Return to Queueing Theory

- Build on the previous material
 - From single-hop queueing delay to end-to-end queueing delay
 - Overall delay experienced in routing a packet from source to destination node
- Queueing Networks
 - Section 3.6 in text
 - Each queue represents a node which may have multiple input streams of "arrivals" from other nodes
 - Also, output stream may be split to multiple next-hop queues
 - Arrival process at one queue may depend on departure processes of multiple other queues, so probably is not Poisson

1

- System is complex! What can be done?

Analysis under KIA

- Average number of packets in queue or service:
 - For link (*i*,*j*), $N_{ij} = \lambda_{ij} / (\mu_{ij} \lambda_{ij})$ where $1/\mu_{ij}$ is average transmit delay
 - Total packets in queue or service N is summation of N_{ij} over all links (i,j)
- Average queueing delay:
 - From Little's Theorem, $T = N/\gamma$, where γ is sum rate of all x_s arrival streams
- Including proc/prop delay *d*_{*ij*} at each (*i*,*j*):
 - Add the term $\lambda_{ij}d_{ij}$ in the summation

Time Reversibility

- Let X be a DTMC, and let X_n denote the state at time n >> 0. Let's look at the behavior backward in time, instead of looking forward in time.
- Let P_{ij}^* be the reverse transition probability given by $\Pr[X_m = j \mid X_{m+1} = i]$.
- Show that $\pi_i P_{ij}^* = \pi_j P_{ji}$
- *Def:* A DTMC *X* is *time reversible* if $P_{ij}^* = P_{ij}$. In this case, the stationary distribution of the reversed DTMC X^* is the same as the forward chain *X*.
 - We immediately see that a DTMC *X* is time reversible *if and only if* the detailed balance equations hold.
- This extends in a straightforward way to CTMCs.

5

Queueing Network State Space Let n = (n₁,...,n_K) denote a state in the state space X^K, where X is the state space of each queue (here, the non-negative integers), i.e. n_i = number of customers in queue i. State transitions (with very high probability): New arrival at queue j (with rate r_j) State n(j⁺) = n + e_j = (n₁,...,n_{j-1},n_j+1,n_{j+1},...,n_K) Exit system from queue j (with rate μ_i (1 - ∑_{i=1}^K P_{ji})) State n(j⁻) = n - e_j = (n₁,...,n_{j-1},n_j-1,n_{j+1},...,n_K) Customer moves from j to i (with rate μ_jP_{ji}) State n(j⁻, i⁺) = n - e_j + e_i

Jackson's Theorem

Theorem (Jackson): For such a queueing network, if ρ_j < 1 for j=1,...,K, then for all n=(n₁,...,n_K), n_j >= 0, we have

$$\pi_{n} = \prod_{j=1}^{K} \pi_{n_{j}}^{(j)}$$
$$\pi_{n_{j}}^{(j)} = \rho_{i}^{n_{j}} (1 - \rho_{j})$$

• In other words, queueing network behaves as **independent collection of** *M/M/1* **queues** even though the arrival to each queue **is not Poisson**.

11

