Return to Queueing Theory

- Build on the previous material
- From single-hop queueing delay to end-to-end queueing delay
- Overall delay experienced in routing a packet from source to destination node

- Queueing Networks

- Section 3.6 in text
- Each queue represents a node which may have multiple input streams of "arrivals" from other nodes
- Also, output stream may be split to multiple next-hop queues
- Arrival process at one queue may depend on departure processes of multiple other queues, so probably is not Poisson
- System is complex! What can be done?

- "Transmission line" model
- Rate λ arrivals over one link, fixed length packets
- Service times are constant (equal to transmission delay $1 / \mu$), so $Q 1$ is $M / D / 1$ (D means deterministic) Arrivals into $Q 2$ separated by at least l / μ
- If rate of second link is \geq that of first link, there is $\boldsymbol{N O}$ waiting in the second queue EVER!
- If packet lengths are iid exponential, this becomes $M / M / 1$
- How to characterize/analyze the second queue? 2

How to Evaluate Delay?

- Setup:
- Assume multiple packet streams each following a unique path
- Let x_{s} be the arrival rate (in packets/second) for stream s
- For circuit switching:
- Arrivals on a link (i, j) occur with rate $\lambda_{i j}$ equal to summation of x_{s} for each stream s traversing (i, j)
- For packet switching:
- Include fraction $f_{i j}(s)$ of packets in stream s traversing (i, j)

Kleinrock Independence Approximation

- 1964: Kleinrock suggests that random merger of several packet streams into a single stream restores independence of arrival times and packet lengths
- In particular, for densely connected networks with moderate-to-heavy traffic, inputs are approximately Poisson processes

Analysis under KIA

- Average number of packets in queue or service:
- For link $(i, j), N_{i j}=\lambda_{i j} /\left(\mu_{i j}-\lambda_{i j}\right)$ where $1 / \mu_{i j}$ is average transmit delay
- Total packets in queue or service N is summation of $N_{i j}$ over all links (i, j)
- Average queueing delay:
- From Little's Theorem, $T=N / \gamma$, where γ is sum rate of all x_{s} arrival streams
- Including proc/prop delay $d_{i j}$ at each (i, j) :
- Add the term $\lambda_{i j} d_{i j}$ in the summation

Time Reversibility

- Let X be a DTMC, and let X_{n} denote the state at time $n \gg 0$. Let's look at the behavior backward in time, instead of looking forward in time.
- Let $P^{*}{ }_{i j}$ be the reverse transition probability given by $\operatorname{Pr}\left[X_{m}=j \mid X_{m+1}=i\right]$.
- Show that $\pi_{i} P^{*}{ }_{i j}=\pi_{j} P_{j i}$
- Def: A DTMC X is time reversible if $P_{i j}^{*}=P_{i j}$. In this case, the stationary distribution of the reversed DTMC X^{*} is the same as the forward chain X.
- We immediately see that a DTMC X is time reversible if and only if the detailed balance equations hold.
- This extends in a straightforward way to CTMCs.

Burke's Theorem

- Theorem (Burke): Consider an $M / M / 1, M / M / k$, or $M / M / \infty$ queue with arrival rate λ, and suppose the system starts in steady-state. Then:
- The departure process is Poisson with rate λ.
- The number of customers in the system at time t is independent of the sequence of departure times prior to t.
- Why is this true?
- $M / M / 1, M / M / k$, and $M / M / \infty$ are time reversible CTMCs.
- Departures prior to time t are arrivals after time t in reversed process, which is Poisson, so future arrivals do not depend on system occupancy.

- Returning to the previous example:
- Suppose Q1 is $M / M / 1$ with exp. service rate μ_{1}.
- From Burke's Theorem, arrivals to $Q 2$ are Poisson with rate λ and exp. service rate $\mu_{2} \rightarrow M / M / 1$.
$-\rightarrow \pi_{n}^{(i)}=\rho_{i}^{n}\left(1-\rho_{i}\right), \rho_{i}=\lambda \mu_{i}, i=1,2$
- From 2 ${ }^{\text {nd }}$ part of Burke's Theorem, number of customers in each queue is independent, so $\operatorname{Pr}[n$ in $Q 1, m$ in $Q 2]=\pi_{n}^{(1)} \pi_{m}^{(2)}$
- This is a simple example of an acyclic queueing network

Queueing Networks

- Setup:
- A network of K queues, each with a single server, service rate μ_{i} at queue i
- Arrivals into the network at queue i follow a Poisson process with rate r_{i}. At least one r_{i} is positive.
- Customer served by queue i moves to queue j with probability $P_{i j}$ - leaves with residual probability
- Total arrival rate into queue j is

$$
\lambda_{j}=r_{j}+\sum_{i=1}^{K} \lambda_{i} P_{i j}, \quad \text { for } j=1, \ldots, K
$$

$-\quad$ Let $\rho_{j}=\lambda_{j} / \mu_{j}$

Queueing Network State Space

- Let $n=\left(n_{l}, \ldots, n_{K}\right)$ denote a state in the state space \mathcal{X}^{K}, where \mathcal{X} is the state space of each queue (here, the non-negative integers), i.e. $n_{i}=$ number of customers in queue i.
- State transitions (with very high probability):
- New arrival at queue j (with rate r_{j})
- State $n\left(j^{+}\right)=n+e_{j}=\left(n_{l}, \ldots, n_{j-1}, n_{j}+1, n_{j+1}, \ldots, n_{K}\right)$
- Exit system from queue j (with rate $\mu_{j}\left(1-\sum_{i=1}^{K} p_{j^{i}}\right)$)
- State $n\left(j^{-}\right)=n-e_{j}=\left(n_{l}, \ldots, n_{j-1}, n_{j}-1, n_{j+l}, \ldots, n_{K}\right)$
- Customer moves from j to i (with rate $\mu_{j} P_{j i}$)
- State $n\left(j^{-}, i^{+}\right)=n-e_{j}+e_{i}$

Jackson's Theorem

- Theorem (Jackson): For such a queueing network, if $\rho_{j}<1$ for $j=1, \ldots, K$, then for all $n=\left(n_{1}, \ldots, n_{K}\right), n_{j}>=0$, we have

$$
\begin{aligned}
\pi_{n} & =\prod_{j=1}^{K} \pi_{n_{j}}^{(j)} \\
\pi_{n_{j}}^{(j)} & =\rho_{j}^{n_{j}}\left(1-\rho_{j}\right)
\end{aligned}
$$

- In other words, queueing network behaves as independent collection of $M / M / 1$ queues even though the arrival to each queue is not Poisson.

Closed Queueing Networks

- Same setup as before, only $r_{i}=0$ and $P_{i j}$ sum to l over j for all $i=1, \ldots, K$, i.e. nobody enters and nobody leaves, so

$$
\lambda_{j}=\sum_{i=1}^{K} \lambda_{i} P_{i j}, \quad \text { for } j=1, \ldots, K
$$

and total number of customers is fixed at M .

- Here, π_{n} can be positive only if

$$
n_{1}+\ldots+n_{K}=M .
$$

