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Return to Queueing Theory
• Build on the previous material

– From single-hop queueing delay to end-to-end queueing delay
– Overall delay experienced in routing a packet from source to 

destination node

• Queueing Networks
– Section 3.6 in text
– Each queue represents a node which may have multiple input 

streams of “arrivals” from other nodes
– Also, output stream may be split to multiple next-hop queues
– Arrival process at one queue may depend on departure 

processes of multiple other queues, so probably is not Poisson
– System is complex!  What can be done?
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Example

• “Transmission line” model
– Rate λ arrivals over one link, fixed length packets

• Service times are constant (equal to transmission delay 1/µ), 
so Q1 is M/D/1 (D means deterministic) Arrivals into Q2
separated by at least 1/µ

• If rate of second link is ≥ that of first link, there is NO 
waiting in the second queue EVER!

– If packet lengths are iid exponential, this becomes M/M/1

• How to characterize/analyze the second queue?
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How to Evaluate Delay?

– Setup:
• Assume multiple packet streams 

each following a unique path

• Let xs be the arrival rate (in 
packets/second) for stream s 

• For circuit switching:
– Arrivals on a link (i,j) occur with 

rate λij equal to summation of xs

for each stream s traversing (i,j)

• For packet switching:
– Include fraction fij(s) of packets in 

stream s traversing (i,j)
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Kleinrock Independence Approximation

• 1964: Kleinrock suggests that 
random merger of several 
packet streams into a single 
stream restores independence 
of arrival times and packet 
lengths

• In particular, for densely 
connected networks with 
moderate-to-heavy traffic, 
inputs are approximately 
Poisson processes
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Analysis under KIA

• Average number of packets in queue or service:
– For link (i,j), Nij = λij / (µij – λij) where 1/µij is average 

transmit delay

– Total packets in queue or service N is summation of Nij

over all links (i,j)

• Average queueing delay:
– From Little’s Theorem, T = N/γ, where γ is sum rate of 

all xs arrival streams

• Including proc/prop delay dij at each (i,j):
– Add the term λijdij in the summation
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Time Reversibility
• Let X be a DTMC, and let Xn denote the state at time 

n>>0.  Let’s look at the behavior backward in time, 
instead of looking forward in time.

• Let P*
ij be the reverse transition probability given by 

Pr[Xm = j | Xm+1 = i] .
• Show that πiP*

ij = πjPji

• Def: A DTMC X is time reversible if P*
ij = Pij.  In this 

case, the stationary distribution of the reversed DTMC 
X* is the same as the forward chain X.
– We immediately see that a DTMC X is time reversible if and 

only if the detailed balance equations hold.

• This extendsin a straightforward way to CTMCs.
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Burke’s Theorem
• Theorem (Burke): Consider an M/M/1, M/M/k, or 

M/M/∞ queue with arrival rate λ, and suppose the 
system starts in steady-state.  Then:
– The departure process is Poisson with rate λ.
– The number of customers in the system at time t is 

independent of the sequence of departure times prior to t.

• Why is this true?
– M/M/1, M/M/k, and M/M/ ∞ are time reversible CTMCs.
– Departures prior to time t are arrivals after time t in reversed 

process, which is Poisson, so future arrivals do not depend on 
system occupancy.
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Example – Revisited

• Returning to the previous example:
– Suppose Q1 is M/M/1 with exp. service rate µ1.

– From Burke’s Theorem, arrivals to Q2are Poisson with rate λ
and exp. service rate µ2 � M/M/1.

– � πn
(i) = ρi

n(1-ρi), ρi = λ/µi, i=1,2

– From 2nd part of Burke’s Theorem, number of customers in 
each queue is independent, so Pr[n in Q1, m in Q2] = πn

(1) πm
(2)

– This is a simple example of an acyclic queueing network
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Queueing Networks
• Setup:

– A network of K queues, each with a single server, 
service rate µi at queue i

– Arrivals into the network at queue i follow a 
Poisson process with rate r i.  At least one r i is 
positive.

– Customer served by queue i moves to queue j with 
probability Pij – leaves with residual probability

– Total arrival rate into queue j is

– Let ρj = λj / µj

10

Queueing Network State Space
• Let n = (n1,…,nK) denote a state in the state 

space XK, where X is the state space of each 
queue (here, the non-negative integers), i.e. ni = 
number of customers in queue i.

• State transitions (with very high probability):
– New arrival at queue j (with rate r j)

• State n(j+) = n + ej = (n1,…,nj-1,nj+1,nj+1,…,nK)

– Exit system from queue j (with rate                    )
• State n(j-) = n – ej = (n1,…,nj-1,nj-1,nj+1,…,nK)

– Customer moves from j to i (with rate µjPji)
• State n(j-, i+) = n – ej + ei
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Jackson’s Theorem
• Theorem (Jackson): For such a queueing

network, if ρj < 1 for j=1,…,K, then for all 
n=(n1,…,nK), nj >= 0 , we have

• In other words, queueing network behaves as 
independent collection of M/M/1 queues even 
though the arrival to each queue is not Poisson.
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Closed Queueing Networks

• Same setup as before, only r i=0 and Pij sum 
to 1 over j for all i=1,…,K, i.e. nobody 
enters and nobody leaves, so

and total number of customers is fixed at M.
• Here, πn can be positive only if 

n1+…+nK = M.


