Return to Queueing Theory

 Build on the previous material
— From single-hop queueing delay to end-to-end queueing de

— Overall delay experienced in routing a packet from source tq
destination node

* Queueing Networks
— Section 3.6 in text

— Each queue represents a node which may have multiple input

streams of “arrivals” from other nodes
— Also, output stream may be split to multiple next-hop queue

— Arrival process at one queue may depend on departure
processes of multiple other queues, so probably is not Poiss

— System is complex! What can be done?
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Example

RateA arrivals
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e “Transmission line” model

— RateA arrivals over one link, fixed length packets

 Service times are constant (equal to transmission déiay
soQ1lis M/D/1 (D means deterministic) Arrivals int@2
separated by at leabty
* If rate of second link ig that of first link, there iNO
waiting in the second queue EVER!
— If packet lengths are iid exponential, this becoM&VI/1

» How to characterize/analyze the second queue? 2




How to Evaluate Delay?

— Setup:
* Assume multiple packet streams
each following a unique path
* Letx,be the arrival rate (in
packets/second) for stream
* For circuit switching:
— Arrivals on a link(i,j) occur with
rate; equal to summation of
for each streamatraversing(i,)
» For packet switching:

— Include fractiorf;(s) of packets in
streams traversing(i,j)
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Kleinrock Independence Approximation

» 1964: Kleinrock suggests that
random merger of several
packet streams into a single
stream restores independence
of arrival times and packet
lengths
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* In particular, for densely
connected networks with
moderate-to-heavy traffic,
inputs are approximately
Poisson processes
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Analysis under KIA

» Average number of packets in queue or service:
— For link(i,), Ny = A; / (14 — Ay) wherel/y; is average
transmit delay

— Total packets in queue or servides summation oN;;
over all links(i,j)

» Average queueing delay:

— From Little’s Theorem] = N/y; whereyis sum rate of
all x; arrival streams

* Including proc/prop delag; at eacH(i,j):
— Add the termj;d; in the summation

Time Reversibility

Let X be a DTMC, and leX, denote the state at time

n>>0. Let’s look at the behavior backward in time,

instead of looking forward in time.

Let P*; be the reverse transition probability given by

PI’[Xm:j | Xm+l= I] .

Show thatzP™; = 77P;

Def: ADTMC Xistimereversibleif P; = P;. In this

case, the stationary distribution of the reverséyIo

X' is the same as the forward chin

— We immediately see that a DTMCis time reversibléf and
only ifthe detailed balance equations hold.

Thisextenddn a straightforward way to CTMCs.
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Burke’s Theorem

* Theorem (Burke)Consider am/M/1, M/M/K, or
M/M/x queue with arrival ratd, and suppose the
system starts in steady-state. Then:

— The departure process is Poisson with Aate

— The number of customers in the system at tilme
independent of the sequence of departure times prtor to

* Why is this true?
— M/M/1, M/M/k, andM/M/ « are time reversible CTMCs.

— Departures prior to timieare arrivals after timein reversed
process, which is Poisson, so future arrivals do not depend
system occupancy.

Example — Revisited

RateA arrivals
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* Returning to the previous example:

— Suppos&1is M/M/1 with exp. service ratg,.

— From Burke’s Theorem, arrivals @2 are Poisson with raté
and exp. service ragg > M/M/1.

- > 50 = p(1-p), p = Ay, i=1,2

— From 29 part of Burke’s Theorem, number of customers in
each queue is independent, spnn Q1, m in Q2] =7z 7.

— This is a simple example of anyclic queueing network




Queueing Networks

* Setup:
— A network ofK queues, each with a single server,
service ratgs at queue

— Arrivals into the network at queuéollow a
Poisson process with rate At least ong; is
positive.

— Customer served by queumoves to queugwith
probabilityP; — leaves with residual probability

— Total arrival rate into queyes
K
Nj=r;+ S NPy, forj=1,....K
i=1
- lLetp=A/4

Queueing Network State Space

e Letn = (ny,...,Iy) denote a state in the state
spaceXX, whereX is the state space of each
queue (here, the non-negative integers)nj.e.
number of customers in queue

 State transitions (with very high probability):
— New arrival at queug(with rater;)
o Staten(j*) =n + ¢ = (Ny,...,N.1,+1,Ny,..0,1K)
— Exit system from queLgwith rate ., (1_2 p,],) )
* Staten(j) =n—-e=(ny,...,N.1,-1,N4g,--s1%)
— Customer moves frofrto i (with rate/P;)

« Staten(j, i) =n-eg+¢g o




Jackson’s Theorem

* Theorem (Jackson}or such a queueing
network, if,oJ < 1forj=1,...,K, then for all
n=(Ny,...,N), n>=0, we have
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mi) = (1= p))

 In other words, queueing network behaves as
independent collection of M/M/1 queues even
though the arrival to each queisanot Poisson.
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Closed Queueing Networks

+ Same setup as before, onfy0 andP; sum
to 1 overj for all i=1,...,K, i.e. nobody
enters and nobody leaves, so

K

>‘j = Z )\ZP”, forj=1,..., K

i=1
and total number of customers is fixed at M.
» Here, 7, can be positive only if
n+...+ne = M.
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