

Broadcast Advantage

• **Broadcast Advantage**: Sender **S** with (omnidirectional antenna) transmitting at energy level to reach node **A** can reach all the nodes inside the circle with radius **|SA|** for *free*

Broadcast Routing in Energy Constrained Wireless Networks

- **Problem 1**: Develop Routing Algorithm(s) so that the sender S can transmit to all the receivers with minimum total energy expenditure
- **Problem 2**: Incorporate the battery power/energy into the model and extend the lifetime of the network by conserving each node's battery
- Can this be done efficiently? (with reasonable amount of computations and some guarantees about the convergence to optimal solutions)

Impact of physical layer on network layer decisions

- Medium has square law path loss
- Sender S needs to transmit identical packet to receivers \mathbf{M}_1 and \mathbf{M}_2
- Decision to be made by S

 Route to M1 and let M1 route to M2
 - Route to M_2 (and M_1 will receive it due to broadcast advantage)

How to develop a faster solution?

- Broadcast Incremental Power (BIP) Algorithm
- **Input:** given an undirected weighted graph *G*(*N*, *A*), where *N*: set of nodes, *A*: set of edges
- **Initialization:** set $T := \{S\}$ where *S* is the source node of multicast session. Set P(i) := 0 for all $1 \le i \le |N|$ where P(i) is the transmission power of node *i*.
- Procedure:
- while $|T| \neq |N|$
- **do** find an edge $(i, j) \in T \times (N T)$ such that
- incremental power $\Delta P_{ij} = d_{ij}^{\alpha} P(i)$ is minimum.
- add node j to T, i.e., $T := T \cup \{j\}$.
- set $P(i) := P(i) + \Delta P_{ij}$.

Iteration #	Т	P(i)	Total Power
0	{A}U{D}	P(A) =1	1
1	{A,D}U{E}	P(A)=1, P(D)=1	2
2	{A,D,E}U{C}	P(A)=1, P(D)=1, P(E)=1	3
3	{A,D,E,C}U{F}	P(A)=1, P(D)=1, P(E)=4	6
4	{A,D,E,C,F}U{B}	P(A)=4, P(D)=1, P(E)=4	9 (not
			optimum)

Effect of Battery Lifetime on Relay Nodes

- In the example
 - Set Source battery to be 10K units
 - All other nodes 1K units
 - Node D has to relay all the traffic with same power as the source
 - Assume that at unit time unit data is transmitted.
 - Battery of node D dies in 250 units of time. Network fails

Effect of Battery Lifetime on Relay Nodes

- As the battery gets depleted, the residual energy becomes a critical resource
 - Incorporate the residual battery power into cost function
 - Power to transmit from A to node D is $W_A|AD|^{\alpha}$ where $W_A = E_A/(E_A - E_{A, spent})$

Additional Information

- As the battery gets depleted, the residual energy becomes a critical resource
 - Incorporate the residual battery power into cost function
 - Power to transmit from A to node D is $W_A|AD|^{\alpha}$ where $W_A = E_A/(E_A - E_{A, spent})$