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Abstract—Connected embedded systems in the realm of smart
infrastructures comprise ubiquitous end-point devices supported
by a communication infrastructure. Device, energy supply and
network failures are a reality and provisioned communications
could fail. Self-organization is a process where network devices
cooperate with each other to restore network connectivity on
detecting network connectivity failures. Self-organized networks
are envisioned to be hierarchical, implying that a root device is
expected to spend more energy to forward the entire network’s
data. This leads to battery exhaustion and therefore a single point
of failure in the system. In this paper we address this problem by
proposing an energy-governed resilient networking framework.
Our framework enforces a policy to throttle upstream network
traffic to maintain energy drain at the root device. To demon-
strate the effectiveness of the proposed policy, we designed our
experiment framework using Nano-RK and FireFly; a lightweight
operating system and sensing platform respectively.

I. INTRODUCTION

Smart infrastructures comprise ubiquitous devices commu-
nicating with each other via a communication network towards
a common goal; such systems are called connected embedded
systems or popularly known as the Internet of Things (IoT).
These devices as examples are sensors (temperature, humidity,
air quality for example), actuators, mobile phones and network
routers. An example connected embedded system in a smart
home is shown in Figure 1; home occupants can monitor their
home through a cloud service which in turn is connected
to various devices. This system is heterogeneous from all
aspects of technical capabilities of these devices, making it
an interesting and promising paradigm for the future [1].

Devices failures and energy supply disruptions in the con-
nected embedded systems are a reality. Failure of devices
supporting store-and-forward network functions disrupts com-
munications and critical data for troubleshooting and moni-
toring the failure is unavailable. This motivates the need for
network self-organization where devices sense failure and au-
tonomously restructure the network topology and use on-board
battery to support communications. Thus, self-organization
allows for data collection even when provisioned network ser-
vice is unavailable. To achieve scalability in the self-organized
network, hierarchical networks are being proposed [2].

Self-organized hierarchical networks make a tacit assump-
tion that nodes (devices) higher in the hierarchy have capa-
bilities to support higher volume of data communications.
Such nodes forward data from devices below them in the
hierarchy along with their own data traffic, making traffic
supported by network nodes asymmetric. The energy drain
on devices in higher layers of the hierarchy will be more than
ones below them. This may lead to a single point of failure

Fig. 1: We illustrate a connected embedded system in a smart home.
Home occupants can monitor and control various devices through an
internet based cloud service.

in the self-organized network, especially when the root node
of the hierarchy fails and no other device is able to reach
a functioning internet gateway. We would not want network
self-organization itself lead to nodes being disconnected from
the communication infrastructure.

A general energy model E for a network device is

E =
Eb

ηPA

(
H +

B∑
c=1

Pc

)
+ EC + ES , (1)

where the radio frequency (RF) communication cost is ex-
pressed in terms of energy cost per byte of data Eb, efficiency
of the RF power amplifier ηPA ranging between 0 and 1, size
of the packet header H in bytes and the payload P ’s size
of B bytes. Eb is the energy at the RF antenna needed to
overcome the energy in the channel to transmit a byte. We
observe that computation costs EC and static energy ES due
to leakage current during device’s idle time are constants by
modern technology standards. Assuming that Eb, ηPA and H
are fixed, the RF communication costs will increase linearly
with payload aggregation at the root device.

In this paper we propose an energy-governed resilient
networking framework to maintain the energy drain at the
new root device in a self-organized network. Our proposed
framework employs a three phased cycle. In the first phase,
the network is monitored to understand the RF characteristics
between each pair of network nodes. Using the RF behavior
data among network nodes, the network self-organizes into
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a hierarchical communication tree in the second phase. The
second phase ensures that nodes only communicate with other
nodes which have the best signal quality for better commu-
nication reliability. This will reduce energy costs from re-
transmissions and other RF characteristics such as interference
or noise. This phase also includes other functions such as
scheduling communications to avoid transmission collisions.
In the third phase, the communication schedule enforces
a policy for energy-governance after self-organization. This
policy throttles upstream traffic towards the root device such
that the net volume of traffic supported at the root device is the
same as before self-organization to maintain its energy drain.

The energy-governed policy can be implemented in two
ways to throttle upstream network traffic. We propose packet
size modulation as one method of assigning the leaf nodes
a packet size to retain aggregated packet size at the root
node as before self-organization. This means that the same
communication schedule can be used, but intelligence models
needed to decide how data is managed with the new packet
size is out of scope for this work. Suppose, we define data
resolution as the quantity of a specific kind of data to make
a meaningful inference. The data resolution using packet size
modulation will see graceful degradation as data has to be
accommodated within the adjusted packet size. An alternate
implementation for this policy is to retain the packet sizes
for network nodes, but allow them to transmit with larger
time intervals so that net packet traffic at the root node over
larger time intervals is still retained. This results in retaining
resolution of sensed data, but at the cost of delay. In the system
of interest, we believe graceful degradation of data resolution
is acceptable due to rapid changes in operating environments
leading to continuous monitoring of the smart infrastructure.
Hence in this work we implement packet size modulation to
enforce our energy-governance policy.

We developed our proposed algorithm using Nano-RK, a
lightweight operating system for real-time sensing applications
[3]. The proposed algorithm was implemented on FireFly
devices, a lightweight sensing platform representative of a
broad class of devices in connected embedded systems [4].

The remainder of this paper is structured as follows. Net-
work model and assumptions for this work are discussed
in Section II. We discuss related work in Section III. We
propose our energy-governed resilient networking framework
and algorithm in Section IV. We discuss our implementation,
energy model and energy analysis in Section V. We discuss the
future energy trends in Section VI. Finally we discuss future
work and conclude in Section VII.

II. NETWORK MODEL AND ASSUMPTIONS

Our network model comprises end-point devices commu-
nicating with a gateway to the internet. Each cluster of end-
devices self-organize to reach a functioning internet gateway
during disasters. We use the terms “nodes” and “devices”
interchangeably. Following are our network assumptions,

1) Nodes use Time Division Multiple Access (TDMA) for
medium access. We chose TDMA because it is a deter-

ministic medium access scheme when used in centralized
control mode. This leads to accurate energy measure-
ments. We assume local synchronization in the network.

2) The energy consumption due to inefficiencies in the RF
power amplifier is a constant.

III. RELATED WORK

Self-organization and energy awareness has been studied
and applied for specific network applications in the realm of
mobile ad-hoc networks, sensor networks, internet of things
and smart metering infrastructure in the smart grid [5][6] [7]
[8]. These works have centered around proposing clustering
techniques, organizing cluster-heads and creating a hierarchi-
cal structure among them for end-to-end connectivity and
scalability purposes. Cross-layer designs have been used for
designing scalable network self-organization algorithms for
smart metering infrastructure in the smart grid [2]. Addition-
ally, centralized power control has been implemented in cel-
lular and other wireless network deployments as interference
mitigation strategies but not for energy savings [9].

Network monitoring metrics have been studied for various
network applications and deployment environments. Under
certain conditions of hardware, RF chip being used, transmit
power levels, it has been shown that Received Signal Strength
Indicator (RSSI) is a good indicator of channel quality [10].
It has been experimentally established that RSSI provides
little insight to determining channel quality, rather needing
correlations between symbols, packets and packet error rates
to establish Link Quality Indicator (LQI) metrics [11].

IV. ENERGY-GOVERNED RESILIENT NETWORKING

In this section we propose our energy-governed resilient
networking framework as a three phase continuous cycle.

A. Phase 1: Network Monitoring

The internet gateway initiates the self-organization process
when it does not receive scheduled data packets from nodes.
It starts a new TDMA frame and requests nodes to transmit
pilot beacons in a particular slot and frame corresponding to
their identification number as shown in Figure 2. Each node
transmits the beacon during its slot and sleeps for the rest
of the frame. During all other frames, the node is constantly
listening for other node’s transmission. For the beacons heard,
a node records the quality of the channel using metrics such as
RSSI or LQI. Finally, after the frames for beacon transmission
are completed, the nodes then report the quality of channel
for every other node’s beacons to the internet gateway in their
respective frames. The internet gateway constructs a map as
a matrix for the channel quality metric as shown in Figure 3,
where the nodes reported the RSSI values for beacons from
other network nodes and the internet gateway.

B. Phase 2: Self-Organized Network Construction

We construct the self-organized network tree in a way simi-
lar to the self-organized network constructed for smart meters
in the smart grid [2]. Our network formation algorithm begins
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Fig. 2: We illustrate with an example for RSSI collection from
network nodes to construct the RSSI map in Phase 1. In each frame,
a node transmits in its slot and sleeps during other slots, while other
nodes listen to the node’s transmission to record RSSI values.

Fig. 3: We illustrate the RSSI values between all pairs of nodes
captured as part of the RSSI matrix. The last column is the RSSI
values for messages between network nodes and the internet gateway.
The variations in RSSI values indicate that not all node to node
communication exhibit similar RF behavior. Hence this motivates the
need to communicate with neighbors with best RF behavior.

at the node with maximum channel quality to the internet
gateway; node with maximum value for metric in the last
column of Figure 3. A binary tree is built recursively starting at
the root such that for each parent, nodes with highest metric
value to the parent become its children. These children are
chosen by excluding those nodes which are already connected
to avoid loops. Child nodes which do not find any successor
nodes will send a message upstream to the root node conveying
no further reachability. The root node waits for a period and
broadcasts a tree completion message. Any node which hears
this message and is still not connected requests its neighbor
node with maximum metric value to accept it as its child. We
leverage the relationship between connectivity and coverage
for wireless sensor networks for ensuring connectivity in our
network [12]. Thus, it is possible that we may not always
have a binary tree while we attempt to connect all nodes.
However, this shall not impact our policy’s implementation to
manage energy drain at the newly chosen root device. The
internet gateway learns about the network from the root and
computes the schedule using slot ordering for upstream traffic
to propagate from leaf nodes to the root [13].

C. Phase 3: Packet Size Modulation for Energy-Governance

We hypothesize that communication energy costs increases
with increase in packet size being transmitted as shown in

Equation (1). Our approach to energy-governance is to enforce
a policy to throttle upstream traffic. We propose packet size
modulation to implement the energy-governance policy, where
we vary packet sizes for the rest of the network nodes to
maintain the packet size of the root node as it was before self-
organization. This allows to maintain the same energy drain
at the root node even after self-organization, mitigating the
chances of an increase in energy drain due to forwarding the
self-organized network’s traffic.

Packet modulation adjusts the payload size of the leaf node
since we assume a constant sized packet header. The new
payload size for the leaf Pl in bytes is computed by the internet
gateway as

Pl =

⌊
Pr

N

⌋
, (2)

where Pr in bytes is the payload size supported at the root
prior to self-organization and network size denoted by N . We
use a floor function in Equation (2) to obtain integer payload
sizes. But the payload size cannot be reduced beyond what is
supported by devices. Thus for any given value Pl ≤ H , the
energy cost for goodput will start to increase by observing the
first term of Equation (1). Therefore graceful degradation in
data resolution is coming at a cost of spending more than half
the energy for packet header communication. As devices begin
recovering from failure, Phase 1 ensures they are part of the
new self-organized network and self-organization ceases when
all network nodes are functioning.

We propose three cases of packet size modulation for
limiting energy drain in the self-organized network. The cases
differ in how the value of Pr is chosen by the internet
gateway. These cases also help examine the network’s energy
expenditure for RF communications for different packet sizes.

1) Case 1: Root preserving packet size modulation: The
value of Pr is the payload size of the root node as it
was before self-organization. We call this root preserving
packet size modulation because this scheme makes no energy
consideration for other network nodes. It is possible that on
self-organization a node which was a leaf in normal operation
configuration could be a parent of an intermediate level in the
self-organized tree. Thus it is forced to spend more energy to
support communications in the self-organized network.

2) Case 2: Leaf preserving packet size modulation: The
value of Pr is set to the leaf node’s payload size prior to self-
organization. We call this leaf preserving packet modulation
because this scheme makes a consideration for the energy
drain for the node which was a leaf in the network configura-
tion under normal operations. Since the root is now supporting
only the smallest of the packet sizes from normal operations,
it is possible for the entire network’s energy consumption to
be lower than that of root preserving packet size modulation.

3) Case 3: Probabilistic packet size modulation: We treat
the payload size supported in the network nodes as a random
variable. The payload size takes values between 2 bytes and
80 bytes. Our network structuring mechanism is probabilistic
because we cannot always predict the network structure due
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Fig. 4: We illustrate our testbed of FireFly devices at Carnegie Mellon
Innovation Laboratory

to temporal behavior of the network monitoring metric. For
packet sizes computed by the gateway using Equation (2),
the packet size assignment to network nodes is equally likely
because of unpredictability in network structure. The proba-
bility of the nodes being assigned either of the packet sizes
to be supported in the network is 1

N . If Pi is the payload
size in bytes supported by a node i ∈ {1, . . . , N} computed
by the gateway, the average packet size Pavg of the network

is b
N∑
i=1

Pi/Nc. We set Pr as Pavg , the statistical average of

payload sizes in the self-organized network but not allowing
it to be lower than the smallest allowed payload size.

V. EVALUATION AND ANALYSIS

In this section we describe the implementation and exper-
imental results of energy-governed resilient network frame-
work.

A. Network Testbed

We implemented our proposed framework using FireFly as
our end point devices and Nano-RK as our development envi-
ronment for programming the FireFly. FireFly is a lightweight
sensing platform with an ATmega128RFA1 micro-controller
that is being used for several real-time sensing systems [4]. As
a proof-of-concept, we deployed 8 FireFly devices (network
nodes) around electrical fixtures at Carnegie Mellon Innova-
tion Laboratory. The network structure is shown in Figure 4,
and all the nodes were assumed to be part of one cluster
connecting to an internet gateway. The nodes communicate
with each other wirelessly using IEEE 802.15.4 protocol with
an onboard 2.4 GHz transceiver. Nodes always transmitted at
full transmission power in order for us to model the worst case
scenario energy consumption for communications. We allowed
for node to node communication in Nano-RK allowing for
forwarding aggregated traffic in hierarchical networks.

We subjected the testbed to send data packets of various
sizes among each pair of FireFly nodes. We found little or no
temporal behavior in LQI metrics, but found variations in RSSI
measured from these data packet exchanges. Hence, in this

Fig. 5: We illustrate the energy costs for transmitting and receiving
data packets of different payload sizes assuming a constant sized
packet control header of 40 bytes. We also plot the energy cost model
for transmit and receive obtained using linear regression.

work we use RSSI as the metric to monitor the network and
construct the self-organized network. The RSSI values range
between 0 to 28 for the ATmega128RFA1 micro-controller.

B. Modeling Transmit-Receive Energy Costs

To model the energy costs for communications on the
FireFly devices, we allowed one FireFly node to transmit
and another node to receive. We varied the payload sizes for
transmission from the smallest being 2 bytes to the maximum
possible payload size of 80 bytes in intervals of 10 bytes, with
each packet size seeing multiple transmissions for collecting
training data. We assumed that the packet header is a constant
of 40 bytes, with hardware limiting the maximum packet size
of 128 bytes. We measured the current drawn by the FireFly
node and voltage across it only for the transmission time and
the reception time by programming triggers in Nano-RK at
the start and end of the transmit-receive cycles. This allows
us to compute the energy costs of communication for various
packet sizes. Measurements for packet sizes apart from the
training sizes were collected to test our model’s accuracy.

The energy costs for transmit and receive are plotted in
Figure 5. We observed from our measurements that with
increase in packet size, both transmit and receive energy costs
increase linearly. The energy costs in µJ for transmit (ETx),

ETx(P ) =
ETx

b

ηPA

(
H +

B∑
c=2

Pc

)
≈ 101.4 + 2.93P, (3)

and receive (ERx),

ERx(P ) =
ERx

b

ηPA

(
H +

B∑
c=2

Pc

)
≈ 164.9 + 1.96P, (4)

are modeled as a function of payload size P ∈ {2, 3, . . . , 80}
in bytes. These models represent the communication energy
costs discussed in Equation (1) and energy per byte needed
for transmission and reception are denoted by ETx

b and ERx
b

respectively. We observed large deviation in our receive energy
model because the receive cycle in FireFly is not a fixed
duration and is dependent on the overhead imposed by packet
retransmissions and error recovery mechanisms.
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(a) Original network structure (b) Scenario 1 (c) Scenario 2

Fig. 6: Figure (a) illustrates a hierarchical network configuration for normal operations and the packet size supported at each level of the
hierarchy. Figure (b) illustrates the configuration for Scenario 1, where an intermediate node N3 in Figure (a) is promoted to be a root node
after self-organization. Figure (c) illustrates the configuration for Scenario 2, where N7 as a leaf node in Figure (a) is promoted to be a root
node in the self-organized network.

We use this energy model to predict the cost of self-
organization based on packet sizes supported by nodes after
self-organization. Our model predicts the energy costs with an
average accuracy of 97% and 92% for transmit and receive
respectively for the test samples. While there is linearity in
energy costs for the entire packet’s size, we acknowledge that
energy cost of useful byte transmission increases as payload
size decreases. Based on our energy models, at least 36 bytes
of transmission payload and 85 bytes of reception payload
are needed to overcome the cost of transmitting or receiving
40 bytes of fixed size header. However, our hypothesis of
nodes needing to spend more energy because of forwarding
aggregated traffic resulting in larger packet sizes is valid.

C. Energy-Governance Analysis

We observed changes in RSSI values with high variance for
every cycle of our proposed framework. Hence, the network
structure was not predictable. For each of the cases discussed
in Section IV, we consider two network structures we observed
as examples to analyze energy costs after self-organization.

The network structure under normal operations is as shown
in Figure 6(a), with each leaf node N5−7 sending packets
with a payload size of 10 bytes. Each parent node appends its
payload of 10 bytes to the payload it receives from its children
and forwards the traffic to its parent node. We allowed node
N1 to fail by disconnecting it from the network which was
connected to the internet gateway. We describe the instance
of two observed topologies as Scenario 1 and Scenario 2
shown in Figures 6(b) and 6(c) respectively. The difference
between these scenarios is that an intermediate parent node
N3 is promoted to the root node on self-organization in
Scenario 1 and the leaf node N7 promoted to being the root

node in Scenario 2 on self-organization. We now analyze the
RF energy costs for both scenarios and the three cases and
compare the energy costs if nodes were still to send packets
at the same rate and payload size as for normal operations.

1) Case 1 (C1): The new payload size for root preserving
packet size modulation is computed using Equation (2). The
packet sizes in Scenarios 1 and 2 (S1, S2) will be 5 and 2
bytes respectively. In Table I, we see that for all nodes in
both scenarios, the energy consumption for communication
drops compared to the scenario when there was no energy-
governance in self-organization. Thus from our observations
we see that root preserving self-organization helps in lowering
the energy consumption for communications for the entire
network. The energy savings we see for Scenario 1 and
Scenario 2 are 17.06% and 27.24% respectively.

2) Case 2 and 3 (C2, C3): For both the leaf preserving
packet size modulation and probabilistic packet size modula-
tion and the respective scenarios, the packet size at the leaf
nodes was 2 bytes as shown in Table I. The energy savings in
these cases and the respective scenarios are the same as case
1-scenario 2 (C1 : S2), which yielded 27.24% energy savings.

Our experiments and analysis first validated our hypothesis
of communication energy costs increasing linearly with in-
crease packet sizes. Then we proved that energy-governance
to maintain energy drain at the root device was possible by
throttling upstream traffic. Our analysis shows that energy-
governance implemented using packet size modulation can not
only energy drain on root device, but also on on other network
nodes for various network structures with different packet size
modulation strategies.
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C:S N2 N3 N4 N5 N6 N7 TE

Rx Tx E Rx Tx E Rx Tx E Rx Tx E Rx Tx E Rx Tx E
NG:S1 20 30 392.1 50 60 538.8 0 10 130.3 0 10 130.3 10 20 343.2 0 10 130.3 1665
NG:S2 20 30 392.1 0 10 130.3 0 10 130.3 0 10 130.3 10 20 343.2 50 60 538.8 1665

C1: S1 10 15 328.55 25 30 401.9 0 5 115.65 0 5 115.65 5 10 304.1 0 5 115.65 1381.5
C1: S2 4 6 290.42 0 2 106.86 0 2 106.86 0 2 106.86 2 4 280.64 10 12 319.76 1211.4

C2: S1 4 6 290.42 10 12 319.76 0 2 106.86 0 2 106.86 2 4 280.64 0 2 106.86 1211.4
C2: S2 4 6 290.42 0 2 106.86 0 2 106.86 0 2 106.86 2 4 280.64 10 12 319.76 1211.4

C3: S1 4 6 290.42 10 12 319.76 0 2 106.86 0 2 106.86 2 4 280.64 0 2 106.86 1211.4
C3: S2 4 6 290.42 0 2 106.86 0 2 106.86 0 2 106.86 2 4 280.64 10 12 319.76 1211.4

TABLE I: This table illustrates the energy costs for self-organization under various cases and scenarios. The network’s RF energy costs after
self-organization in shown in the last column. In all three cases of self-organization, there is savings for total RF energy in the self-organized
network compared to scenarios when there is no energy-governance as shown in first two rows. The variables Tx, Rx are the transmit,
receive payload sizes in bytes, E and TE are RF energy at each node and the entire self-organized network respectively in µJ . The variable
C indicates the case of energy-governance and S is the scenario. The case with no energy-governance is is denoted by NG.

VI. FUTURE ENERGY TRENDS

The computation technology evolves with time and we
are seeing the advent of low-power devices where cost of
computation is getting lower and lower. We envision that this
trend will lead to such constrained devices to have negli-
gible constant computation energy costs. Though RF power
amplifiers are not very efficient today, their efficiency has
improved compared to their predecessors. Hence, even if we
assume that we achieve 100% efficiency in power amplifier
technology, the traffic volume component of communication

energy cost Eb/ηPA(H +
B∑

c=1
Pc) in Equation (1) will still

remain. This is because Eb will still have to spent to overcome
the inherent energy in the channel. Therefore even if all other
components are fully optimized, policy enforcement is the
only other platform-independent solution for energy savings
on these constrained devices. How this policy is implemented
by applications in this system is an interesting problem for
the future. Policy could be uniformly enforced across the
network if the high data resolution from all devices provide
no additional insights into the current functioning of the
infrastructure, thus allowing for graceful degradation in data
resolution. The policy can be enforced non-uniformly based
on the need for high resolution data from a subset of devices
if it justifies the root device’s communication cost.

VII. CONCLUSION AND FUTURE WORK

We hypothesized and proved that energy costs for communi-
cation for a device increases with packet size. In self-organized
hierarchical networks, the root device could fail due to rapid
exhaustion of its battery by forwarding the entire network’s
traffic in addition to its own. We proposed an energy-governed
resilient networking framework to mitigate the energy drain
on newly promoted root devices by enforcing a policy to
throttle upstream traffic. We proposed a packet size modulation
technique to adjust packet sizes of other network devices to
retain packet size at the root device and thereby maintaining
its energy costs even after self-organization. We developed
and implemented our proposed framework using Nano-RK
and FireFly, which together are representative components in
connected embedded systems. Hence, our work can be used as

a platform/hardware independent solution for energy savings
in the self-organized networks. On a small scale we achieved
about 17% − 27% of energy savings, but we envision larger
savings and thus better network longevity in very critical and
large-scale operating environments in this system. As future
work, we will model the impact on application performance
due to energy governance in connected embedded systems.
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