EE 565 Homework 2: Queueing Theory & MAC Layer

Instructor: Patrick Tague, Winter Quarter 2008 Homework Due: 10:30AM on 06 February 2008

Answers without work will receive no credit. If problems are solved using MATLAB, etc., please include code with your homework submission.

1. Let X_n be a discrete-time Markov chain such that

$$X_{n+1} = \begin{cases} X_n + 1 \mod K & \text{with probability } p, \ (0$$

- Draw the state transition diagram for the Markov chain X_n with K = 7.
- Compute the transition matrix P for K = 7.
- Find the stationary distribution π for K = 7.
- Using MATLAB, choose a value of p and a random probability distribution π_0 (a row-vector of entries $\Pr[X_0 = x]$ for $x = 0, \ldots, K 1$) and iterate $\pi_n = \pi_{n-1}P$. Include the vectors π_n for n = 0, 1, 2, 3, 4, 10, 20 for K = 7. Repeat the simulation for various values of p and various **odd** values of K, and comment on the speed of convergence to the stationary distribution as a function of p and K. For each p and K, plot $||\pi_n \pi||$ as a function of n, where $|| \cdot ||$ represents an appropriate vector norm.
- 2. Find the stationary distribution π for a birth-and-death queueing system with birth rate $\lambda_n = \alpha^n \lambda \ (0 \le \alpha < 1)$ and death rate $\mu_n = \mu$ when the system is in state n. State the values of λ and μ for which the stationary distribution exists.
- 3. Consider a taxi stop at an airport such that taxis arrive and pick up waiting customers and customers arrive and wait for available taxis. Suppose that customers arrive with rate λ and taxis arrive with rate μ . Let $N_T(t)$ and $N_C(t)$ be the number of waiting taxis and customers at time t, respectively, and assume that either (i) $N_T(t) = N_C(t) = 0$, (ii) $N_T(t) > 0 = N_C(t)$, or (iii) $N_T(t) = 0 < N_C(t)$. In other words, customers and taxis will not be waiting simultaneously. Let $q(t) = N_C(t) N_T(t)$, and assume that q(0) = 0. Show that, when taxi and customer arrivals are independent Poisson processes, the distribution of q(t) is the difference between two Poisson random variables. Furthermore, use a Gaussian approximation to show that if $\lambda = \mu$ then the probability that $|q(t)| \leq k$ is approximately $(2k+1)(4\pi\lambda t)^{-1/2}$ for large t.
- 4. Compare/contrast the performance of an M/M/1 queue with a single server of service rate μ to that of an M/M/k queue with k servers each of service rate μ/k . Provide analytical support for your observations.
- 5. Compute the stationary distribution π for the discrete-time Markov chain derived in class for the number of backlogged users under the slotted ALOHA protocol. See equations (4.1)-(4.3) on page 279 of the main text.