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Abstract
Activity recognition (AR) has become an essential com-
ponent of many applications present in our everyday lives
such as life-logging, fitness tracking, health and wellbeing
monitoring. To build an AR system, one needs to first iden-
tify a set of activities of interest and collect labeled training
data for these activities. However, activities of interest are
not often known in advance. For example, a system de-
signed to monitor a user’s life style for potential diabetes
risk needs to recognize all physical activities a user per-
forms in her daily life. Given the large number of possible
human activities, many of them cannot be foreseen during
the model training time. In this work, we study the problem
of discovering these unknown activities after the system is
deployed by asking users to provide additional labels. Our
goal is to discover all the unknown activities (i.e., obtain at
least one label per class) while minimizing the amount of la-
bels a user needs to provide. We propose SuperAD (Super-
vised Activity Discovery) approach, which combines active
learning, semi-supervised learning and generative model-
ing to discover new unknown activities. We show that the
proposed approach is especially effective when discovering
activities with imbalance class distribution.

Author Keywords
Activity Recognition; Activity Discovery; Active Learning;
Imbalance problem



ACM Classification Keywords
I.2.1 [Artificial Intelligence: Applications and Expert Sys-
tems]

Introduction
Applications such as life-logging and fitness tracking have
become increasingly popular in today’s self-quantification
focused world. These applications rely on the ability of a
system to automatically recognize human activities. In this
work, we focus on systems recognizing activities from sen-
sor readings of mobile and wearable devices.

To build an activity recognition (AR) system, one needs to
first collect labeled training data for a set of activities of in-
terest. However, activities of interest are often not known
in advance. For example, a system designed to monitor a
user’s life style for potential diabetes risk needs to recog-
nize all activities a user performs in his/her daily life. How-
ever, it is impractical if not infeasible to collect training data
for all possible activities in advance, since 1) each user typ-
ically performs a different set of activities based on user’s
life styles and 2) there is a large number of possible activ-
ities, which are unknown to the system before the deploy-
ment (as illustrated in Figure 1).

A more practical solution is to build an AR system to recog-
nize a small set of common activities, and after the deploy-
ment ask a user to provide additional labels to customize
the AR system to the individual. The goal of collecting addi-
tional labeled data after the deployment is to discover new
user activities unknown during the initial training phase. In
this work, we study how to discover new activities with min-
imal supervision, i.e., we aim to obtain at least one labeled
instance per activity class, while minimizing the total num-
ber of annotations required. This problem is further referred
to as supervised activity discovery.
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Figure 1: There is a large variety of activities each user performs
in their everyday life. Discovering the presence of these activities
is essential to many applications including life-logging or fitness
tracking applications.

In the AR domain, the problem of minimizing supervision
was studied in the context of active learning [12, 7, 1]. To
improve the recognition results with minimal supervision, an
active learning system asks a user to label only the most
uncertain instances. Instances considered to be uncertain
typically lie in between activity classes. Thus, labeling un-
certain instances can help refine the decision boundaries
between these classes.

Active learning has been shown to be effective especially
when most of the activity classes are known [10]. However,
in our scenario many user activity classes are not known
prior to the deployment and need to be first discovered.
Thus, using traditional active learning principles to label
only uncertain instances does not necessarily help discov-
ering the unknown activities. To illustrate the challenges of
the discovery problem, we show an example of four activ-
ity classes in Figure 2. Activity class 1 and 2 are discov-
ered, i.e., each of these activity classes we have at least
one labeled instance (indicated by colors other than gray).
Our goal is to discover remaining activity classes (activity
classes 3 and 4). Using a traditional active learning model,
a user is asked to label an instance close to the decision



boundary. Thus, a system updated with a new label can im-
prove its prediction performance on the instances close to
the decision boundary, but it will fail to correctly recognize
instances of the unknown activity classes (activity classes 3
and 4).

Ac#ve&Discovery&&X&Ac#ve&Learning&

25 

!!

1& 1&

1&
1&

1&

1&
2&

2&

2&
2&

2&2&

3&

3&

4&
4&

4&
4&

3&

3&

1&
1&

1& 2&
2&

2&1&

2&

1&

2&

2&
1&

1&

1&

2&
2&

2&
2&

2&

1& 2&
2&

2&

2&

2&

2&
2&

2&

1&

1& 1&

1&
1&

1&

1&

Figure 2: Given the labeled instances of the activity classes 1 and
2 (indicated by colors other than gray), an active learning system
selects uncertain instances lying close to the decision boundary
for labeling (indicated by the arrow). Such strategy typically leads
to improving the prediction performance of instances lying close to
the decision boundary, but does not necessarily help discovering
the unknown activity classes (activity classes 3 and 4)

A naive solution for the supervised activity discovery prob-
lem is to use a random sampling method. This method is
especially effective when activity classes are balanced, i.e.,
there is a equal number of instances per class. However, it
is not clear, how imbalance activity distribution impacts the
discovery performance.

In this work, we propose a Supervised Activity Discov-
ery (SuperAD) approach, which builds on top of an ac-
tive learning framework to discover new activities with min-
imal supervision. SuperAD uses semi-supervised learning
and generative modeling to select instances that are likely

“unknown” and ask users to label them. To the best of our
knowledge, this work is the first to explore the problem of
supervised discovery in the AR domain. Our contribution is
summarized as follows:

• Supervised activity discovery: We propose an in-
telligent approach to discover activity classes with
much less amount of human annotations compared
to the state-of-the-art methods.

• Imbalance activity distribution: We study how the
proposed approach performs on two public datasets
with varying activity distributions.

Related Work
Supervised activity discovery is related to two concepts:
unsupervised activity discovery and active learning.

Unsupervised activity discovery aims at discovering ac-
tivities without any user annotations. This is done by finding
sequences of sensor readings with similar patterns. These
patterns can be discovered using unsupervised techniques
such as frequent pattern mining, clustering or topic mod-
eling [5, 14, 3, 13, 9]. Many of the unsupervised activity
discovery approaches rely on frequent occurrences of the
patterns to discover the activities. Thus, the more frequently
a certain activity occurs, the more likely it will be discov-
ered. However, this makes discovering infrequent activities
a challenging task, especially in cases of imbalanced activ-
ity distribution.

In addition, the output of the unsupervised activity discovery
does not have a semantic meaning. The results of the dis-
covery can be interpreted only if the actual ground truth is
known. This is possible when evaluating the system before
the deployment, but infeasible once the system is deployed



in the wild and no ground truth is available for interpreting
the discovery results. On the other hand, unsupervised dis-
covery of activities is a highly valuable capability, since it
can uncover inherent patterns of sensor readings. In future
work, we will study how to combine such capability with the
proposed supervised discovery approach to further reduce
the amount of requested labels.

Active learning has been studied in many previous works
as a means for improving the AR performance with a min-
imal supervision [12, 7, 1]. It leverages the unlabeled data
to identify uncertain/informative instances for labeling. Ac-
tive learning performs well when all relevant activity classes
are known, since it helps the system to refine the decision
boundaries between the activities. However, in our scenario
only a small amount of activities are known in advance and
many activities need to be discovered first.

The goals of active learning and supervised activity dis-
covery are divergent and often contradictory. While active
learning aims at finding uncertain instances, which lie close
to the decision boundary, active discovery aims at finding
instances of new classes, which typically lie far away from
the existing activity classes. Thus, active learning does not
necessarily lead to fast discovery of new activities.

In this work, we propose an approach which extends active
learning to address the supervised activity discovery prob-
lem. In the following, we first describe the traditional active
learning process. In the next section, we explain how our
proposed approach extends active learning to discover new
activities.

The active learning process can be divided in four steps
as depicted in Figure 3. First, it is assumed that we have
a small amount of labeled data and a large amount of un-
labeled data. The labeled data is used to build an initial

AR model. This model is then iteratively updated with new
labels requested from the user. To select instances for la-
beling, the system performs the following steps. It uses
the current AR model to predict the probability distribution
p(y|x) for each unlabeled instance x:

p(y|x) = [p(y1|x), p(y2|x), · · · , p(yN |x)] (1)

where N is the number of known activities.The system then
selects a candidate for labeling x∗ based on one of the
strategies described below. Once a user labels the candi-
date instance, the new instance is added into the labeled
pool and the AR model is retrained.

!!

Ac#ve&Learning&

28 

2)!predic*on!and!
candidate!selec*on!

3)!label!
request!

4)!model!
retraining!

1)!model!
training!

Figure 3: Active learning process involves four steps: First an
initial AR model is trained, which is then iteratively updated
through the cycle of prediction, candidate selection, labeling and
retraining.

There are three common strategies used for selecting the
candidate for labeling x∗:

1. Entropy-based approach:

x∗ = argmin
x

∑
P (y|x)logP (y|x) (2)

2. Margin-based approach:

x∗ = argmin
x

[P (ŷ1|x)− P (ŷ2|x)] (3)

where ŷ1 and ŷ2 are the most probable and the sec-
ond most probable class of x.



3. Confidence-based approach:

x∗ = argmin
x

P (ŷ|x) (4)

where ŷ is the most probable class of x.

These strategies differ from each other in terms of how
much information from the predicted probability distribution
is used for selecting the next candidate for labeling. The
entropy-based strategy uses all values in the probability dis-
tribution, whereas the confidence-based and margin-based
approaches use only the highest values or the two highest
values in the predicted probability distribution.

SuperAD: Supervised Activity Discovery
SuperAD is built on top of a pool-based active learning
model, i.e., it assumes that a user can label any instance
that is presented to him/her. This assumption is commonly
made in the existing active learning work in the AR do-
main [12, 7, 1]. This assumption is valid in scenarios when
besides carrying a mobile sensing device such as a smart-
phone or a smartwatch, users also wears a wearable cam-
era in their daily life in order to aid the annotation process [4].
At the end of each day, SuperAD 1) analyzes the sensor
data collected during the day, 2) identifies activity candi-
dates for labeling and 3) presents a photo or a video snip-
pet captured at the time when an activity of interest was
performed to help the user with data annotation. A user
needs to wear the wearable camera only for a certain num-
ber of days to help the system discover most of the user ac-
tivities. In future work, we will study how to extend SuperAD
to stream-based active learning conditions [11], where the
user is asked in real-time to annotate activities, thus elimi-
nating the need of wearable cameras.

Our work is based on the work of Pelleg et al. [10] with ex-
tensions to address issues encountered in real world AR

applications. In the following, we describe the SuperAD al-
gorithm and discuss its differences from the existing work.

Algorithm: Initially we have a small set of labeled instances
and a large amount of unlabeled data.

1. Given the labeled set, we train a supervised classifier.

2. This classifier is then used to predict a “temporary”
label for each unlabeled instance.

3. The unlabeled instances are grouped together based
on the “temporary” label and for each label we train
one Gaussian Mixture Model (GMM).

4. We use the GMMs to estimate the likelihood of each
unlabeled instance being generated by its corre-
sponding GMM.

5. Instance with a lowest likelihood is selected as a can-
didate for labeling.

6. After obtaining the label, we go back to step 1.

Initially, it is assumed that a small set of labeled instances is
available to train the initial classification model. In case no
labeled data are available, we use k-means (k = 2) to clus-
ter the unlabeled instances and for each cluster select an
instance closest to its centroid for the initial label request.

In step 1, we build a classifier corresponding to the initial
AR model, which can be either a discriminative (e.g., SVM,
Random Forrest, etc.) or generative model (e.g., Naive
Bayes). This model is iteratively updated using the active
learning process.

In step 2 and 3, we use a semi-supervised approach to
make use of both the small amount of labeled data and the



large amount of unlabeled data. First, the initial AR model
used to predict the labels of the unlabeled instances. Thus,
each instance obtains an “temporary label”. This labels are
used to train the GMM models, specifically, for each dis-
covered activity class we train one GMM model from all in-
stances, which are predicted to belong to this activity class
(as shown in Figure 4).

In step 4 and 5, we aim to select the candidate for label-
ing using the trained GMMs. First, for each instance we
use the corresponding GMM to estimate the likelihood that
the GMM generated this instance. Then, we select an in-
stance with the lowest likelihood. The key idea is to identify
instances, which are not least likely to be from their pre-
dicted activity class and thus we hypothesize that they are
more likely to be undiscovered activities so we check with
the user to get them labelled.
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Figure 4: SuperAD learns for each discovered activity class one
GMM (Gaussian Mixture Model) using all instances predicted to
be of this activity class. An instance with the lowest likelihood of
being generated by its GMM is selected as the candidate for
labeling (indicated by the arrow).

Discussion: Pelleg et al. [10] use Gaussian Bayes classi-
fier, which models each class using one single Gaussian.
This however assumes that instance follow an Gaussian

distribution, which is not necessarily the case in AR. Due
to high variability of activities, instances of the same class
might appear in two disjoint subspaces in the feature space.
SuperAD uses a GMM instead, which can theoretically ap-
proximate any distribution (including disjoint distributions).
Moreover, Pelleg et al. [10] select a batch of candidates
for labeling in each iteration, which might lead to having
users label many similar and thus redundant instances per
iteration. In this work, in each iteration we select only one
instance for labeling to reduce the redundancy.

Compared to existing active learning approaches presented
in the previous section, SuperAD leverages a two-stage
strategy to make use of the large pool of the unlabeled
data. The first stage of SuperAD is similar to the traditional
active learning approach, while in the second stage, Su-
perAD converts the unlabeled data into a temporary la-
beled data to learn a generative GMM model. This semi-
supervised strategy of SuperAD makes use of the large
pool of information ignored by the traditional active learning
approaches.

Evaluation
In the following, we conduct two sets of experiments to eval-
uate the proposed approach with respect to the speed of
activity discovery and the imbalanceness of the activity dis-
tribution. In the first set of experiments we use a balanced
set of activities collected in a controlled setting and create
various imbalanced scenarios to study the effectiveness of
the proposed approach. In the second set of experiment
we use a dataset collected from a real-world application, to
study the activity discovery in natural imbalanced setting.

Discovering Activities with Imbalanceness
Data: In the first experiment, we use the Daily and Sport
activity dataset [2] containing 19 activity classes performed



by 8 users. Each user performs each activity 60 times, each
time for a duration of 5 seconds. Each 5-second segment
of sensor data is used to extract a feature vector (further
referred to as an instance) composed of statistical features
including mean, standard deviation, minimum, maximum,
energy and correlation between sensor axes of individual
sensors [6]. Note that this dataset is a balanced dataset,
i.e., each class has exactly the same amount of instances.
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Figure 5: An imbalanced dataset
is generated by using a
subsampling method based on the
geometric distribution with a
parameter p. High p corresponds
to high imbalanceness.

Imbalanceness: To study the effectiveness of the proposed
approach, we use a subsampling method based on a geo-
metric distribution to obtain a dataset with a certain imbal-
anceness property. First, we define p as an imbalanceness
score, which corresponds to the parameter of the geomet-
ric distribution. With p close to zero (Figure 5a), we obtain
a balance dataset with each activity class having a similar
amount of instances. On the other hand, high p indicates a
high imbalanceness (Figure 5b), i.e., a resulting dataset will
be dominated by a few frequent activities.

To generate a dataset with an imbalance score p and size
N, we use the following strategy: In each iteration i: 1) we
randomly select one activity class and 2) sample mi in-
stances of this class from the original dataset:

mi = max(5, p(1− p)i−1 ×N) (5)

We repeat this iterative process until all activities are se-
lected and sampled. This methods ensures the order of
selected activities are random, i.e., frequent activities are
chosen from the set of all activity classes. Moreover, the
max function ensures that each activity class contains at
least 5 instances. In the following, we set N to 2000, i.e., a
new dataset is created by randomly selecting approximately
2000 instances from the total 9120 instances.

In the following experiment, we compare the performance
of SuperAD with the existing active learning approaches

described in the previous section and with random sam-
pling. As the base classifier for all approaches we evaluated
both SVM and Random Forest. Due to their comparable
results, we show in the following only the results of the Ran-
dom Forest classifier. For SuperAD we empirically set the
number of Gaussian components in GMM to 3. High num-
ber of Gaussians components typically leads to overfitting
whereas low number of Gaussians would reduce its capa-
bility to capture the complex data distributions. In the future
work, we will further study the proposed approach using
different set of configurations.

Speed of Activity Discovery: First we evaluate how many
instances a user needs to label to discover a certain amount
of activities. Figure 6 shows the results for p = 0.25 for one
single run. From the results we can observe that SuperAD
outperforms the other approaches in terms of the number of
classes discovered for any number of labeled instance.
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Figure 6: Daily and Sport dataset: The percentage of discovered
activities given the number of instances labeled by a user (for the
imbalance score p = 0.25).

The entropy-based approach selects instances equally far
away from all discovered classes (Equation 2). Thus, it has
a potential to discover new activities. However, equally far
from all classes means either lying close to the boundary



between the classes or lying far away for all classes. The
former case corresponds to refining decision boundaries,
while the latter case corresponds to discovering new activi-
ties. Thus, the entropy-based approach alternates between
the discovery and boundary refinement modes. Since Su-
perAD focuses only on the activity discovery, it achieves
better results than the entropy-based approach.

The margin-based approach achieves the worst results,
since it is optimized only towards refining decision bound-
aries. As shown in Equation 3, in each iteration a candidate
selected for labeling if it lies between two classes. Thus,
the margin-based approach aims at obtaining labels for in-
stances, which can refine the already known approximate
boundaries instead of focusing discovering new activities.

The confidence-based approach is the most similar to the
SuperAD, since it aims at selecting predictions with low-
est confidence (Equation 4). However, in each iteration the
confidence-based approach uses only the limited labeled to
build the model for estimating the confidence. SuperAD out-
performs the confidence-based learning approach, since it
leverages the additional the unlabeled data in its two stage
semi-supervised learning approach.

The random sampling approach achieves a relatively low
percentage of discovered classes. This is caused by the
fact that the activity distribution of p = 0.25 is skewed,
i.e., a few activities occur frequently, while a large num-
ber of other activities are highly infrequent. Thus, selecting
instances randomly is not an effective discovery strategy,
since the most of the time the instance of the most frequent
activity class is selected.

Speed of Activity Discovery vs. Imbalanceness: In the
following, we show how the imbalanceness of activity dis-
tribution (p) impacts the discovery speed. To compare the

results across different values of p, we use the normalized
Area Under the Curve (AUC) measure:

AUC =
1

N

∑
n=1

cn (6)

where ci corresponds to the number of activities discovered
for n labeled instances and N corresponds to the number of
active learning iterations. This measure basically computes
the area under the curve shown in Figure 6 and normalizes
it based on the total number of active learning iteration. The
higher AUC the faster the activities are discovered. In the
following we report the AUC averaged across 10 runs, since
the process of generating dataset for each experiment in-
volves a random process of selecting instances.
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Figure 7: TU Darmstadt dataset: The performance of SuperAD
remains the same while other performance of other approach
degrades with the increasing imbalanceness.

Figure 7 shows AUC for different values of p. From the re-
sults we can observe that for balanced datasets (p close
to 0), the random sampling performs the best, since it can
effectively discover the new activities with a uniform dis-
tribution. However, the performance of random sampling
degrades with the increase of the imbalanceness. This is



caused by the fact, that in imbalanced datasets, there are
only a few frequent activities, which dominates this dataset.
Thus, the random sampling is likely to sample instances of
frequent activities while ignoring other infrequent activities.

The performance of SuperAD remains constant for all p
values. However, the performance of entropy-based and
confidence-based approaches decreases with the imbal-
ance, as these activities are less effective at discovering
rare activities. The margin-based approach performs the
worst as discussed in the previous subsection.

Discovering Activities in Real-World
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Figure 8: TU Darmstadt dataset is
highly imbalanced.

Data: To evaluate the proposed approach in the real-world
setting, we use the TU Darmstadt dataset [5], containing
data collected by one user in a natural setting for 7 days
containing 33 activity classes. As shown in Figure 8, the
class distribution is highly imbalanced, i.e., one activity (“sit-
ting and working”) dominates the whole dataset in terms of
the amount of time this activity occurs in the user’s daily life.
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Figure 9: Compared with the second best solution (entropy-based
approach), SuperAD can discover 85% of the activity classes
while needing only a half of the amount of user labels.

Speed of Activity Discovery: As shown in Figure 9, Su-
perAD consistently outperforms the other approaches.
Moreover, to discover 85% of the activity classes, the user
needs to label 77 instances. To achieve comparable results,
the second best approach (entropy-based approach) needs
150 labeled instances, i.e., almost double the amount of la-
beled instances is needed. Regarding other approaches,
we can observe similar trends as in the Figure 6

Conclusion and Future Work
In this work, we study the supervised activity discovery
problem and identify its unique challenges. We propose
SuperAD aiming at discovering activities while minimizing
the amount of user annotations. We show that SuperAD is
especially effective in scenarios with imbalanced activity
distribution, which commonly occurs in real-world setting.

In this work, we mainly focus on the speed of discovery.
Obviously, a good discovery algorithm would require a user
to label as little amount of data as possible. This, however,
results in obtaining only a small amount of training data for
each activity class. As it was shown in the prior work, AR
models learned with a small amount of training data may
result in poor AR performance [8]. Thus, in the future work,
we will study how to combine SuperAD with existing tech-
niques aimed at learning with limited training data. More-
over, we will study how to convert SuperAD to a stream-
based active learning setting to increase the practicality of
the proposed system.
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