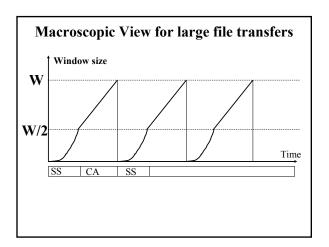
Material Covered

- Macroscopic and Microscopic performance evaluation of TCP
- Conclusion of the Reliable Transmission Part


Recall Tahoe Algorithm

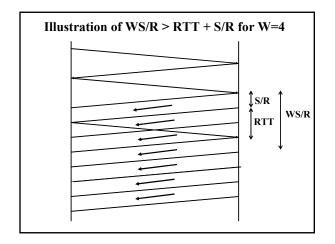
• (Parameters: cwnd, threshold, RTT)

- 1. Set (congestion window) **cwnd** = 1
- For each successful ACK increment cwnd cwnd = cwnd +1 (exponential growth of cwnd)
- 3. If (cwnd \geq threshold) after cwnd ACK;

cwnd = cwnd +1 (linear growth)

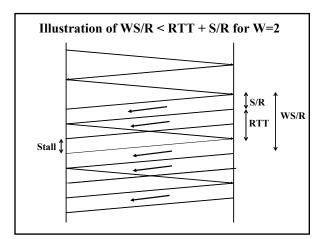
- 4. If there is loss (Timer expires)
 - threshold := cwnd/2;
 - Go to step 1

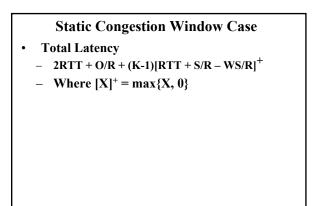
Macroscopic Description of Performance of Tahoe


- Ignore the Exponential Growth period
- Assume that CWND Oscillates between W and W/2
- Assume RTT is known
- Maximum Segment Size = MSS = S
- (Transmission Rate) Throughput varies between W*S/RTT and W * S/(2*RTT)
- Average Throughput = 0.75 W*S/RTT

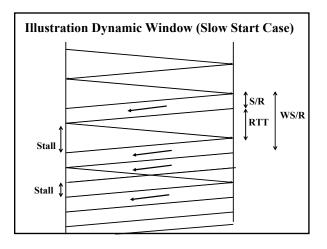
Modeling Latency in Tahoe for Small File Transfers

- If the files are small the **slow start phase** will have impact on the latency of session
- Latency: Time from the client initiates a Transmission connection till it receives the requested object
- Assume:
 - No packet errors of any type (No retransmits)
 - Sender window is bounded by CWND and not by receiver buffer
 - All headers have no bit overhead
 - Maximum segment size : S
 - File/Object size = O
 - Link capacity ${\boldsymbol{R}}$ bps and is allocated to the session
 - RTT is known (RTT excludes the transmission time of the packet)


Static Congestion Window Case


- Description at Sender side:
 - Transmit W packets back-to-back at the beginning
 - (Repeat till End Of File)Transmit 1 packet for every ACK
 - Cases to consider for latency
 - 1. WS/R > RTT + S/R
 - 2. WS/R < RTT + S/R
- If (WS/R > RTT + S/R)
- ACK arrives before first window of packets are transmitted.
 - Note: The next ACK will arrive in an interval of S/R
 - Sender has no stalling
- Total Latency = Connection establishment time (RTT) + {File Request time and First bit of file arrival delay }(RTT) + O/R = 2 RTT + O/R (For Tahoe)

Static Congestion Window Case


- If (WS/R < RTT + S/R)
 - Sender Completes transmission of W packets before the first acknowledgement arrives
 - Sender stalls
 - When the first ACK arrives it transmits a new packet
 - Once the first ACK comes, (W-1) ACKs arrive with time spacing of S/R. For each ACK sender transmits one packet
 - Sender alternates between transmitting W packets and stalling for the ACKs till it completes the entire file transfer
 - The file/object size as a multiple of CWND is denoted as K = O/WS (round it to the nearest integer)
 - Number of times sender stalls = (K-1)
 - Total Latency = Connection establishment time (RTT) + {File Request time and First bit of file arrival delay }(RTT) + file transfer time + (k-1) Stall times = 2 RTT + O/R + (K-1)[RTT + S/R - WS/R]

Dynamic Congestion Window Case

- File size = \mathbf{O}
- Number of Segments = **O**/**S**
- Initial CWND = 1
- **CWND = CWND + 1** for each ACK
- **i**th **window** has **2**ⁱ⁻¹ segments
- Let **K** be the number of windows covering the segment
 - $\mathbf{K} = \min \{ k: 1 + 2 + 4 + ... + 2^{k-1} \ge O/S \}$
 - $K = \min \{k: 2^k 1 \ge O/S\}$
 - $K = Log_2(1 + O/S)$

Dynamic Congestion Window Case

- Number of segments in i^{th} window = 2^{i-1}
- Transmission time for i^{th} window = $(S/R)2^{i-1}$ •
- Stall time for i^{th} window = $[RTT + S/R (S/R)2^{i-1}]^+$ ٠
- Latency = $2RTT + O/R + \Sigma[RTT + S/R (S/R)2^{i-1}]^+$
- Let \mathbf{Q} = Number of times the sender will stall for $\mathbf{O}=\infty$
 - $Q = \max\{i: RTT + S/R (S/R) 2^{i-1} \ge 0\}$
 - $= \max\{i: 2^{i-1} \le (1 + RTT/(S/R))\}$
 - $= \log_2(1 + RTT/(S/R)) + 1$
- Actual number of Stalls $P = min\{Q, K-1\}$.
- Latency = $2RTT + O/R + \Sigma[RTT + S/R (S/R)2^{i-1}]$ ٠ $=2RTT + O/R + (2^{P} - 1)S/R + P[RTT + S/R]$

Example for Slow Start

Assume S = 536 bytes; RTT = 100 milliseconds; O =100 K bytes; Number of windows covering this files are $K = \log_2(O/S + 1) = 8$

R	O/R	Р	O/R + 2RTT	Latency with slow Start
28kbps	28.6 sec	1	28.8 sec	28.9 sec
100kbps	8 sec	2	8.2 sec	8.4 sec
1Mbps	800 msec	5	1 sec	1.5 sec
10Mbps	80msec	7	0.28 sec	0.98 sec 🔶 🛁

Slow Start Adds high delay when the transmission rates are high