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1 Introduction to the MAC Sub-Layer

Recall from the first lecture that networks can be partitioned into two classes depending
on whether nodes communicate using unicast (or point-to-point) transmission or broadcast
(also, multicast) transmission. In broadcast communication, there must be a mechanism to
handle the key issues:

1. Who gets to use the channel?

2. For how long?

3. When?

4. Why?

This function of controlling access to the physical medium is delegated to the Medium Ac-
cess Control (MAC) Sub-Layer, which technically falls somewhere between the physical
and link layers.

The central issues informally listed above can be addressed by the Channel Allocation
Problem, namely how to allocate a single channel among competing users? This is a long-
standing problem, so let’s first look at some of the traditional approaches which partition
resources equally among users.

Traditional approaches to the channel allocation problem involve partitioning users phys-
ically or logically in such a way as to dedicate a unique resource to each of the N users. Com-
mon approaches include Frequency, Time, and Code Division Multiplexing (FDM, TDM,
CDM, respectively) which utilize orthogonal (or independent) sets of resources for different
users. Protocols based on these approaches typically involve the allocation of a fixed resource
to each user. However, if the number of users is variable, there may be unallocated resources
or users that do not receive service. Further, since traffic tends to be bursty (i.e. users do not
have a constant supply of data frames to send), allocated resources often go unused. FDM,
TDM, and CDM can be further generalized into the framework of Orthogonal Frequency
Division Multiplexing (OFDM) (check out EE 567, taught by Prof. Hui Liu).

As the entire class of OFDM-based protocols rely on physical or logical partitioning of
users based on deterministic properties, they are not entirely applicable to network environ-
ments, especially in the bursty-traffic regime and in networks with a high degree of variability
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(e.g. mobile ad-hoc networks) or uncertainty (e.g. wireless sensor networks) in the structure
of the network. For the duration of this topic, we will focus our attention on unstructured
broadcast or random access channels instead of OFDM-based approaches.

In order to completely understand the behavior of MAC protocols for a random access
channel, we first have to investigate the underlying models for user traffic generation, random
access of the shared medium, and behavior of the service being provided. The models we’ll
adopt here are addressed in detail in Tanenbaum’s Computer Networks textbook, compressed
into the following assumptions.

1. Station Model: The N users or stations are independent and traffic arrives with
constant average rate λ, i.e. Pr[frame generated in ∆t seconds] = λ∆t.

2. Single Channel: All N users transmit and receive each message on a single broadcast
channel.

3. Collisions: If multiple users transmit frames in overlapping time intervals, all over-
lapping frames are lost in the collision, and all nodes involved can detect the collision.
We assume collisions are the only source of frame loss and error.

4. Time: Access to the shared medium is either (a) asynchronous/continuous or (b)
synchronous/discrete/slotted.

5. Carrier Sensing: Users may (a) be able to detect the presence of carrier signals on
the medium or (b) not able to carrier sense.

Given these models, we need a mathematical basis to compute such quantities as:

• the probability that a transmission or medium access is successful, as a function of the
traffic generation rate, transmission rate, service, rate, number of users, etc.),

• the expected queueing delay incurred by message frames, and

• the expected throughput, collision rate, retransmission rate, etc.,

motivating the need for a study of Queueing Theory.

2 Introduction to Queueing Theory

Simply stated, queueing theory is the mathematics of waiting in line. This topic is far
more interesting than it first seems, and we’ll go into a sufficient level of detail for the
purposes of this course. We’ll begin our treatment of queueing theory by introducing a
large collection of concepts from probability theory, including many random variables and
random processes of interest. Following common notation, we’ll denote discrete-time random
processes in terms of the random variables Xn in the random process X = {X1, X2, . . .} and
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continuous-time processes in terms of the random variables X(t) as in the random process
X = {X(t1), X(t2), . . .}.

2.1 Markov Random Processes

A Markov process is defined as a random process X with the property that the probability
distribution of the process reaching the state xn+1 is dependent only on the current state xn

of the process and not upon any of the states x0, . . . , xn−1 or the times that state transitions
occurred in the past. A Markov process for which the states xi are elements of a discrete (or
countable) state space is referred to as a Markov chain. Markov chains can be classified based
on whether state transitions occur at integer time steps 0, 1, . . . , n, . . . (discrete-time Markov
chain) or at continuous times t0 < t1 < · · · < tn < · · · (continuous-time Markov chain). In
the case of a continuous-time Markov chain, state transitions may take place at any time
instant, leading us to investigate the random variable describing the amount of time spent
in each state. Because the Markov property requires independence of transitions from past
transition times, this transition time must be a memoryless random variable. Hence, the
transition time must be exponentially or geometrically distributed, depending respectively
on whether the variable is continuous or discrete. In general, the Markov property can be
stated mathematically as

Pr[X(tn+1) = xn+1 | X(tn) = xn, X(tn−1) = xn−1, . . . , X(t0) = x0]

= Pr[X(tn+1) = xn+1 | X(tn) = xn].

2.2 Birth-and-Death Chains

A special case of a Markov chain referred to as a birth-and-death chain (or birth-death
process) is given by the restriction of state transitions to itself and “neighboring” states
only. Without loss of generality, we can take the state space to be the set of (non-negative)
integers and define the neighboring states of a state i to be i − 1 and i + 1 (unless i = 0,
in which case only state 1 is a neighbor). Specifically, if Xn = i, then the probability that
Xn+1 is outside the set {i − 1, i, i + 1} is zero.

3 Discrete-Time Markov Chains

We’ll next investigate discrete-time Markov chains in further detail. Following the definition
of a general Markov process above, we say the discrete-time sequence X1, X2, . . . forms a
discrete-time Markov chain (DTMC) if for all non-negative integers n and all possible values
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in of Xn in the state space, we have

Pr[Xn = j | Xn−1 = in−1, . . . , X0 = i0] = Pr[Xn = j | Xn−1 = in−1].

We assume there is a probability distribution Pr[X0 = j] to characterize the initial state of
the DTMC. If it turns out that the state transition probabilities above are independent of the
time index n, the DTMC is homogeneous, and we denote the state transition probabilities
by

pij = Pr[Xn = j | Xn−1 = i]

and let P denote the matrix of transition probabilities. For homogeneous DTMCs, we further
define the m-step transition probabilities as

p
(m)
ij = Pr[Xn+m = j | Xn = i].

Using the Markov property, we can show that the m-step transition matrix P (m) is equal to
the mth power P m of the transition matrix P . Further, we say that a DTMC is irreducible
if for every i, j there is some value of m such that p

(m)
ij > 0, meaning that every state j is

reachable from every other state i with non-zero probability. For an irreducible DTMC, let
γj denote the greatest common divisor (GCD) of all values m such that p

(m)
jj > 0, referred to

as the periodicity of state j. A state j is periodic if γj > 1, and the chain is periodic (resp.

aperiodic) if any (resp. none) of its states is periodic. Finally, we define the probability π
(n)
j

to be the probability that we find the chain in state j at time n and state the first result of
interest.

In an irreducible and aperiodic homogeneous DTMC, the limiting probabilities

πj = lim
n→∞

π
(n)
j

always exist and are independent of the initial distribution π
(0)
j . Furthermore, the row-vector

π with jth entry equal to πj satisfies πP = π. In certain cases (strongly recurrent DTMCs,
when the expected time to return to each state j is finite), the vector π will satisfy the
equality π1 = 1, where 1 is the all-one column vector of appropriate length, implying that π

is a probability distribution. In this case, π is referred to as the stationary distribution
or the steady-state distribution.

4 Continuous-Time Markov Chains

We now turn our attention to continuous-time Markov chains. The initial definition of
the Markov property characterizes a continuous-time Markov chain (CTMC) and can be
alternately defined as satisfying the condition

Pr[X(t) = j | X(τ) for τ1 ≤ τ ≤ τ2 < t] = Pr[X(t) = j | X(τ2)].
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The treatment of CTMCs follows quite naturally from that of DTMCs with the exception
of the state transition times, which, as stated earlier, must satisfy a memoryless probability
distribution. Analogous to that of a DTMC, we define the state transition probability pij(s, t)
as

pij(s, t) = Pr[X(t) = j | X(s) = i].

Letting H(s, t) denote the transition matrix, the m-step transitions can be characterized
using the fact that H(s, t) = H(s, u)H(u, t) for s ≤ u ≤ t (and letting H(t, t) = I, the
identity matrix). In this case, we see that the transition matrix H carries information for
any time interval s − t, so we investigate the limit over an infinitesimal time step ∆t. We
thus define the transition rate matrix Q(t) as

Q(t) = lim
∆t→0

H(t, t + ∆t) − I

∆t
.

For i 6= j, the element qij(t) of Q(t) characterizes the rate of transitions from state i to state
j, while for the diagonal entries, −qii(t) characterizes the rate of transitions away from state
i. We see immediately that the sum of each row of Q(t) is zero.

Similar to the case of DTMCs, a homogeneous CTMC exhibits a degree of time-independence,
in that the transition probability pij(s, s + t) is independent of s (hereafter denoted pij(t)),
qij(t) is independent of t (hereafter denoted qij), H(s, s+ t) is independent of s (hereafter de-
noted H(t)), and Q(t) is independent of t (hereafter denoted Q). From the above definitions,
we can show that H(t) = eQ(t). For the state probabilities πj(t) (and the corresponding vec-

tor π(t)), we can show that dπ(t)
dt

= π(t)Q. Furthermore, in the limit t → ∞, πj(t) approaches
the steady state probability πj (and π(t) → π) and we can show that πQ = 0.
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