EE 565 Homework 2: Queueing Theory \& MAC Layer

Instructor: Patrick Tague, Winter Quarter 2008
Homework Due: 10:30AM on 06 February 2008

Answers without work will receive no credit. If problems are solved using MATLAB, etc., please include code with your homework submission.

1. Let X_{n} be a discrete-time Markov chain such that

$$
X_{n+1}= \begin{cases}X_{n}+1 \bmod K & \text { with probability } p,(0<p<1) \\ X_{n}-1 \bmod K & \text { with probability } 1-p\end{cases}
$$

- Draw the state transition diagram for the Markov chain X_{n} with $K=7$.
- Compute the transition matrix P for $K=7$.
- Find the stationary distribution π for $K=7$.
- Using MATLAB, choose a value of p and a random probability distribution π_{0} (a rowvector of entries $\operatorname{Pr}\left[X_{0}=x\right]$ for $\left.x=0, \ldots, K-1\right)$ and iterate $\pi_{n}=\pi_{n-1} P$. Include the vectors π_{n} for $n=0,1,2,3,4,10,20$ for $K=7$. Repeat the simulation for various values of p and various odd values of K, and comment on the speed of convergence to the stationary distribution as a function of p and K. For each p and K, plot $\left\|\pi_{n}-\pi\right\|$ as a function of n, where $\|\cdot\|$ represents an appropriate vector norm.

2. Find the stationary distribution π for a birth-and-death queueing system with birth rate $\lambda_{n}=\alpha^{n} \lambda(0 \leq \alpha<1)$ and death rate $\mu_{n}=\mu$ when the system is in state n. State the values of λ and μ for which the stationary distribution exists.
3. Consider a taxi stop at an airport such that taxis arrive and pick up waiting customers and customers arrive and wait for available taxis. Suppose that customers arrive with rate λ and taxis arrive with rate μ. Let $N_{T}(t)$ and $N_{C}(t)$ be the number of waiting taxis and customers at time t, respectively, and assume that either (i) $N_{T}(t)=N_{C}(t)=0$, (ii) $N_{T}(t)>0=$ $N_{C}(t)$, or (iii) $N_{T}(t)=0<N_{C}(t)$. In other words, customers and taxis will not be waiting simultaneously. Let $q(t)=N_{C}(t)-N_{T}(t)$, and assume that $q(0)=0$. Show that, when taxi and customer arrivals are independent Poisson processes, the distribution of $q(t)$ is the difference between two Poisson random variables. Furthermore, use a Gaussian approximation to show that if $\lambda=\mu$ then the probability that $|q(t)| \leq k$ is approximately $(2 k+1)(4 \pi \lambda t)^{-1 / 2}$ for large t.
4. Compare/contrast the performance of an $M / M / 1$ queue with a single server of service rate μ to that of an $M / M / k$ queue with k servers each of service rate μ / k. Provide analytical support for your observations.
5. Compute the stationary distribution π for the discrete-time Markov chain derived in class for the number of backlogged users under the slotted ALOHA protocol. See equations (4.1)-(4.3) on page 279 of the main text.
