/M/k Queue
• Consider a negligibly small interval (0, δ]
• Joint service time τ of k servers is exponential with parameter 

kµ
• P[τ ≤ δ] = 1 - e - kµδ= (1 – (1 - kµδ + (kµδ)2/2!+ ..)) = kµδ + O(δ)
• P[0 arrival, 0 departure]=P[A(δ)=0, τ ≥ δ]                    

=P[A(δ)=0]P[ τ ≥ δ] = (1-λδ) *(1-kµδ) = 1 -λδ-kµδ+O(δ) 
• P[0 arrival, 1 departure]= P[A(δ)=1, τ ≤ δ]= (1-λδ) kµδ

= kµδ + O(δ) 
• P[1 arrival, 0 departure]= P[A(δ)=1, τ ≥ δ]= λδ*(1-kµδ)                

= λδ + O(δ) 
• Also note that 

– P[1 arrival, 1 departure]= P[A(δ)=1, τ ≤ δ]= λδ* µδ =O(δ)
– P[≥ 1 arrival, ≥ 1 departure]= O(δ) P[≥1 departure]= O(δ)

Probability Transitions of State k in 
time interval span of  δ
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State Diagram of the M/M/m Queuing 
system

Service rate is  mµ
When system has m or 
more customers

Modeling of  M/M/1Queue
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State Diagram of the M/M/1 Queuing system

Derivation  of  Steady State Q Probabilities
• Let n = number of customers in the system
• Let pn = steady state probability of n customers in system
• Writing Global Balance equation for n=0 leads to

p0 λ = p1 µ p1= ρ p0 (here ρ = λ / µ)
• Writing Global Balance equation for n=1 leads to        

p0 λ + p2 µ = p1 (λ+ µ) p2 µ = p1 λ p2 = ρ p1

• Writing Global Balance equation for n=i leads to         
pi-1 λ + pi+1 µ = pi (λ+ µ) pi µ = pi+1 λ pi+1 = ρ pi

• Note (p0 + p1+ p2+…+ ∞ terms) = 1 

p0(1 +ρ +ρ2 +ρ3 +..) =1 ρ <1 λ < µ
• If λ < µ then p0/(1- ρ) =1 

p0 =(1- ρ) pi =(1- ρ) ρi

Derivation  Q Parameters
• Average number of customers in the system 

N =Σnpn =Σ i ρi (1- ρ) = (1- ρ) ρ d/dρ{1/(1-
ρ)}    = ρ/(1- ρ) = λ/(µ - λ)

• Using Little’s theorem N = λT leads to  T = 1/(µ - λ)

• T=(W + 1/ µ) leads to W= λ/ µ(µ - λ)= ρ/(µ - λ)

• Number of customers in Queue NQ = λ W = ρ2/(µ - λ) 
• Comments

– Note that p0 = (1-ρ) is the proportion of the time 
system is idle

– Think of ρ as the fraction of the time system 
is utilized: utilization factor

Behavior of delay

λ

T= 1/(µ - λ)

Example of M/M/1
• Comparison  of server powers

– Q1 has parameters (λ,µ)
– Q2 has parameters (Kλ,Kµ) with K >1
– From the table below:

• Average number of customers waiting in queue 
is same but the Q2 is faster by a factor of K 

1/K(µ - λ)ρ/(1- ρ)λ/µQ2

1/(µ - λ)ρ/(1- ρ)λ/µQ1

Delay TNρQ
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Modeling M/M/m Queuing system

Service rate is  mµ
When system has m or 
more customers

Derivation  of  Steady State Q Probabilities
• We can view this as a truncated M/M/m/m Q with 

variable service rate concatenated with a M/M/1 Q with 
service rate mµ. 

• With previous notations, Global Balance equation for 
n=0: p0 λ = p1 µ p1= mρ p0 (here ρ = λ / mµ)

• For n=1: p0 λ + p2 2µ = p1 (λ+ µ) p2(2µ) = p1 λ
p2 = (mρ)2 p0/2!

• Writing Global Balance equation for n=i leads to         
pi = p0 (mρ)i/i! (i ≤m)
pi = p0miρi/m! (i ≥m)

M/M/m Q model
• Note (p0 + p1+ p2+…+ ∞ terms) = 1

p0{1+  Σ (mρ)i/i! + Σ (mρ)i/i!} =1
p0= {Σ (mρ)i/i! + (mρ)m/(m!(1- ρ)}

• The probability that arriving customer will be 
queued is {Erlang’s C formula}

P{N(t) ≥ m}=Σ pi = Σ p0mmρi/i! 
PQ= p0(m ρ)m/m! Σρi-m=p0(m ρ)m/{m!(1- ρ)}

• Average number of customers in the queue alone is
NQ = Σipm+i= p0(mρ)m/m! Σiρi = PQ ρ/(1- ρ)

• Note NQ/ PQ =ρ/(1- ρ) As long as the arriving 
customer has to be in the queue, the M/M/m queue 
behaves as M/M/1 queue

M/M/m Q model
• Wait queue size is 

– W = NQ/λ = PQ ρ/ λ(1- ρ)
• Average customer delay 

– T =1/µ + W = 1/µ + PQ ρ/ λ(1- ρ)
• Average number of customers in the system 

– N = λT = mρ + PQ ρ/(1- ρ)
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State Diagram of the M/M/∞ Queuing system

M/M/∞ Q model
• Consider the result of M/M/m system

– Global balance equation for N(t)=i is

• pi-1λ = (i)µ pi i=0,1,…
• pi-1 = p0(λ/µ)i/i!  i=0,1,…

• Note this is Poisson Process! 
p0(1 +ρ +ρ2 +ρ3 +..) =1 p0 = e-λ/µ = e-ρ

pi = ρi e-ρ

• Average Customers in the system 
N = ρ {Average of the Poisson Process}

• System delay T = N/λ =1/µ
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Truncated Queue: M/M/m/m
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State Diagram of the M/M/m/m Queuing system

m

M/M/m/m Q model
• Global balance equation for N(t)=i is

– pi-1λ = (i)µ pi i=0,1,…m
– pi = p0(λ/µ)i/i!  i=0,1,…m

• Note this is Poisson Process! 
p0(1 +ρ +ρ2/2!+ρ3/3! +…+ρm/m!) =1 
p0 = [Σρi/i!]-1

ph = (λ/µ)h/h! [Σρi/i!]-1 h=0,1,…m
pm = (λ/µ)m/m! [Σρi/i!]-1 {Erlang’s Blocking 

Formula}


