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Abstract—An attacker can launch an efficient jamming attack
to deny service to flows in wireless networks by using cross-layer
knowledge of the target network. For example, flow-jamming
defined in existing work incorporates network layer information
into the conventional jamming attack to maximize its attack
efficiency. In this paper, we redefine a discrete optimization model
of flow-jamming in multichannel wireless networks and provide
metrics to evaluate the attack efficiency. We then propose the use
of stochastic optimization techniques for flow-jamming attacks by
using three stochastic search algorithms: iferative improvement,
simulated annealing, and genetic algorithm. By integrating the
algorithms into a simulation based on the OPNET Modeler
network simulator, we demonstrate the optimization process
and provide performance comparisons of the algorithms. From
our results, genetic algorithm provides the most efficient flow-
jamming configuration.

I. INTRODUCTION

Jamming is a denial-of-service (DoS) attack which exploits
the open, shared nature of wireless communications [1].
By transmitting an intentional noise signal on the wireless
channel, a jamming attacker can easily interfere with the
communication of the target network. Many defense mech-
anisms have been proposed, but none of them can completely
defeat a jamming attack. Instead, the studies have focused on
alleviating jamming by raising the resources required for an
equally effective attack [2]. From an attacker’s perspective,
random jamming [3] can increase both the energy efficiency
and stealthiness by randomizing the duty cycle in comparison
to constant jamming. Even more devastating can be an attacker
incorporating cross-layer information and network communi-
cation into the jamming attack [4][5].

Tague et al. [6] define flow-jamming which enables an
adversary to effectively cut off an entire network flow by using
cross-layer information. They formulate the flow-jamming
attack as a constrained, non-convex optimization problem
over jamming transmission power and workload allocation.
With the various jamming evaluation metrics, they introduce
a convex relaxation to solve this optimization problem. Their
work contributes to the understanding of cross-layer jamming
attacks, which can help in the design of robust protocols and
stable network configurations.

In this work, we redesign a more concrete network model
which can be applicable to widely deployed wireless networks
such as Wi-Fi and Zigbee. We focus on a stationary, mul-
tichannel wireless network. In addition to the model of the
existing work, we incorporate the channel assignment into
the network and attack models and re-formulate a discrete
optimization problem. As we show in Section III, the size of
search space increases linearly with the number of jamming
channel and the number of jamming power level, and in-

creases exponentially with the number of jammers. Due to the
prohibitively large search space in our jamming optimization
model, finding global optima is very time-consuming and not
guaranteed without an exhaustive search. Instead of using
a heuristic approach to optimization as in the prior work,
we propose the use of stochastic search algorithms. It is
known that stochastic optimization provides relatively high-
quality solutions in limited time and is generally easy to
apply to any discrete optimization problems [7]. We use
iterative improvement as a baseline algorithm and compare
to the more sophisticated simulated annealing and genetic
algorithms. These two algorithms are generally known that
they quickly converge to the near-optimal solutions [7][8].
We demonstrate how stochastic search algorithms can op-
timize the flow-jamming attack in simulation. We implement
our simulation model based on the IEEE 802.15.4 protocol
with the OPNET Modeler network simulator [9]. It receives
jamming parameters generated from the stochastic search algo-
rithms as input and produces output to be used for evaluating
various attack metrics. Each algorithm decides the next search
step depending on the result from the simulation model.
We summarize our contribution in this work as follows.
« We build a more realistic flow-jamming model which can
be applied to various types of wireless network.
« By adopting stochastic search algorithms, we propose an
approach to efficiently optimize the flow-jamming attack.
o From a network administrator’s perspective, the proposed
method is a useful tool to analyze the vulnerability of the
target network against the flow-jamming attack.

The rest of this paper is organized as follows. We present
our network and attack models in Section II. In Section III,
we introduce the stochastic optimization techniques. In Sec-
tion IV, we then present a performance evaluation comparing
various stochastic search algorithms and finally conclude the
paper in Section V.

II. MATHEMATICAL MODEL

We describe the model of the network and the flow-jamming
attack in this section. We then explain about the attack’s
control model to optimize flow-jamming and propose metrics
to evaluate the impacts and costs of flow-jamming attacks.
Table I summarize the notations used in this section.

A. Network Model

We assume a multi-channel wireless network consisting of
fixed wireless nodes in the set N. Each node n uses multiple
wireless channels C(n) from a global set C of available chan-
nels. The neighboring nodes n,, and n, can share a channel
to reduce unnecessary interference, or they can share multiple



TABLE I: Notations

Notation | Description

Set of jammers

Set of nodes

Set of flows

Set of channels

Set of source nodes, S C N

Set of destination nodes, D C N

Packet error ratio on the given flow

Assigned channel set for the given node or jammer
Power of the given node or the given jammer
Number of transmitted packets for a flow f on the
given node

Number of received packets for a flow f on the
given node

Number of elements in the given set
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channels to provide redundancy or resilience against network
failures (|C(np) NC(ng)| = k > 1). We denote a network flow
f which belongs to aset F as f = (n; X---Xng), where ng is a
member of the source set S, ng is a member of the destination
set D, and |C(ng—1) N C(ng)] > 1 for 1 < ¢ < d. The
number of packets transmitted and received by the node n,
for a network flow f are represented by 7;(n,) and R;(n,),
respectively. A source node n; only transmits the packets
(T§(n1) > 0) without receiving any packets (Ry(n1) = 0)
for a network flow f. The destination node ng4 only receives
packets (R¢(ng) > 0) without sending (T7(nq) = 0). We
define that f is perfectly jammed when n, cannot receive
any packets from ny over f (T;(n1) > 0 and Ry(ng) = 0).
Because a network flow is a single path, it breaks when any
link in the path fails. The number of packets 7¢(n1) sent by
ny is equal to, if f is not jammed, or larger than, if any part
of f is jammed, the number of packets Rf(ny) received by
ng (Tr(n1) > Ryf(ng)). Therefore, we denote a packet error
ratio £(f) as E(f) =1 —Ry(na)/Tr(n1).

The sparser density of nodes in a network, the more
vulnerable the network is to jamming attacks. Therefore, we
are only interested in a dense network setting in which the
attacker is less likely to win. We also do not consider the
autonomous path recovery of the network when it fails. The
mobility and the re-routing dynamics of the network will be
considered in our future work. In this paper, we focus on a
small and mid-size network which consists of tens of wireless
nodes. We, however, believe that this study can be applied to
large-scale networks since most of them are in reality divided
into multiple smaller clusters due to performance degradation.

B. Attack Model

We define flow-jamming as an attack which aims to increase
the packet error ratio £(f) for all f € I in the target network.
A flow-jammer j € J, which is randomly positioned in the
network, transmits constant jamming signal on one specific
frequency band with the transmitting power P(j). In so doing,
it can interrupt the receiving operation of nodes using the
same frequency channel which are within the jamming range
decided by P(j). As explained in the network model, a link
failure affects the network flows which it belongs to. Thus,
network flows are influenced by the transmitting power and
the channel of each flow-jammer. As well as the jamming
channel, we consider the jamming power P(j) as a discrete
parameter by choosing a proper granularity.

For simplicity, we assume that a flow-jammer j € J jams
one channel (|C(j)| = 1) with the constant transmitting power
P(4). Suppose that a link formed by two subsequent nodes
n, and ng in a flow f = (- x np x ng x ---) has a
channel set C(n,) N C(ng), and Jep C J is the set of
flow-jammers jamming the channels which belong to this
channel set (C(j;) C C(np) NC(ny), Vi € Jsup). Then, for
a certain jamming power §; > 0 of j;, the packet error ratio
E( f)|7)(ji):5l can significantly increase in comparison with

the packet error ratio &( f)’P(ji):O when not jammed. If we
define the signal-to-interference-noise ratio (SINR) threshold
at ng as 7y, the SINR at n, for the n,’s signal when
P(ji) = ¢ is expressed as

where P, is the received signal strength at y for x’s signal
and Ny is the background noise. Here, P, depends on the
transmitting power P, of z, the antenna gains of x and y, and
the distance between = and y. The position of flow-jammer is
limited by geographical constraints and/or attempts not to be
detected. The attacker can relocate the flow-jammer over time,
but we analyze the moment that all jammers are stationary.
Now, we consider the amount of knowledge that an attacker
can infer from the network. By passive eavesdropping of
wireless channel and statistical analysis, the attacker can obtain
useful information about network which includes transmit-
ting power, operating channel, and location of each node,
throughput of each link, route of each network flow. We
define this as the full knowledge attacker. It is not always
possible for an attacker to collect full knowledge of network,
however the analysis of the full knowledge attacker can be
used for evaluating the network in the worst case scenario from
the network administrator’s perspective. For more realistic
assumption, we define another type of attacker who has partial
set of information as the partial knowledge attacker. Since
the attacker ultimately wants to disrupt the network flows, the
throughput of each network flow is of interest. In this case, the
attacker should at least know the location of source/destination
node, and the throughput of the first/last link in each flow.

C. Attacker’s Control Model and Attack Evaluation Metric

Attacker Network
o)
Observer
I(P,C): O(E)
Optimizer
1(P.C)
Jammer

Fig. 1: Attacker’s control model

Figure 1 depicts the attacker’s control model to optimize
flow-jamming. The attacker observes the output O(&) of net-
work, which includes the packet error ratio £ in each network
flow. Based on the measurements, the attacker optimizes the



jamming parameters P and C and jams the network with the
optimized parameter I(P,C).

The full knowledge attacker or the network administrator
may use the network simulation with detailed parameters,
while the partial knowledge attacker should depend on the real
network to obtain the accurate feedback from the network.
If the attacker is able to infer the exact mapping between
I(P,C) and O(E), deterministic optimization methods can
be used to optimize the flow-jamming. It, however, is not
feasible for the partial knowledge attacker to formulate this
mapping with the limited information. Accordingly, the partial
knowledge attacker can instead use the stochastic optimization
methods. Although the stochastic optimization methods cannot
ensure finding global optima, it provides good results without
having a specific domain knowledge [7], i.e. the mapping
formula between I(P,C) and O(€) in this case. The stochastic
optimization methods generally need large amount of time to
reach the optimal solution, however we can reduce the time
by compromising the quality of solution. Therefore, we focus
on the latter attacker who optimizes jamming parameter with
stochastic optimization.

Note that if the attacker’s optimizer can reach the optimal
solution before the network changes its routing topology to
recover itself from jamming, the attacker will effectively dis-
rupt the network from when it starts jamming with optimized
parameters to when the network changes its routing topology.
On the other hand, the attacker is defeated by the network
if the optimizer cannot reach the solution convergence state
before the network changes its configuration.

Ultimately, the attacker wants to increase the jamming
impact on the network while minimizing efforts and resources.
The jamming impact is expressed as the average packet error
ratio of all flows and the jamming resource is expressed as
the average transmitting power of all flow-jammers. We also
consider the standard deviation of the packer error rate for
each flow to balance the jamming impact among network flows
depending on the attacker’s strategy. Thus, we define jamming
fitness J to evaluate jamming attack as

J=pus —a-o0g =B pp, )]

where pg and og are the arithmetic average and the standard
deviation of packet error ratios in all flows, up is the arith-
metic average of transmitting powers in all jammers, « and 3
are the weight coefficients.

Given the above model, the attacker’s goal is maximizing
the jamming fitness [ by configuring the transmitting power
and the channel of each jammer.

III. STOCHASTIC OPTIMIZATION

As reviewed in Section II, we use stochastic optimization
algorithms to optimize the flow-jamming. Since there are two
discrete parameters that are configured for each jammer in
our attack model, the total search space size is (|P| - |C|)M!,
where P is the set of power levels, C is the set of channels
to jam, and J is the number of jammers. To improve the
search performance of stochastic optimization algorithms, we
can reduce this search space size.

Since a jammer has its transmission range depending on its
transmitting power, it needs to jam only the channels that are
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Fig. 2: Transmission ranges of jammer with varying power

used within the transmission range. Figure 2 shows that the
jammer j has three different transmission range [y, [, and I3
for different power level P1(j), P2(j), and P3(j), respectively.
In [4, 7 needs to jam the channel cg, ¢7 and c¢;9 which are used
by the node n; and ng. In 5 and I3, it should additionally jam
the channel c4.

By using the general path-loss model [10], the node set
Np, ;) of the nodes that can hear the jamming noise of jammer
j with the transmitting power P;(j) is defined as

Np,ijy = {n e N|B-Pi(j) - djn~* > T}, (2)

where (3 is the distance independent constant, d;, is the
distance between j and n, « is the path-loss exponent, and
Ty, 18 the minimum sensing threshold at n. Thus, the search
space size is reduced to

1] |P|

I

In reference to the algorithm, we define two terms, so-
lution candidate and mneighbor. A solution candidate for
the optimized flow-jamming attack is defined as a tuple
[P(1),C(j1)s - P (), C(jj)]- The neighbor S’ of a solu-
tion candidate S is defined as the tuple which of each element
is equal to the S’s element or a neighboring value of S°s
element. The neighboring value means the value which can
be obtained by increasing or decreasing one step from the
original value. The maximum value and the minimum value
are the neighboring value to each other. Given |J| jammers, a
solution candidate S has 321l — 1 neighbors when the search
space reduction is not considered.

Based on these definitions, we consider three stochastic
optimization methods: (1) iterative improvement (ii), (2) sim-
ulated annealing (sa), and (3) genetic algorithm (ga). The
first is most primitive among these algorithms, but used as a
baseline to compare the performance of the two other methods.
The two others show generally good performance through
stochastic search. Note that other algorithms may be better
for our optimization problem, however we focus on showing
that well-known stochastic algorithms can be used to improve
the efficiency of flow-jamming attack. We detail how each
algorithm can be applied to the flow-jamming optimization.

U C(n)|.
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A. Iterative Improvement

In iterative improvement [7], the search starts from a
randomly chosen candidate solution. Since the number of
neighbors of a candidate solution is enormous, the algorithm
only chooses a limited number of neighbors at random. For
each member in the neighbor set, the calculated jamming
fitness is compared with that of the current best solution. If a
better solution is found, the current best solution is replaced
with it and the search starts over with the new neighbor set
of the new solution. The search stops when it fails to find any
better solution in the neighborhood. Since this algorithm looks
for only a better solution than the current one, it tends to stay
in local maxima as the search space is more partitioned.

B. Simulated Annealing

Simulated annealing [7] is a stochastic algorithm which uses
a temperature value 7" for calculating the acceptance ratio. In
the search step of this algorithm, the better solution is selected
as in the iterative improvement. The worst solution, however,
is also selected with the acceptance ratio calculated in the
current step. Due to the possibility of selecting lower fitnesses
the search can escape from local maxima. Since the acceptance
ratio keeps decreasing by the cooling T as the search proceeds,
the algorithm benefits from the intensification in the latter steps
as well as the diversification in the former steps.

C. Genetic Algorithm

In the genetic algorithm [8], a candidate solution is rep-
resented as a gene sequence. Figure 3 shows an example of
genetic representation for a candidate solution. In this exam-
ple, the transmitting power and the channel of five jammers
are expressed as a gene sequence. In this representation, the
transmitting power is a float value and the channel number is
an integer value.

iJﬂmmer] \/ Jammer2 IJammer} I i Jammer4 \/ Jammer5 |

Fig. 3: Genetic representation of a candidate solution

The genetic algorithm consists of four main components:
parent selection, recombination, mutation, and survivor selec-
tion. In the initial stage, a population is generated of random
genes. From the initial population, parents are selected, and
these are recombined to form new offspring. With a small
probability, some genes in the new offsprings are mutated.
The new offspring then replace the existing population by sur-
vivor selection process. With the new population the evolving
process is repeated until the termination condition is satisfied.

We use ranking selection to choose parents for generating
offspring. That is, individuals are selected as parents with
a probability relative to their fitness. We, then, use paired
uniform crossover for recombination. Instead of exchanging
each gene in two individuals, we exchange the transmitting
power and the channel number of a jammer together as
explained in Figure 4. The groups of (2n — 1)th gene and
(2n)th gene, where n > 1, from two parents are exchanged
with the probability of 1/2.

After the new offspring are produced, each gene of each
individual is considered for mutation with the mutation rate

Jammerl Jammer2 Jammer3

parentl

PWR4‘ CH4 ‘PWRS CHS

] o

parent2 ‘PWRI‘ CH1 ‘PWRZ CH2 ‘PWRS‘ CH3

offspring1

Fig. 4: Recombination of individuals

1. We use a strategy known as elitism [8] to preserves a part
of the current best solutions for the next generation. Survivor
selection is completed by selecting the elites and the most fit
offspring to fill in the population.

IV. PERFORMANCE EVALUATION

In this section, we show how to optimize the flow-jamming
with stochastic optimization from the perspective of partial
knowledge attacker. Owing to the difficulty of conducting
experiments with large scale network, we instead utilize the
simulated network reasonably representing physical layer, link
layer, and network layer. The detailed description of simulation
is followed by the parameter setting of stochastic algorithms
and the result analysis.

A. Simulation Description

We use OPNET Modeler 16.0 network simulator [9] to
simulate the flow-jamming attack. The wireless network is
based on the IEEE 802.15.4 protocol. There are 30 wireless
nodes randomly spread over 30 x 30 meters square. In the
physical layer each node uses randomly assigned channels
among the 16 available channels. The transmitting power of
every node is set to ImW and the noise floor is set to -
85dBm. In this setting, the wireless range to deliver packets
without loss is about 9 meters. Among the 30 nodes five source
nodes and five destination nodes are chosen randomly and
they constitute five flows. The five sources generate SKbps
of traffic, which consists of 128 bytes packets and the inter-
arrival gap follows the uniform distribution. Because the MAC
layer of nodes are based on the CSMA/CA protocol and
we do not assume any synchronization among the flows, the
packet collision inherently occurs in the intermediate nodes.
The measured packet delivery ratio (PDR) of each flow in the
simulation is up to 80%.

We randomly place the five flow-jammers in the given area.
Each jammer can select one channel from the 16 channels used
by wireless nodes and the transmitting power from 0.1mW to
10mW with 0.1mW step size.

Each stochastic algorithm is implemented with a Python
script. Whenever the Python script requires an evaluation of a
candidate solution, it invokes the simulation with the solution
parameters and calculates the jamming fitness based on the
packer error ratio € value of each flow which is returned from
the simulation.



B. Parameter Setting of Stochastic Algorithms

In each algorithm, we use two different jamming fitness
metrics, Jimp and Jeco, to compare the candidate solutions.
Because the weight coefficient o and 3 in Equation 1 depends
on the attacker’s intention and the characteristics of the target
network, we divide the metric into two folds. One is the metric
which only focus on the balanced jamming impact on the
network flows. In this case « and 3 are set to 0.5 and O, re-
spectively. Thus, Jipp = pe —0.50¢ and —0.5 < Fipmp < 1.0.
In the second case the jamming energy conservation is more
considered than the jamming impact. But, the balance of the
jamming attack is not considered. For « = 0 and 3 = 200,
Teco = e — 200up and —2.0 < Jeeo < 0.98 within the
range of available power levels. Here, the weight coefficients
« and 3 are selected to make jamming fitness metrics to stay
within the range [-2, 1] for the given ranges of power level
and packet error rate.

The size of neighborhood in iterative improvement is set
to 1000. In simulated annealing, the size of neighborhood is
100, the temperature 7' changes into 0.95T every ten times
the best solution is updated, the initial 7" is decided upon
the jamming fitness of the initial candidate solution, and the
two termination conditions used: 1) the consecutive number
of failure in searching better solutions is 5, 2) the acceptance
ratio is 0.02. We accept a solution only if its evaluations with
two metrics are all superior to those of current solution.

On the other hand, we modify the standard genetic al-
gorithm to adapt to this multimodal problem. As a similar
approach with [11] we run two different populations, each
of which is in pursuit of Jj, and Je., respectively. The
population size of each group is 30, the mutation rate of
channel genes are 1%, the mutation rate of power genes are
10%, and the number of elites is set to 10% of the population.
After producing offspring in each generation, 20% of the non-
elite population are randomly chosen in each group and are
migrated to the opposite group. This helps not only to maintain
the high quality of found solutions, but to increase the diversity
of solutions by exploring the broader search space.

Note that the selection of parameter values can sensitively
affect the performance of each algorithm. It, however, is
known that optimal parameter tuning takes lots of efforts
through numerous trials and varies with search landscapes.
Therefore, we do not focus on showing the best performance
of each algorithm with fine tuned parameters in this paper and
the result of performance comparison among the algorithms
can change with another parameter setting.

C. Result Analysis

We repeat 30 runs for each algorithm to achieve statisti-
cally valid results. Fig. 5 shows the distribution of elapsed
steps to reach the best solution in each algorithm. Note
that the required steps to satisfy the termination condition
after finding the best solution in iterative improvement and
simulated annealing are hidden here for comparison. The
average elapsed steps for the two algorithms are 2401.6 and
2581.7, respectively. In order to compare the result, we cut
off the number of generations in genetic algorithm to be 40,
which sets the total number of evaluations to 2400. Fig. 5
shows the cumulative distribution function of elapsed steps

for 30 runs of each algorithm. Iterative improvement shows
the largest variation to reach the best solution.
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Fig. 5: Cumulative distribution functions of elapsed steps
for each algorithm (ii: iterative improvement, sa: simulated
annealing, ga: genetic algorithm)

Given the similar number of steps, there exist the obvious
differences in quality of results from each algorithm. As
shown in Fig. 6, the genetic algorithm with high probability
produces better solutions than the two other algorithms in
both jamming impact and jamming energy conservation, while
iterative improvement records the worst. Note that we compare
30 solutions each for iterative improvement and simulated
annealing since each run bears only one solution. On the
other hand, for the genetic algorithm only the Pareto fronts'
are depicted among the 60 individual solutions of the 40"
generation in each run.

Fig. 7 depicts the correlation of jamming impact and jam-
ming energy conservation of each solution. Being consistent
with the result from Fig. 6, genetic algorithm shows the best
performance while iterative improvement shows the worst
performance.

For the purpose of comparison, we heuristically allocate the
channel number to each jammer. Each jammer searches the
nearest node which receives any packets from a flow. It jams
on the same channel which the found node is receiving. If the
flow to which the node belongs is already jammed by another
jammer, it searches the next nearest node and repeats the same
procedure. We allocate two-fold (2mW), four-fold (4mW), and
eight-fold (8mW) of transmission power of wireless node to
every flow-jammer and measure the jamming fitness for three
cases. As shown in Fig. 7, the jamming energy conservation
drops as the jamming power get increasing. However, it does
not show much difference in jamming impact when varying
power.

In order to know how fast each algorithm approaches to
the best solution, we also compare the progress of solution
quality as elapsed steps increase in each algorithm in Fig. 8.
At every 600 steps, we average the jamming fitness of 30 runs
in each algorithm. Since only the Pareto fronts are collected
in genetic algorithm, its jamming fitness in the initial step
marks higher than the others. Iterative improvement shows
the earliest saturation among three algorithms and stays in the
lowest jamming fitness. Interestingly, iterative improvement

U1t is defined as the set of nondominated solutions among the possible
solutions. In this case, the Pareto fronts are superior to the other individuals
in terms of both jamming impact and jamming energy conservation. [8]
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shows better performance than simulated annealing in the
600" step. This is because simulated annealing allows the
regression in quality of solution to avoid being confined in
local maxima. Literally, it reduces the possibility of regression
as it proceeds, thus quickly getting closer to the best solution.

V. CONCLUSION

An attacker can use jammers to efficiently disrupt the
flows in wireless network by using network-layer knowledge.
In this paper, we study the optimization of flow-jamming
attack. An existing work have introduced the identical prob-
lem and analyzed theoretical bounds for various cases by
the non-convex optimization, but we focus on optimizing
the flow-jamming attack over a channelized network model
with stochastic search algorithms which provide us with
more concrete realization and more tangible strategy. We re-
formulate the mathematical model of flow-jamming attack and
the evaluation metric of jamming fitness. We demonstrate the
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Fig. 8: Progress of average jamming fitness for each step

flow-jamming optimization by stochastic search algorithms
through a network simulation. Our experimental results show
that genetic algorithm produces the most efficient jamming
configuration compared to the other algorithms. We expect
that this work is used as a tool to analyze the effect of flow-
jamming attack over target network.
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