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Abstract—The Internet of Things is an ever-progressing area.
As the number of Internet-connected devices grows, their security
grows in complexity. The risk pertaining to the insecurity of these
networks is also heightened by the fact that the user’s physical
environment can be affected by network attacks. The IEEE
802.15.4 wireless network standard provides MAC layer security
but does not require MAC packet header encryption, which
leaks useful information to an eavesdropper about the network
topology. Prior work has demonstrated the use of obfuscation
for wireless routing, but there is little existing work targeting
energy-efficient topology obfuscation.

Our work provides a method for obfuscating the network
topology of an IEEE 802.15.4-based network by changing net-
work association. Specifically, we propose the assignment of
multiple aliases to each device during the network association
phase to give the impression of many devices, wherein the
role that a device presents can be further manipulated. We
present two algorithms for coordinating aliases with the network
authority, both providing multiple MAC addresses per device to
degrade a potential attacker’s ability to perform reconnaissance
attacks. To evaluate our approach, we enhance the corresponding
implementation in the popular ns-3 network simulator. We
show that the achieved topology obfuscation comes in trade for
increased overhead of the association process, both data overhead
and latency, a trade-off that we study via simulation. Our ns-3
enhancements will be made publicly available as an open-source
ns-3 branch, providing resources for the community and a way
to validate and expand up on our work.

I. INTRODUCTION

The Internet of Things (IoT) and the concept of connecting
our day-to-day objects is an ever progressing area and one that
has been greatly commercialized. The proliferation of these
systems also means a continued growth in their complexity.
Wireless networks by nature have properties that make these
systems harder to secure compared to wired devices. Introduc-
ing complexities to the equation, such as battery-based devices
for example, may increase security threats; which motivates us
to move away from traditional methods and having to think
of new ideas for security.

Among the many security challenges brought on by the
emergence of IoT, one of the most challenging to grasp is
the fact that our assets are no longer digital, but rather expand
into the physical world through sensing and actuation.

In their 2020 paper, Akestoridis et al. introduce an open
source Zigbee network security analysis tool called Zigator [1].
Through this work they found that by pairing the short MAC

addresses, stated by the IEEE 802.15.4 standard, between
source and destination packets, an attacker can infer the
network topology. This results primarily from the fact that the
IEEE 802.15.4 standard provides for no security protections
of MAC packet headers. Hence, we are motivated to address
the question of how to hide or obfuscate this information.
Though not a direct vulnerability, it can be leveraged as a
stepping stone by attackers for building a greater threat and
compromising the physical well-being of users.

Attack Model: The risk and harm of this leak is specific
to a threat model that assumes an attacker to be a passive
eavesdropper [2]: attackers that make use of information
leaks at the reconnaissance phase to conduct a plan for a
successful attack. In addition, the attacker will not hold any
prior knowledge of the network topology since the main focus
is acquiring that knowledge through the information leak.
Finally, the attacker does not have the resources to do signal
detection to infer the location of the devices or physically
locate and count the number of devices in the network.

Project Motivation: As mentioned above, this project ex-
tends the work done in Zigator [1]. Zigbee [3] is one of
the network protocols mostly used in commercial IoT and
its lower layers are based on the IEEE 802.15.4 protocol.
During their experimental setup, the authors found a class of
attacks categorized as reconnaissance attacks [1] and provided
a process for identifying the arrangement and roles of devices
in a Zigbee network.

Figure 1 illustrates a Zigbee network and how the re-
connaissance attack mentioned above looks like while con-
sidering our attack model using publicly available data from
Akestoridis et al. [4]. The image shows a hub connected with
another mains-powered device acting as a Zigbee router and a
battery-based end device. Under this image we see a capture
of packets, seen through the Wireshark [5]tool. We are able
to see how the communication between this network looks
like and by observing only the MAC header we can infer the
topology as shown at the bottom of the image.

By leveraging this information, an attacker can passively
detect the types of packets being sent in a network (e.g., Data
Requests, which are sent by Zigbee End Devices and Routers),
thus establishing a profile of device roles in the network.
Since certain commands are issued only by devices in certain
roles, this provides useful information for analyzing encrypted



command traffic. The attacker could next launch a Denial of
Service (DOS) attack to force a factory reset on a device [1].
The attacker could also forge and send beacon packets to
all the Zigbee Routers, which would cause Personal Area
Network Identifier (PAN ID) conflicts. The Zigbee Routers
would contact the Zigbee Coordinator which would then set
up a new PAN ID. If the attacker jams the network command
that updates the PAN ID (which the attacker can detect by
inspecting certain unencrypted header fields [1]) this could
cause End Devices and Routers to not receive the command to
update their PAN IDs, which can result in disconnections and
is a further point of vulnerability in certain Zigbee networks.

Obfuscation is a method that looks to make the entity harder
to comprehend. This contributes in exhausting the resources
of malicious actors, changing their motivation or their attack
method. No matter what, obfuscating the topology will add
an extra step into the malicious actors’ attack path. One com-
monly used obfuscation method in networks is using dummy
packets. The dummy packets provide deceptive information to
obfuscate whichever goal is considered.

In reality, security research is commonly aimed specifically
at vulnerabilities that can be directly attacked, but most com-
mon attacks, like DDoS attacks, make use of reconnaissance
attacks as the first phase in building the attack scenario [6].
One of the main problems for wireless networks has been the
inability to provide a feasible protocol for securing commu-
nication at the MAC Layer. In decentralized networks, this is
a bigger problem due to lack of structure and coordination
in the system. Hence, the obtained non-encrypted information
can make the hosts susceptible to active attacks [2].

As mentioned previously, the IEEE 802.15.4 protocol does
not encrypt MAC headers. Though there is work done for
adding encryption to the MAC header [7], but that work never
mentions the energy constraint. In our work, we propose two
algorithms that use obfuscation, specifically dummy packets,
to fix this issue by giving an impression of many devices
associating into the network. We provide an evaluation on the
trade-off between obfuscation and energy consumption.

In the rest of this paper, we first cover background on the
protocol and relevant concepts in Section II. We then give a
summary of related approaches to fixing similar issues in Sec-
tion III. In Section IV we present our obfuscation methods and
their implementation in ns-3. Next, we provide the project’s
evaluation metrics in Section V-A. In Section V-B we go over
our experimental setup and our simulated data (Section V-B1
to Section V-B2). Finally, we discuss potential future work
and the contributions from this project in Section VI.

II. BACKGROUND

Before diving into the details of our work, we provide some
relevant information on wireless ad hoc networks, the IEEE
802.15.4 standard for low-power wireless networks, and the
popular ns-3 network simulator.

A. Wireless Ad hoc Networks
Wireless networks consist of an infrastructure of devices or

nodes that are connected through emission of electromagnetic

Fig. 1: In a Zigbee reconnaissance attack, an eavesdropper analyzes
packet headers to identify devices and determine the network topol-
ogy and roles of devices in the network. The devices shown are
(a) a SmartThings Smart Bulb, (b) a SmartThings Motion Sensor
(IM6001-MTP01), and (c) a SmartThings Hub (STH-ETH-200).

signals through the air rather than rather than wires [8]. These
systems become harder to secure due to the openness of the
medium, their additional technical challenges related to legacy
wireless, complex physical layer implementations, and market
pressures for affordability and flexibility [9].

Ad hoc networks lack a central infrastructure and use peer-
to-peer communication, creating a space used commonly for
fewer devices. In addition, ad hoc networks are constrained to
low energy consumption to extend device life, since most of
the devices used in these networks rely on battery power or
other exhaustible means [10].

B. IEEE 802.15.4 standard

The IEEE 802.15.4 standard [11] is the foundation for
the vast majority of protocols used for ad hoc networks
(including Zigbee), due to its focus on low cost and low-power
networking in commercial and residential environments. The
standard provides the physical layer (PHY) and medium access
control (MAC) sublayer specifications for low data-rate wire-
less connectivity among portable devices with limited battery
consumption, targeting scenarios where tens to hundreds of
kilobits-per-second of raw data throughput is sufficient.

1) Participating Devices: Two different device types can
participate in an IEEE 802.15.4 network. First, a Full Func-
tion Device (FFD) is intended to serve as a coordinator or
PAN coordinator, such as a Hub or a light bulb. Second, a
Reduced Function Device (RFD) is intended for end devices,
specifically devices that are extremely simple, such as a sensor;



Fig. 2: MAC command frames are dedicated frame types in the
IEEE 802.15.4 standard used to carry commands and their associated
payload. The command frame structure is shown here, where the
number above each field indicates the corresponding number of
octets.

it does not have the need to send large amounts of data, and
only associates with a single FFD at a time. Throughout this
paper, a PAN coordinator is assumed to be an FFD, and an
end device is assumed to be an RFD.

The IEEE 802.15.4 standard further differentiates between
beacon enabled and non-beacon enabled networks, with the
main difference being whether or not the PAN coordinator
regularly emits beacons. Beacons are particularly useful in net-
works that require synchronization or heartbeat functionality.
The PAN coordinators in non-beacon enabled networks wait
for end devices to send beacon requests to initiate network
interaction, such as transmitting all pending data for the
end device after it wakes from low-power sleep. Another
way of the networks’ variability in energy maintenance is
providing the RFDs, from the PAN Coordinator, with short
MAC addresses to use after associating.

2) MAC Command Frame Format: The 2011 version
standard defines four MAC frame structures: beacon, data,
acknowledgement, and MAC command. These frames are
used respectively for transmitting beacons, transferring data,
confirming successful reception, and issuing commands. In
Figure 2, one may observe that there is reserved space in
the MAC command frame payload to set the command type
identifier, which may, for example, identify a data or beacon
request.

3) Transaction Process: One of the primary goals of the
standard is to reduce energy consumption, which achieves it
by using the MCPS-DATA.request and MLME-POLL.request
primitives. Since an RFD will typically sleep for the majority
of its lifetime, the PAN coordinator will queue all packets
destined for an end device in an indirect transmission queue.
Using the MLME-POLL.request, an RFD will be set to
wake up at a certain frequency to verify for queued data
from the coordinator by sending it an MCPS-DATA.request.
These transaction control messages thus allow end devices to
coordinate data exchanges with the PAN coordinator to make
the best use of battery energy and sleep cycles.

4) Association Process: When an end device wants to join
a PAN, it uses the association process defined in the standard
and graphically outlined in Figure 3. The figure shows the
MAC and network layer interaction between the coordinator
(right side) and a device (left side). In a non-beacon enabled
network, the device being associated, for example an RFD,
initiates the process by scanning channels to find a network to
join. Once identified, it sends a beacon request intended for

Fig. 3: The association process makes use of the data transaction
method specific to this standard, and concludes with the FFD con-
firming the device’s association by sending an association response
containing the device’s new short MAC address.

a coordinator. The coordinator replies with a beacon which
contains information like the network PAN ID and the Coordi-
nator address. Next, the device sends an association request to
the coordinator. Once the coordinator receives the association
request it responds with an acknowledgment which will set
the end device into idle mode for a variable time to wait.
Meanwhile, the coordinator processes the association request
and proceeds to prepare an association response packet, with
payload that contains the device’s new short MAC address.
This association response is added to the indirect transmission
queue to wait for the device to poll for data. Once the end
device wakes and receives the association response, it will
confirm its association to the network and begin using its new
short address.

5) Security Features: The IEEE 802.15.4 standard incor-
porates the AES-128 block cipher in CCM* mode for MAC
layer encryption and authentication purposes [11]. Depending
on what security level the protocol is set to, each frame
may include a Message Integrity Code (MIC). However, the
Zigbee standard suggests that higher-layer security is sufficient
without this additional MAC layer protection [3].

C. ns-3: Network Simulator

ns-3 is a network simulator that uses the Discrete Event
Simulation (DES) model, specifically used for research and ed-
ucation [12]. It is a free and completely community dependent
project and used as the main simulating tool by many research
entities. It has a feature of being able to provide packet capture
(PCAP) files to visualize the packets in Wireshark [5].

The current ns-3 software includes a base skeleton of
the IEEE 802.15.4 network model and associated protocol
implementations. Unfortunately, the primitives specific to the
standard’s transaction method, association process, and energy
consumption variability are incomplete or incorrect.

The current implementation of the ns-3 Low-Rate Wireless
Personal Area Network (LR-WPAN) model is implemented
under the assumption that all devices are never idle and are
already associated into the network.



We identify other work that uses the ns-3 simulator and
acknowledged and attempted to fix the lack of energy consid-
erations in the LR-WPAN model, but we were unable to locate
the implementation code for these works [13], [14]. We did
not find work that addresses the lack of device association.

III. RELATED WORK

While we are unaware of any prior work that designs topol-
ogy obfuscation mechanisms specific for low-power wireless
ad hoc networks, we provide a broader summary of relevant
related work in the area of obfuscating network information
against passive eavesdroppers. There is a range of work in this
space, but there is a fair amount of difference in the actual asset
that is being obfuscated or the means for obfuscation.

A. Obfuscating Network Traffic

Hayajneh et al. [15] propose two methods for obfuscating
routing algorithms specifically for ad hoc networks. Both
of their methods consider the energy constraint of these
type of networks while providing techniques for anonymizing
the source/destination of network traffic. They compare their
techniques with related algorithms used for obfuscation using
probabilistic packet forwarding. An attacker is assumed to
already have knowledge of the network topology. Cao et
al. [16] provide a physical solution for obfuscating network
traffic. They build a framework which uses MIMO in order
to do header blinding, a process of utilizing signal streams to
interfere with real network data streams. Chaddad et al. [17]
propose an algorithm to obfuscate the packet sizes leaked
by network traffic, by looking at disclosed information from
visible features that cannot be hidden through encryption,
including packet sizes.

B. Using Dummy Packets for Obfuscation

Diyanat et al. [18] present the need for obfuscating trans-
mitted data by using dummy packets to augment the data and
preserve user privacy. They state the traffic rate of source nodes
is useful in gaining more information about the participants.
Knowing how augmentation requires extra resources, they
provide a method which minimizes the augmented dummy
packets to maintain their aim of reaching the “source rate
privacy” by not affecting the original packets’ delay distribu-
tion. Yang et al. [19] present a similar approach using dummy
packets with the goal of hiding source locations. They correlate
source location privacy to the occurrence of sensed events and
demonstrate anonymity against a global adversary.

C. Network Topology Obfuscation

Contrary to the work mentioned above, the following de-
scribes a few deception tools used for obfuscating specifically
the network topologies, though we were unable to find related
work aimed at ad hoc networks. Meier et al. [20] created
a tool called NetHide that does dynamic topology obfusca-
tion by targeting path tracing probes. They demonstrate how
their tool can obfuscate topologies without quality reduction.
ProTO [21] is another system that adopts the detect-then-
obfuscate framework. Similar to NetHide, this system looks

to obfuscate network topologies by dynamically detecting
probing behaviors and deceive the attackers by providing fake
network information leading to topologies that are structurally
accurate. These systems were not built targeting low power
area networks, thus the energy consumption of utilizing a
dynamic detection system while at the same time running a
machine language algorithm for distinguishing probe behav-
iors would result in exceeding the devices’ energy limits.

D. Header Encryption

Dalal et al. [7] propose the use of MAC header encryption to
prevent information leakage in low-power wireless networking
protocols. Unfortunately, this work does not give any con-
sideration to energy consumption in battery-based devices or
several other potential impacts of header encryption.

IV. DEVICE ALIASES FOR TOPOLOGY OBFUSCATION

Now we present our approach to topology obfuscation in
IEEE 802.15.4 networks. Our approach relies on the use of
multiple device aliases to give the impression of a network
topology that is far more elaborate than the real topology.

A. Assigning Aliases to Devices

We propose two approaches for allocating device aliases to
achieve topology obfuscation: MAC Layer Determined Aliases
(MLDA) and Network Layer Determined Aliases (NeLDA).
Both of these algorithms rely on using an aliasing method
where each device has multiple MAC addresses that it can
use to interact with the network. The aim is for each end
device to have a list of Extended MAC addresses that it will
use to associate to the network and use for continued commu-
nication, while appearing to be multiple different devices. To
accomplish this, we must first assume that the network layer
will route all aliased traffic from end devices to the intended
coordinator, performing no filtering of aliases or aggregation
of contents across groups of aliases.

The algorithms differ in the methods for acquiring the
aliases, but both yield the desired result that the network
appears to have a different topology than in reality. The design
idea for relying on the association process is due to the
assumption that eavesdroppers will have access to the traffic
even when a device is first joining the network. Thus, as we
will show, both implementations make sure to associate the
fake addresses as soon as the device joins the network. This
ensures that obfuscation is maintained for all devices joining
the network after an attacker begins eavesdropping.

In both algorithms, each device i will have access to a pool
of addresses, and it will choose to use ai of these available
addresses as aliases, in addition to its “real” MAC address,
where 1 ≤ ai ≤ amax and amax is the size of the MAC address
pool available to each device. The choice of ai introduces a
trade-off between identification of individual devices and their
roles in the network and the amount of overhead required for
network association. As ai increases, an attacker will still be
able to infer the topology, though it will be a larger topology
that cannot differentiate real devices from aliases, effectively



limiting the information leaked to the attacker for blueprinting
a greater threat.

1) MAC Layer Determined Aliases (MLDA): Our MLDA
algorithm relies on the existence of multiple Extended MAC
addresses held by each end device, and it chooses its aliases
from those available MAC addresses. Prior to association,
each device is responsible for randomly generating its own
ai value, according to a predetermined probability distribution
and an onboard random number generator (RNG). The device
will then associate using each of a selection of ai of its
amax available aliases and its real Extended MAC address,
each separated by a random waiting time. The waiting time
is needed to avoid bursts of associations that are obviously
initiated by a single device. The MLDA algorithm relies on an
extra primitive that once all aliases are associated, the device
will privately reveal to the PAN coordinator the set of aliases
that should correspond to the real device. In order for MLDA
to achieve the desired obfuscation, we rely on an assumption
that Network layer encryption is used for all post-association
communication using an appropriate network key.

2) Network Layer Determined Aliases (NeLDA): Our
NeLDA algorithm takes an alternate approach by having the
PAN coordinator choose and distribute the MAC addresses
that each end device should use as aliases. This eliminates
the needs for end devices to hold pre-loaded lists of MAC
addresses and to perform random number generation. In
NeLDA, a new device will send an association request with a
meaningless, random identifier to the PAN coordinator. The
PAN coordinator will respond to this request by randomly
choosing the number of MAC addresses ai, choosing ai MAC
addresses to send to the device, and packaging them into a
message with (amax−ai) all-zero addresses to pad the message
to a fixed length. This message is then sent in an encrypted
association response to the device, for example using optional
802.15.4 MAC layer security mechanisms. The device will
then re-associate to the PAN coordinator with each of the ai
received aliases and its true Extended MAC address as before.
In the case of NeLDA, the PAN coordinator has network-
wide control of how many and which aliases are assigned to
end devices. In addition, since the coordinator is assigning
aliases to the device, it does not require the additional step
of identifying which aliases belong to which real device, as
required by MLDA.

B. Implementation of Topology Obfuscation in ns-3

Although ns-3 already has an implementation of the
LR-WPAN model, it is insufficient for our needs due to
absence of the association process, data request, MAC
command frame format, and the indirect transmission queue.
As such, we put significant effort into implementing
all of these capabilities in a private branch of ns-3
to be able to validate and evaluate our approach. We
added functions for the MLME-SCAN.request, MLME-
SCAN.confirm, MLME-ASSOCIATE.request, MLME-
ASSOCIATE.response, MLME-ASSOCIATE.confirm,
MLME-ASSOCIATE.indication primitives. We added the

packet structure for the Beacon Request Command and
an indirect transmission queue class. We also updated all
functions that make use of the indirect transmission queue,
the function for the MCPS-DATA.request primitive, and the
data transaction functions called Pd Data Confirm and Pd
Data Indication. All these changes were made in the MAC
Class and MAC Payload Header class found in mac.cc/.h
and mac_plHeaders.cc/.h respectively. In addition,
since our work additionally targets the energy consumption
and other overhead, we further expanded the ns-3 model to
include simulation of idle mode and polling for data, as it is
important to observe and compare the costs of our approaches.
This effort has yielded a fully implemented primitive to test
and evaluate the exchange of aliases between the PAN
coordinator and end devices. As a secondary contribution of
this work, we will soon release our expanded LR-WPAN
implementation as an open-source branch of ns-3, found in
the ns-3 source code at src/lr-wpan/model/.

V. EVALUATION OF OBFUSCATION METHODS

In order to validate the contribution of our work, we need to
measure how both algorithms, MLDA and NeLDA, are able to
achieve topology obfuscation and the energy consumption that
the obfuscation implementation adds to the standard approach.

A. Evaluation Metrics

We focus on two primary metrics to understand the trade-off
between topology obfuscation and the associated cost.

In order to capture the strength of the achieved topology
obfuscation, we define the visibility as the ratio of total MAC
addresses used to the number of devices, or, equivalently, the
average number of aliases per device. With k devices, the
visibility vk is given by

vk =
1

k

k∑
i=1

(ai + 1) . (1)

Intuitively, a higher visibility indicates a greater degree of
uncertainty in the number of devices present, roughly cor-
responding to the extent to which the behavior of a single
device is partitioned over multiple unique identities. Visibility
can also be interpreted as a measure of the degree of difficulty
the attacker would have in reconstructing the true network
topology.

In addition to the visibility alone, the amount of randomness
in each ai parameter is an important consideration. Fully char-
acterizing the behavior of this parameter, however, depends on
making a specific assumption about its distribution, which we
are not making. However, once known, this randomness could
be captured using common statistical metrics such as variance,
entropy, or others, relative to the assumed distribution.

To capture the cost of topology obfuscation, we measure
the aggregate data flow as the total number of bytes trans-
mitted and received by each end device during the association
process, as a function of the number of aliases and which
algorithm is used.



(a) (b)

Fig. 4: Our simulated scenarios include a PAN coordinator (labeled
“Pan Coord”) with two and seven end devices (labeled “ED”),
respectively, in (a) Scenario 1 and (b) Scenario 2.

With MLDA, the association process will involve associ-
ating under the true identity and the ai aliases, yielding an
aggregate data flow of

fk,MLDA = dMLDA

k∑
i=1

(ai + 1) , (2)

where dMLDA is the number of bytes sent and received in a
single association process under MLDA. Based on the simu-
lation, we state that a standard Zigbee association transaction,
limiting it only to association request packets (21 bytes), data
request packets sent by unassociated devices (18 bytes) and
association response packets (27 bytes), involves transmission
of 66 bytes. The MLDA primitive introduces an additional 17
bytes of overhead, so dMLDA = 83 bytes in this case.

With NeLDA, the association process involves both associ-
ating under all ai + 1 identities as well as exchanging the
padded list of MAC addresses from the PAN coordinator.
Since each extended MAC address is eight bytes in length,
the aggregate data flow for NeLDA is given by

fk,NeLDA = (8(amax + 1) + dNeLDA)

k∑
i=1

(ai + 1) , (3)

where dNeLDA is the number of bytes sent and received in a
single association process under NeLDA. Since NeLDA does
not add overhead per association, the data per association is
equal to that of a standard Zigbee association transaction at
dNeLDA = 66 bytes.

In comparing the communication overhead of MLDA and
NeLDA from (2) and (3), we see that the cost of using MLDA
depends primarily on the average number of aliases used in
the deployment, whereas the cost of using NeLDA depends on
both the average and the maximum number of aliases. As such,
the two algorithms offer different trade-offs under different
probability distributions. Our results in the next section further
reflect this difference.

In addition to the data overhead associated with topology
obfuscation, it is important to note that associating with
multiple identities with random inter-association timing could
add significant latency to the overall association process. The
two main factors that contribute to this latency are the number
of aliases and the inter-association timing, meaning the random
timing between subsequent associations by the same device
using different aliases. To capture this additional timing over-
head, we define the association latency as the total duration
of the association process including all aliases and waiting
times. This latency now has two sources of randomness, one
in the number of aliases ai and one in the inter-association
timing. We let τi,j , for 1 ≤ j ≤ ai, denote the amount of
time that device i waits between associating with its (j− 1)th

and jth aliases, where we slightly abuse notation and let the
real identity be the 0th alias. The total association latency `i
experienced by device i is then given by

`i = aid/rb +

ai∑
j=1

τi,j , (4)

where d is the number of bytes transmitted in the association
(either dMLDA or dNeLDA and rb is the transmission rate of the
channel, so d/rb is the transmission latency per association
request.

Here again, the association latency varies primarily with
the average number of aliases employed by the devices. In
addition, however, the actual inter-association timing is an
important factor in fully understanding the cost of topology ob-
fuscation. If the τi,j values are too small, then the associations
from a single device will appear as a quick burst, which will
present no challenge to the attacker in grouping them together
per device. If the τi,j values are large, then the associations
of multiple devices will mix together and be very difficult for
the attacker to disambiguate, but the association process will
be very time-consuming. When τi,j grows to provide stronger
obfuscation, the resulting latency `i for MLDA and NeLDA
will be very similar.

B. Simulation Study

Using our ns-3 implementations, we set up our test environ-
ment with two different IEEE 802.15.4 network topologies.
The first scenario, illustrated in Figure 4(a), has one PAN
coordinator (FFD) connected to two end devices (RFDs).
The second scenario, illustrated in Figure 4(b), has one PAN
coordinator (FFD) connected to seven end devices (RFDs).

We ran the MLDA and NeLDA algorithms in the two
scenarios illustrated in Figure 4 in a non-beacon enabled
network, increasing the maximum number of aliases amax in
each subsequent trial, stopping at amax = 10. We ran each
trial 25 times to account for random variations, and our results
illustrate averages over these trials with error bars indicating
standard deviation around the average.

Per the ns-3 documentation [12], the built-in L’Ecuyer’s
MRG32k3a random number generator (RNG) creates multiple
uncorrelated substreams of output random numbers, and using
different substreams leads to stronger resulting randomization.



(a) Scenario 1 (b) Scenario 2

Fig. 5: The simulated visibility ratio is illustrated for the two scenarios illustrated in Figure 4 with a different number of end devices as a
function of the maximum number of aliases amax.

(a) Scenario 1 (b) Scenario 2

Fig. 6: The simulated aggregate data flow is illustrated for the two scenarios illustrated in Figure 4 with a different number of end devices
as a function of the maximum number of aliases amax.

As such, we use a different RNG substream for each run of
our simulation, rather than relying on different RNG seeds.

In our implementation, we chose all ai values uniformly
between 1 and amax.

1) Visibility: The plots in Figure 5 illustrate the visibility
ratio for Scenarios 1 and 2, respectively.

As expected, the visibility increases from 1, which rep-
resents no obfuscation, as the number of possible aliases
increases. Due to the increased randomness, the error bars
also grow as the number of possible aliases increases. Since
scenario 2 involves more devices, the probability of having
more varied number of aliases per device is increased. As men-
tioned in the evaluation section, this increases the obfuscation.
Thus, the larger the standard deviation the more obfuscation

in regards to attacker being able or not to find the number of
aliases per device.

2) Data Overhead: Figure 6 represents the aggregate data
flow overhead of both algorithms for Scenario 1 and Scenario
2. For ease of comparison, we normalize the data to the
value with no obfuscation (66 bytes) and plot the increase
in overhead instead of the raw value. As indicated by (2) and
(3), both algorithms yield an increase in data overhead, but
NeLDA increases at a faster rate due to dependence on both
the average and maximum number of aliases, where MLDA
increases linearly in the maximum (or average) number of
aliases. As with the average data overhead, we also see that
the standard deviation of the data overhead increases more
rapidly with NeLDA than with MLDA. This is also due to



(a) Scenario 1 (b) Scenario 2

Fig. 7: Simulated visibility and data overhead results are plotted against each other to illustrate the trade-offs that can be achieved by varying
the maximum number of aliases amax. The best-case scenario would land in the lower-right corner of the plot.

the compounded dependencies of aliases and padding to the
maximum number of aliases exchanged.

We note that acknowledgement packets are not included in
these plotted results for clarity of presentation, but they would
have roughly similar impact on all results. It is also worth
noting that the relatively lower standard deviations in Scenario
2 compared to Scenario 1 are due to the same values for data
overhead being repeated for a larger number of devices, which
yields lower variation in data overhead overall.

3) Trade-off: Figure 7 shows the trade-off between obfusca-
tion and overhead in our methods for Scenario 1 and Scenario
2. The ideal goal is to reach values that fall in the bottom
right. In other words, we are looking for something which
has as much obfuscation as possible and the least amount
of overhead increase as possible. As observed, between both
algorithms and for both scenarios, MLDA is the closest to
reaching this goal, considering NeLDA’s super-linear growth.
However, there are practical considerations at hand that do not
unilaterally favor MLDA, which we discuss in Section VI.

C. Overhead Variation over Time

As the vast majority of the overhead of our obfuscation
methods occur during the association phase, it is also worth
demonstrating the relative overhead at other time of network
operation. To do this, we measure the data overhead at
different times after the start of the simulation, noting that the
association occurs immediately, followed by normal network
operation after the devices have joined the network. Figure 8
illustrates an example scenario with one end device with ten
aliases, plotting data overhead in bytes as a function of time
in seconds. The figure shows the overhead of the device of
both obfuscation methods compared to unobfuscated operation
both during association and during normal network operation.
The idea is to represent the difference in overhead between
the association process and the periodic data request polling

Fig. 8: At the left of the red dotted line is the overhead cost for
the association process for both implementations. To the right of the
line is the overhead cost during the rest of the device life, where all
devices associate their aliases consecutively.

packets. As previously observed, NeLDA has almost twice
as much overhead increase during the association process as
MLDA. However, as soon as the association process ends, the
overhead falls back to additional 12 bytes per alias, where
12 refers to the size of the data request packets after the
devices have been associated. We note that the differences
between algorithms and the overall behavior of the example
is influenced both by the number of aliases, which affects
the vertical scaling and spacing between curves, and the
randomization of inter-association times, which affects the
horizontal position of the transition from association to normal
operation (and back, if associations repeat occasionally).



VI. DISCUSSION AND CONCLUSION

One metric that is not implemented nor measured in this
paper is the randomness in the time interval between the
association processes of the aliases. The time between each
alias being associated needs to be random, as to avoid an
attacker being able to designate packets as aliases based on
a pattern. An implementation of this would only expand
the time in which each fake address is associated, thus it
would not affect the total overhead. In regards to obfuscation,
as the distribution of the inter-association times τi,j skew
higher, the strength of obfuscation will increase on average.
Formal modeling and analysis of this timing behavior and the
improvement in strength of the resulting obfuscation due to
interleaving of associations is left as future work.

Another aspect to consider in this work for the algorithms’
evaluation is the environment factors. Though both imple-
mentations are tested in topologies with one coordinator, a
multihop environment won’t require any change at an im-
plementation level. The algorithms are largely dependent of
the PAN coordinator, thus that ensures correct behavior. In
addition, the environment can affect the choice between one
algorithm and another going above the trade-off. Based on the
results, MLDA is closer to the ideal trade-off compared to
NeLDA, due to being half its overhead. Though this is ideal
reach, there are limitations that make MLDA unusable. If the
network is unstable MLDA may cause problems and increase
the latency due to devices being disconnected. Thus, MLDA
is more suitable for reliable networks with a large number of
participating battery-based devices. In another case, NeLDA
may be preferable, especially when considering networks with
few battery-based devices.

In summary, we have demonstrated that the use of multiple
aliases per device in an IEEE 802.15.4 network can effectively
prevent an eavesdropper from inferring the true topology of
a wireless network, including the identities and roles of the
associated devices. We provide the MLDA and NeLDA algo-
rithms for assigning aliases during network association, and we
analyze the value and the overhead of the resulting topology
obfuscation. To validate our designs, we enhance the IEEE
802.15.4 network model in ns-3 to provide a more realistic
simulation and evaluation. Through our ns-3 simulation study,
we show how MLDA and NeLDA differ in associated cost and
how they effectively trade overhead for obfuscation strength.
We will release our enhanced ns-3 implementation as an open-
source branch to accompany this work.
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