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XRec: Behavior-Based User Recognition Across Mobile Devices

XIAO WANG, TONG YU, MING ZENG, and PATRICK TAGUE, Carnegie Mellon University

As smartphones and tablets become increasingly prevalent, more customers have multiple devices. �e multi-user,

multi-device interactions inspire many problems worthy of investigation, among which recognizing users across devices has

signi�cant implications on recommendation, advertising and user experience. Unlike the binary classi�cation problem in user

identi�cation on a single device, cross-device user recognition is essentially a set partition problem. �e app back-end aims to

divide user activities on devices hosting the app into groups each associated with one user. In this paper, we present XRec

which leverages user behavioral pa�erns, namely when, where and how a user uses the app, to achieve the recognition. To

address the user-device partition problem, we propose a classi�cation-plus-re�nement algorithm. To validate our approach,

we conduct a �eld study with an Android app. We instrument the app to collect usage data from real users. We provide

proof-of-concept experimental results to demonstrate how XRec can provide added value to mobile apps, with the ability to

correctly match a user across multiple devices with 70% recall and 90% precision.
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1 INTRODUCTION
�e last decade has witnessed the emergence and rapid spread of mobile electronic devices such as smartphones

and tablets. �ese new technologies have continually worked their way into various dimensions of our individual

lives. As the diversity and quantity of networked consumer products continue to grow, more and more customers

are becoming multi-device users [16]. According to market research, 31% of US adults own both smartphones and

tablets [27], UK households now own on average three di�erent types of Internet-enabled devices [31], and 54%

of tablet users share their device with other users [19]. From such studies, we see that (1) users switch between

or simultaneously use more than one device and (2) devices are shared among multiple users.

�e complexity of multi-device, multi-user interaction presents signi�cant challenges to service providers

that provide value-added services by collecting and analyzing user behavioral data, namely because there are no

e�ective techniques to properly label the data with the active user of the device. If the service provider had a

mechanism by which to di�erentiate between multiple users on the same device and to match the app user across
di�erent devices, however, this user recognition capability would provide signi�cant improvements to advertising

services, recommendation systems, and general user experience.

In the multi-device, multi-user scenario, we de�ne a session as a single visit to the app by one user on one

device. In the presence of device sharing, the app might observe sessions of multiple users on a shared device. By

user recognition, an app vendor or service provider aims to a�ribute sessions on di�erent devices to the same user.
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In essence, the app back-end system reveals underlying linkage of sessions on devices and their users. �e system

can partition the set of sessions of the app into groups, where each group includes the set of sessions involving

one user during a particular time period of interest. Depending on whether the partitioning is conducted on a

single device, the problem is further categorized as: (1) multi-user di�erentiation on the same device, and (2) user

recognition across multiple devices. For the �rst problem, classi�cation of multiple users sharing the same device

can be approached using identi�cation mechanisms proposed for the single-device scenario [4, 7, 18, 44]. Hence,

to avoid reinventing the wheel, we concentrate our e�orts on the second problem of cross-device recognition,

assuming users of a single device are already segmented and can be treated individually. An example of the

resulting cross-device user recognition concept is illustrated in Figure 1.

As a motivating example of cross-device recognition, consider a scenario in which a user browses the Yelp

app on each of their mobile devices. For the sake of convenience and privacy, the user prefers not to log in to

Yelp, since this is not forced by the app. In this case, Yelp cannot recognize the browsing activity as belonging to

the same user across the multiple devices, and it misses an opportunity to gain valuable insight into the user’s

preferences and tendencies. At the same time, the user misses out on the potential added value that Yelp could

provide in terms of personalized recommendations. In this case the user’s choice not to log in negatively a�ects

both parties’ utility. However, Yelp may still be interested in �nding ways to provide notions of personalization

that do not impede on users’ personal privacy, providing a win-win solution.

Based on the complexity of the multi-device landscape and varied user privacy and usability preferences, our

primary goal in this work is to enable approximate user-session partitions in a way that provides added value to

app vendors and service providers while also considering privacy and usability concerns of device users. Toward

this goal, we begin by outlining the current state of the art in recognizing users in web and mobile systems.

Traditional approaches for user recognition rely on either user authentication or explicit tracking. On a single

device, websites and apps may employ cookies to track a user’s online activity [1, 42]. However, locally stored

cookies cannot span devices to enable recognition in the cross-device scenario [30]. Native system identi�ers

such as Android’s Advertising-ID and iOS’s IDFA are limited to usage by di�erent apps on a single device instead

of cross-device tracking [32]. In addition, a system-level solution cannot traverse di�erent mobile ecosystems

(Android, iOS and so forth). Moreover, such solutions, like accessing user accounts saved locally on each device,

bring severe privacy concerns of revealing the explicit identity to a third party. Even worse for the app, relying on

device accounts may lead the provider to erroneously label the owner of the device as the user of the application,

failing to realize that devices are shared by multiple users. Similarly, privacy-conscious users may opt to use

di�erent accounts on di�erent devices, for example to keep their personal and corporate data separate to comply

with policies. Hence, these current approaches are insu�cient, and in many cases, the app will fail to recognize

users across multiple devices.

To address the current limitation to cross-device a�ribution of user activities, we propose a behavior-based

user recognition framework named XRec for the multi-device scenario. Our approach leverages behavioral data,

namely where, when and how a user interacts with the app. XRec relies on several behavioral characteristics of

users, which can collectively serve as an e�ective yet potentially anonymous way to link user sessions across

devices. �e behavioral characteristics include location (GPS readings, IP addresses), app-speci�c statistics, and

touchscreen gesture pa�erns. XRec approaches this problem in two rounds of partitioning. First, XRec creates a

course-grained partition of devices into small groups using location information. �e intuition lays in the fact

that devices of one user are likely to consistently collocate with each other. A�er this coarse-grained grouping, a

user’s devices are likely to be mixed with devices of family, friends and colleagues. Subsequently, within each

group, XRec performs pairing based on behavior pa�erns such as touchscreen gestures and browsing behaviors,

then re�nes the set of pairings into a proper partition.

�e behavior-based approach has two advantages. First, it requires no user e�ort beyond normal app usage.
Users can use apps as usual without explicitly identifying themselves. Second, it is privacy-preserving as behaviors
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are bound to neither real identities nor explicit identi�ers. Also, the behavioral pa�erns are speci�c to certain

context, and can be used for identi�cation only in particular applications. Hence, even leakage of the information

does not expose user identity.

Our cross-device recognition approach distinguishes itself from previous behavior-based approaches for

identi�cation and authentication. Previous approaches have been proposed for identi�cation and authentication

on individual devices in which the mobile operating system aims to thwart unauthorized device access. �e

di�erences between these problems are signi�cant. First, an operating system agent typically performs user

authentication on a single device, while the app back-end system performs cross-device recognition in our approach.

�e two entities have their unique advantages and constraints in terms of behavior-related measurement collection.

For example, the app back-end enjoys the advantage of obtaining app-speci�c usage pa�erns. Second, the user

authentication is formalized as a binary classi�cation problem with the owner’s behaviors as positive instances.

In cross-device recognition, however, we are trying to group devices that belong to the same user. �e user’s

real identity is transparent to the app back-end and also of no interest. Hence, the cross-device recognition

becomes a set partitioning problem, detailed in Section 3, that requires some algorithmic innovation to solve.

�ird, the authentication problem requires high accuracy since it is critical for security and privacy, while our

approach to cross-device recognition is intended to add value to non-sensitive services such as advertising and

user experience, so high accuracy is desirable but not necessary.

In our design and implementation of XRec, there are components of measurement collection, feature extraction

and algorithmic inference. To present our approach in a more clear and solid fashion, we implement XRec using

an Android app named Hacker News Reader [36], which is discussed in more detail in Section 3.2. Since it is the

app back-end that a�empts to recognize users, the provider can leverage exclusive usage information it collects

through the app.

Summary of our work: In summary, our overall goal in this work is to develop, test, and evaluate a proof-of-
concept system for anonymously recognizing the same user across app usage sessions on multiple mobile devices. To

the best of our knowledge, this is the �rst a�empt for multi-device user recognition without relying on explicit

user authentication. Toward this goal, we provide the following contributions.

• We design the XRec protocol for anonymous, behavior-based user recognition across mobile devices

based on application usage pa�erns and sensor measurements.

• We propose a classi�cation-plus-re�nement approach to identify user partitions within an observed set

of sessions.

• We deploy XRec with an experimental Android app to collect and evaluate real usage data in a proof-of-

concept experiment.

Roadmap. �e paper is organized as follows. We �rst contrast our study with existing work. Next in Section 3,

we describe background information about problem formulation and the experimental app. We then present in

Section 4 our framework for cross-devices user recognition with details regarding technical assumptions, data

collection, feature extraction and algorithm design. Section 5 and 6 present our experiment setup and results. In

Section 7, we conclude and discuss future directions.

2 RELATED WORK
Incorporation of sensors into commodity mobile devices enables passive sensing for a variety of purposes, among

which enormous research e�orts have been devoted into device-based user identi�cation. A device leverages

sensory data to model users and distinguishes its owner from other users or thieves.

Researchers propose to use biometrics for user identi�cation. Biometric approaches have been studied for

many years, but only consider user authentication on a single device rather than multiple devices. Biometrics

are categorized as physiological such as �ngerprint and iris, and behavioral such as gait, keystroke, touch and
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swipe [24]. Behavioral biometrics have the advantage of requiring no dedicated hardware [33]. Feng et al. [17]

introduced a touchscreen-based approach that authenticates users through �nger gestures. Vu [38] proposed an

identi�cation approach by exploiting capacitive touchscreens. Meng et al. [25, 26] focused on touch dynamics

and experimented with touch biometrics. Frank et al. [18] and Xu et al. [41] investigated continuous and passive

authentication based on how a user touches a screen. Jain et al. [21] developed an authentication approach by

analyzing a user’s behavioral traits modeled by acceleration data, curvature of swipes and �nger area. Later, Li et

al. [23] designed a mechanism to re-authenticate current users based on �nger movements. Dra�n et al. [15]

modeled users’ micro-behaviors during their interactions with a so� keyboard, including key press position,

dri� from �nger-down to �nger-up and touch pressure. Sae-Bae et al. [35] showed that multi-touch gestures

are applicable to user authentication. De et al. [11] collected touchscreen input data and used dynamic time

warping for identi�cation. Dey et al. [13] leveraged accelerometer data to extract frequency features to obtain

unique �ngerprints. Zhu et al. [44] proposed a continuous authentication system that uses various sensors to

pro�le users. �is paper investigates user recognition across multiple devices that di�ers from authentication

on a single device. �e problem introduces another dimension (device), and inherently requires multi-class user
partitioning on multiple devices. In contrast, previous research focuses on binary classi�cation scenarios. In this

sense, traditional approaches based on o�-the-shelf classi�cation algorithms cannot address the partitioning

problem. We hence propose to leverage topological information to perform the cross-device recognition. To the

best of our knowledge, similar approaches for partitioning have not been studied before.

Cross-device pa�erns received academic a�ention in the online search domain. Studies of usage pa�erns (topic of

interests, reading behavior, etc.) have examined user behavior in the search engine. Wang et al. [39] examined

cross-device task continuation from PC to smartphone for particular sets of search tasks. �ey used topics and

transition time to predict whether a search task is the continuation from PC to mobile. Montañez et al. [28]

studied search behaviors and device transition features to predict cross-device search transitions. Karlson et

al. [22] analyzed the usage log of desktops and mobile phones to understand pa�erns of how people transition

between devices. Our work investigates app usage behaviors across mobile devices. We believe there are still

many research questions regarding how users and information transition between multiple devices.

3 PROBLEM DEFINITION
We formally de�ne our problem through our example scenario, and highlight its distinction in contrast with the

problem of user identi�cation on a single device. We also introduce the experimental app for this study to assist

with understanding of the problem and our approach.

3.1 Problem Statement
In our problem, an app’s back-end aims to recognize the same users across multiple devices. �e example scenario

is illustrated in Figure 1. Each user uses the app on two devices as indicated by the lines. We approach the

problem from the perspective that users are transparent to the app back-end. �e back-end can only observe

those devices and user interactions with the app. By recognizing users across devices, the app does not a�ribute

a device to any user in reality. Instead, it essentially links devices together based on its inference whether they

belong to the same user. In this sense, the output of our recognition algorithm is a partition of the set of devices,

where a partition of a set is a division of the set’s elements into non-empty subsets, each corresponding to a

unique user. In the example scenario, the correct partition is {{1, 5}, {2, 4}, {3, 6}}.
For all devices, we further categorize them as synced and unsynced. A device is regarded as synced if it is

linked to at least one of the other devices through “out-of-band” information. �e information is usually user

logins as some users may log in to the app on those devices. Otherwise, in the extreme case that no users opt

to log in to the app, app developers may recruit people to use the app on multiple devices to manually create

synced devices. In practice, those synced devices provide training samples for our algorithms. In Figure 1, device
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APP:	  

Device:	  

User:	  

1	   2	   3	   4	   5	   6	  

UID1	   UID3	  UID2	  

A user’s real identity is transparent to the app.!

Fig. 1. We illustrate the scenario of user recognition across devices: associating devices that belong to a same user. Solid
lines indicate synced devices whose association is already known to the app while dashed lines present unsynced devices to
be associated using XRec. This example assumes no sharing of any device by multiple users. In the presence of sharing, the
recognition is performed at the granularity of sessions instead of devices.

Menu	  bar:	  category,	  
refresh,	  bookmarks,	  etc.	  

Ar7cle	  7tle:	  click	  to	  read	  

Upvote	  

Comments:	  click	  to	  read	  

Click	  to	  bookmark	  

Dropdown	  list:	  
filter	  ar7cles	  

Ar7cle	  Page	  

Menu	  bar:	  external	  browser,	  
sharing,	  comment,	  etc.	  

Fig. 2. Our experimental app is a news reader with diverse functionality including article filtering and bookmarking. It
thus enables ample interaction with users, creating opportunities of obtaining e�ective behavioral pa�erns. The app also
demonstrates key design components of mobile apps such as the list and menu layout, which helps generalize our ideas to
many other apps.

1 and 5 are synced possibly because UID1 logs in on both devices while other devices are unsynced since users

opt not to log in. If UID1 only logs in on device 1, then both 1 and 5 are unsynced. We have to notice that synced

devices might be further linked to other devices. In reality, it is possible that a user logs in only on some devices

or uses di�erent accounts.

3.2 The Experimental App
Some previously published works study continuous authentication on single devices through touchscreen

analytics. To collect measurements from users, they employ their own experimental app with particularly

designed user interfaces. For example, in touchalytics [18], experiment subjects are instructed to use a simple

image comparison app. �ey have to move the screen content through some touchscreen gestures in order to

navigate between images. In another work by Xu et al. [41], the authors design an experimental app that instructs
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participants to perform prede�ned operations such as typing in a sentence using the so�-keyboard and writing

down a character on the screen.

In this paper, we instead make use of a real-world app to avoid constraints in controlled se�ings. Moreover, the

touchscreen gestures consequently incorporate contextual information of the design and content of the app. �at

means we can analyze the gestures with respect to the app context instead of purely analyzing isolated gestures.

For instance, a user’s click locations may exhibit certain pa�erns due to the layout of the user interface.

To this end, we create a custom-instrumented version of the open-source Hacker News app [36] which is a

popular mobile client for browsing YC Hacker news [29]. �is app manifests typical design principles of mobile

apps on the market. For instance, it employs the list-plus-menu-bar layout that is especially suitable for content

display and page transition on small-screen devices. As shown in Figure 2, the app lists news articles for users to

browse. Moreover, it enables functionality such as article �ltering by category, upvoting/downvoting, sharing

with friends and bookmarking. With all the diverse functionality, the app enables ample interaction with users,

creating opportunities to identify useful pa�erns among users for the recognition purpose. Our version of the

app measures context and behavior and reports back to our server.

�is example can facilitate our explanation of the problem context and the intuition behind our proposed

algorithms. Although our exposition is speci�c to this app, the framework and methodology are not limited

to this app; instead the app serves as a proof-of-concept implementation using common design principles of

mobile apps. Additionally, we will leverage app-independent features that are not associated with the design of

an app. We admi�edly notice that one single app cannot be representative of all apps and possible interactions

with users. However, with the aforementioned reasons, we believe our approach to be generalizable to a broad

class of apps. Again, XRec provides cross-device user recognition as added-value, and the inability to support

the requirements simply means the app cannot enjoy the bene�t of cross-device recognition brought by our

approach and all device users would be treated independently.

4 DESIGN AND IMPLEMENTATION
In this section, we present our design and implementation of XRec with the experimental app. We give examples

how user behaviors o�er identi�able information and help with cross-device recognition. As shown in Figure 3,

XRec contains indispensable components of measurement collection, data preparation and algorithmic inference.

In what follows, we will detail each component.

4.1 App Instrumentation and Measurement Collection
We instrument the Hacker News app [36] and set up a server to collect usage-related measurements. Data are �rst

stored locally on the device before being uploaded to the server. To reduce run-time overhead, the instrumented

code only runs when the app is open, never in the background. Moreover, data are uploaded through WiFi

networks to avoid cellular data usage.

�e instrumented code collects time-stamped measurements about user actions. To model a user’s usage

pa�ern, the app records the user’s interactions with the app including clicks, swipes and other actions that

change the status of the app. Ideally, the sequence of measurements will serve as a behavioral �ngerprint that is

su�ciently di�erent from that of other users. Since measurement collection relies on speci�c features we desire,

particulars will be presented in the next subsection with discussions about potential features.

To obtain ground truth information for evaluating our approach experimentally, we require users to register or

provide login credentials the �rst time the app runs on a new device. In this way, we are aware of which user

uses the app on which devices and are able to obtain labeled data for our experiment.

In a real deployment, app developers have to consider availability of desired measurements, cost of implemen-

tation, run-time overhead and privacy concerns [3, 41, 43].
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Recogni(on	  
Output	  

Measurement	  	  
Collec(on	  

	  

Data	  Preprocessing	  

Feature	  Extrac(on	  

Coarse-‐Grained	  Grouping	  

Fine-‐Grained	  Pairing	  

Fig. 3. This flowchart presents necessary components and steps of XRec for cross-device user recognition.

Server and device logs are easy to obtain. Some sensors may not exist on certain devices. Moreover, sensor

accessibility may require user acknowledgement. It is preferred to use sensor permissions that are inherently

granted to the app for its normal functionality. If the app requires additional sensor permissions for the purpose

of user recognition, privacy-cautious users may decline it. For example, Yelp inherently needs GPS data to ful�ll

its services. �e GPS info can be leveraged for user recognition. However, if the app further requests for irrelevant

permissions such as contacts, it may raise a red �ag. On the other hand, user acknowledgement is exempted for

some permissions. For example, in Android, many permissions are designated as protection normal such as

access to coarse-grained location, network state and WiFi state. If an app requests a normal permission in its

manifest, the system automatically grants it at install time while users are not prompted to manually grant the

permission, and users cannot revoke it.

E�ort of developers is another factor to consider. Collecting certain measurements can be demanding and less

desirable. Preferably, developers are inclined to measurements that are inherently used by the app for its normal

functionality and measurements that can be easily collected.

Developers need to bear in mind the run-time overhead associated with measurement collection. It is supposed

to be non-invasive. We prefer it not to interfere with daily use of the app. Compared to systems that a�empt to

provide continuous authentication, user recognition is not a frequent service. Measurement collection can thus

be disabled most of time. In this sense, any negative e�ects it may impose to app performance are signi�cantly

contained.

Developers may take user privacy into consideration. Collection of any explicit user identi�ers is privacy-

invasive. �e amount and types of data to be measured should not exceed the minimum needed for linking

multiple devices to a same user instead of identifying any users in the real world.

4.2 Feature Preparation
To obtain su�cient entropy for distinguishing di�erent users, we consider a variety of features that cover various

dimensions of a user’s usage pa�erns. We hope the features can collectively model user behaviors and facilitate

cross-device recognition. Generally, the features fall into di�erent categories as shown below determined by

whether the features are stable across apps or devices.
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App	  Dependent	   App	  Independent	  

Device	  Dependent	   Device	  Independent	  

�e multi-device scenario presents new challenges since some users might have di�erent behaviors on di�erent

devices in terms of certain features. �is requires us to include features from di�erent aspects of user behaviors, each
of which contributes some entropy for identi�cation. In the worst case, however, we cannot rule out the possibility
that some users might act di�erently on di�erent devices measured by all these features. �en for these users, it is
di�cult for the app to gain the added value o�ered by our approach, which is not favorable but not critical, either.
To reduce the possibility of this case, it is important to incorporate device-independent features that maintain

permanence across devices, or exhibit relatively constant di�erence between di�erent devices.

We also categorize features based on their app dependence. App-dependent features are created with respect

to the context of the app. App-independent features do not rely on speci�c apps, and thus can be directly applied

to other apps. Nevertheless, ideas in creating app-dependent features also applies to a broader class of apps.

In the following, we discuss several categories of features, and illustrate data from real users to facilitate

understandings.

4.2.1 Session Characteristics. We leverage session-level discrepancy among di�erent users. Each session

represents a user’s activities during a single visit to the app. �e activities captured by our instrumented code are

all time-stamped. We are able to divide the sequence of activities into sessions. For each session, we compute the

following statistics.

(stat-1). Number of articles read per session

(stat-2). Time spent on each article

(stat-3). Number of sessions during each hour of a day

In Figure 4, we show the above session characteristics of three randomly chosen users on two types of devices:

Nexus 4 phone and Nexus 7 tablet. Within sub-�gures, (a-1) and (a-2) plot the CDF of stat-1. As it shows, one

user tends to read only a few articles per session while another consumes signi�cantly more. �ey maintain their

habits across two devices except for one user who exhibits less consistency. In sub-�gures (b-1) and (b-2), stat-2
manifests itself di�erently for three users: one user takes more time to read the articles than the other two. �is

trend also migrates across devices. Sub-�gures (c-1) and (c-2) depict preference over 24 hours in a day for using

the app on each device. Phones gain popularity at noon and evening while tablets are more preferred at night.

All session statistics provide entropy to distinguish di�erent users on multiple devices.

4.2.2 Clickstream Analysis. We zoom in to investigate clicks within each session. Each click typically triggers

certain functionality of the app and enables navigation within the app. We can leverage di�erences in click

ordering to model usage behaviors. �e click sequence helps characterize how a user transitions from one activity

to another. Formally, we use a Markov Chain model to analyze click transitions of a user. �e Markov transition

matrix can be directly used as a feature for classi�cation.

In this model, each state is an app state, and edges represent transitions between app states triggered by

user actions such as touchscreen clicks. Our instrumented code listens on onClick events, and records detailed

information about each click including time-stamp and what activities are triggered.

For be�er comparison, we visualize transition matrices as heat maps in Figure 5. Inspecting all sub-�gures,

column-wise they show three users have di�erent transition pa�erns. Row-wise, the same user maintains similar

behavior on both devices. �is feature is device-independent for many users.

4.2.3 Clicks and Swipes. Swipes and clicks, as illustrated in Figure 6, are important gestures to interact with

apps. In our app, a user has to swipe on the screen to scroll the list of articles, and click an article title to read it.
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Fig. 4. We illustrate three session characteristics of three users on two types of devices. Each pair of colored lines (bars)
correspond to one characteristic of one user’s behaviors on a phone vs. a tablet. They present high-level pa�erns regarding
user behaviors across devices.

How a user swipes and clicks may bear unique biometric information. It is desirable to include the information

for user recognition.

To support normal usage of a mobile device, when we touch the screen of a device, dedicated hardware

automatically generates data and reports them to the operating system as raw events. �e system or the app

further processes the raw data to understand user gestures and responds with corresponding functionality. Taking

Android as an example, the raw event records measurements of position, size, pressure and time-stamp of a screen

touch. Position is measured in terms of pixels along two dimensions of the device. It is �ne grained. Size and

pressure information are less accurate. Especially for pressure, some devices do not have dedicated sensor for

this measurement. �ey thus report constant value or simulate the value from size measurement. We need to

preprocess the data based on domain knowledge and observations to calibrate inherent di�erences across devices

introduced by hardware.

In our app, there are icons for users to click on. Since their positions are �xed, their corresponding click

measurements have negligible variance on position, and are thus less favorable as features. For articles, users

scroll the list to �nd articles of interest, and click on the titles. In this sense, click positions have more variance

and entropy for di�erent users. As shown in Figure 6(a), users give di�erent click positions. User 1’s clicks are
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Fig. 5. To give a straightforward comparison of clickstreams, we visualize transition matrices as heat maps. The numbers 0-7
represent locations within the app such as top articles, new articles and bookmarks.

User	  1	   User	  2	   User	  3	  

N
exus	  4	  Phone	  

N
exus	  7	  Tablet	  

(a) A tap has position on screen, size and pressure. Each
point in the above sca�er plots represents a tap. Its
size visualizes the size of the corresponding tap. The
pressure is visualized as darkness. For each user on each
device, we randomly and uniformly sample 100 clicks to
illustrate their click preference.

User	  1	   User	  2	   User	  3	  

N
exus	  4	  Phone	  

N
exus	  7	  Tablet	  

Screen	  sizes:	  
1200	  x	  1824	  	  

Screen	  Size:	  
768	  x	  1184	  

(b) A swipe is a series of taps. In the figure, for each user
on each device, we randomly and uniformly sample 15
swipes for illustration. We also fit a circle to each swipe
to show its radius and direction.

Fig. 6. We depict users’ taps on screen when clicking on article titles and swipes when scrolling the article list.

more spread on the screen. User 2 might be le�-handed due to the imbalance to the le� side of the screen. User 3

is equal between le� and right.

Users swipe on the screen to browse articles. A swipe is a sequence of taps. Each tap has its position, size,

pressure and time-stamp. We also �t a circle to each swipe to show its radius and direction. Figure 6(b) shows

that swipes can be an even stronger indication of handedness; user 2 is most likely le�-handed while users 1 and
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3 are opposite. Despite that, user 3’s swipes have smaller radius and are more concentrated than user 1, which

adds further biometric features.

Click and swipe features are relatively sensitive to hardware di�erences that introduce inherent dissimilarity

of measurements across devices. Instead of leaving it fully to our learning model to automatically compensate

for the di�erence, we calibrate some di�erence beforehand using heuristics and domain knowledge. To give an

example, for the pressure and size data, sensors on di�erent devices have distinct sensitivity and measurement

reference. With the tap data of the same users on di�erent devices, we can learn the relative di�erence across

devices and normalize the data in terms of mean and variance. For the position of clicks, we create relative values

in addition to the deterministic values to facilitate generation of features that focus on relative positions.

To generate click and swipe features, we compute statistics in time and frequency domains. Table 1 summarizes

the features.

4.2.4 Feature Summary. We extract both numerical and categorical features from aforementioned domains

and more, giving a total of 173 features. To give a summary, we compute time domain features such as mean,

deviation and frequency domain features including FFT values. Moreover, we include features unique to our

study. For example, we divide the screen into six areas and compute percentage of clicks falling into each area.

We employ the transition matrix of clickstreams to take into account app-speci�c behavioral pa�erns. We also

add a feature to indicate if two devices belong to the same type or model so that our algorithm can compensate

for inherent di�erences across devices.

4.3 Recognition Procedure
�e multi-device case is formalized as a set partition problem. �e recognition procedure comprises 1) coarse-
grained grouping, and 2) �ne-grained pairing.

4.3.1 Coarse-Grained Grouping By Overlaps. An app may have millions of installations. We do not directly

apply supervised algorithms to all devices at that scale. A wiser way is to �rst break them down into small groups

using rule-based heuristic methods. A common criteria for coarse-grained grouping is location proximity. �e

underlying intuition lays in the fact that devices of the same users are likely to co-locate with each other during

certain time periods (it is theoretically possible for some users that their devices never appear together, in which

case our approach cannot provide added-value for those devices). �e co-location can be geographic or in terms

of network address. �erefore, overlaps of two devices at physical locations or network segments enable the

grouping which can signi�cantly reduce the search space for devices potentially owned by the same users.

We admi�edly have neither a theoretical justi�cation for location-based grouping (which itself can be a serious

study similar to the famous six degrees of separation [40]) nor an experimental study on any large scale dataset

from industry, as they have legal concerns about publishing relevant results. We have only a�empted to survey

related literature to obtain understandings about this step. We have investigated papers about location-based user

identi�cation [5, 6, 20]. Locations can serve as quasi-identi�er of users. With su�cient location information, we

are able to uniquely identify a user. Mobile devices co-locate with their users. In fact, a main method to measure

user locations is through their devices. In this sense, we are able to identify devices with locations. On the

another hand, we survey papers on locations, geo-clustering and social relations [2, 10]. �e �nding is locations

and social relations interact with each other. Social relations tend to imply location proximity. Hence, devices of

the same users or socially close users bear similar proximity, which becomes the foundation for location-based

grouping of devices.

An app can obtain location information of devices through GPS, WiFi SSID and IP address. �e heuristic

criteria to pair devices together is that they are frequently within physical proximity, connect to the same WiFi

access points, or appear on the same IP segments for certain amount of time.
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ID Feature Description

f c1, f c2 �e mean of click position in vertical and horizontal directions.

f c3 �e mean of click pressure.

f c4 �e mean of click size.

f c5, f c6 �e variance of click position in vertical and horizontal directions.

f c7, f c8 Ratio of vertical clicks or horizontal clicks to all clicks.

f c9, · · · , f c28 �e index (frequency) of the 10 highest FFT value of click data.

f c29, f c33, f c37 �e max, min and median values of click position in vertical direction.

f c30, f c34, f c38 �e max, min and median values of click position in horizontal direction.

f c31, f c35, f c39 �e max, min and median values of click pressure.

f c32, f c36, f c40 �e max, min and median values of click size.

f s1, f s2 �e mean of swipe trace in vertical and horizontal directions.

f s3 �e mean of pressure in swipes.

f s4 �e mean of touch area of taps in swipes.

f s5, f s6 �e variance of swipe trace in vertical and horizontal directions.

f s7, f s8 Ratio of vertical swipe or horizontal swipe actions among all swipe actions.

f s9, · · · , f s28 �e index (frequency) of the 10 highest FFT value of swipe data.

f s29, f s33, f s37 �e max, min and median of swipe trace in vertical direction

f s30, f s34, f s38 �e max, min and median of swipe trace in horizontal direction

f s31, f s35, f s39 �e max, min and median of swipe pressure

f s32, f s36, f s40 �e max, min and median of swipe touch area

f s41 �e angle of moving during swiping

f s42, f s46, f s50, f s54 �e mean, max, min and median of velocity during swiping in vertical direction

f s43, f s47, f s51, f s55 �e mean, max, min and median of velocity during swiping in horizontal direction

f s44, f s48, f s52, f s56 �e mean, max, min and median speeds of swipe pressure change

f s45, f s49, f s53, f s57 �e mean, max, min and median speeds of swipe touch area change

f s58 �e acceleration of moving during swiping in vertical direction

f s59 �e acceleration of moving during swiping in horizontal direction

f s60 �e mean of swipe radius

f s61 �e mean of swipe direction at the start point

f s62 �e mean of swipe direction at the stop point

f s63 �e mean of swipe latency

Table 1. We summarize our features engineered from user clicks and swipes. The features include common statistics and
frequency domain components. They capture characteristics of a user interacting with our app.

4.3.2 Fine-Grained Pairing By Usage Pa�erns. �e coarse-grained grouping is straightforward yet e�ective in

reducing the search space. A�er grouping, a user’s device is likely to be mixed with devices of family, colleagues

and friends since the social relations typically imply physical proximity of people and their devices as well. To

further identify devices of the same owners, we leverage distinctions in usage pa�erns of di�erent users. Since it

is formulated as a set partitioning problem, the k-means algorithm might qualify as a candidate. However, it

is not suitable for this problem due to two main reasons: 1) k-means requires a moderate sample size and does

not perform well with sparse data [34] while our group size is well under 100 and the graph is sparse, and 2)

k-means under-performs with high-dimensional data [45] while our features are of dimension 139. To tackle the

challenges, we propose a �ne-grained pairing method of two steps: pairwise classi�cation and re�nement.
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Fig. 7. We illustrate examples of refinement I and II a�er pairwise classification, which constructs fully-connected subsets by
adding or removing certain edges.

A�er feature extraction, each device di has its feature vector f vi . For any pair of devices 〈di ,dj 〉(i , j), we

construct a feature vector f vi j which measures the similarity between behaviors on the two devices. �e pairwise

feature vector f vi j is de�ned as the element-wise squared vector di�erence ‖ f vi − f vj ‖2, which is widely used

as a distance and similarity metric. �e resulting feature vector is also of dimension 139. Additionally, we add an

extra �eld to indicate whether the two devices are of the same type in terms of phone or tablet so that learning

algorithms can take into account inherent di�erence between devices. With this pairwise setup, the �rst step is

to determine the (0, 1)-label for each pair 〈di ,dj 〉 to indicate whether they belong to the same user.

XRec employs random forest to classify device pairs. Random forest is an ensemble learning method that

constructs many decision trees and outputs the mean prediction of individual trees. It is able to address non-

linear features and inherently performs feature selection. Random forest achieves good robustness over single

classi�cation approaches [9, 14]. Moreover, we use regression to yield a mean prediction between 0 and 1, which

can serve as a con�dence score. �en we introduce a threshold to generate (0, 1)-labels.

�e second step a�er pairwise classi�cation is re�nement. With each device di as a vertex in a graph G , there

exists an edge between two devices 〈di ,dj 〉 if the predicted label for the pair is 1. We can populate all potential

edges based on classi�cation results. �e graph of devices is thus partitioned into connected subgraphs. A graph

is connected if there is a path from any vertex to any other vertex in this graph. Figure 7(a) illustrates a sample

output of pairwise classi�cation. Each subset is expected to by fully connected which does not hold for subset 1

and 4. �e full connectivity requirement comes from the fact that all devices in a subset are supposed to belong to

one user. Con�ict arises when dev 1 and dev 2, dev 2 and dev 3 belong to the same user while dev 1 and dev 3
do not. Our re�nement algorithm updates edges so that all subsets ful�ll the fully connectivity requirement. We

consider two approaches: 1) re�nement I adds edges to connect nodes in a partially connected subset, and 2)

re�nement II removes edges to partition a subset into several fully connected subsets. Sub-�gures (b-1) and (c-1)

illustrate two examples of the re�nement I which is straightforward. �e re�nement II keeps fully connected

subsets and remove extra edges. Sub-�gure (b-2) presents a simple example: removing one edge partitions the

set into two fully connected subsets. A tricky scenario is depicted in (c-2) where we can remove either edge to

succeed. In certain cases, we want to delete the edge with lower con�dence score.

Re�nement II alternatively iterates through two steps: 1) �nding the maximum clique in the current graph, and

2) removing the maximum clique and all associated edges from the graph. In the presence of multiple maximum

cliques, we choose one such that the associated edges to be removed have lowest con�dence scores. To �nd the

maximum clique, we use existing maximum clique algorithms [8]. Readers may refer to Algorithm 1 for details.
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Algorithm 1: Re�nement Algorithm II — Reduction

Input: Adjacency matrix An×n , con�dence score Sn×n
Output: New adjacency matrix A ′n×n
Procedure Refinement

A ′n×n = An×n ;

while An×n , [0] do
cliques = FindMaximumClique(An×n );
if cliques .size() < 2 then

break;

end
clique = ∅;
edдesToRemove = ∅;
minScore = +∞;

for c in cliques do
victims = FindEdgesToRemove(An×n , c);
scores = GetScores(Sn×n ,victims);
if scores < minScore then

edдesToRemove = victims;

minScore = scores;

clique = c;

end
end
RemoveEdges(A ′n×n , edдesToRemove);

RemoveClique(An×n , clique);

end
return A ′n×n ;

Re�nement II uses binary classi�cation to achieve satisfying recognition performance. In the binary classi�ca-

tion phase, we can tune parameters to intentionally increase recall (namely, predict more edges in the graph).

�en, in the re�nement stage, the algorithm removes edges in accordance with the topological constraint that

each clique should be fully connected. �e topological constraint provides extra information in addition to

behavioral pa�erns on di�erent devices. Most of the removed edges are false positives. Later in Section 6.2.3, we

present an illustrative example and experimental results to show the e�ect of re�nement.

5 EXPERIMENT SETUP
In this section, we present our experiment setup. �e experiment concentrates on �ne-grained pairing using real

usage data, obtained under IRB approval.

5.1 Data Collection
In this cross-device recognition study, each subject in our study uses the experimental app on four types of

devices: Nexus S, Nexus 4, Nexus 7-2012 and Nexus 7-2013. Each subject uses the app on two devices of each

type, yielding eight sets of usage data per subject. �ough it is rare for a real user to own eight devices, with this

setup we do not actually mean for them to have eight devices. We can opt to use part of the data to form di�erent

scenarios. Four pairs of di�erent devices allow us to study usage behaviors of each subject on 1) identical devices,

2) same type but di�erent models (Nexus S phone vs. Nexus 4 phone), and 3) di�erent types of devices (Nexus 4
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phone vs. Nexus 7 tablet). Also, with eight sets of usage data per subject, we have the �exibility of evaluating

the problem for cases of various numbers of devices per user from one to eight. Moreover, with this setup we

can test the performance of our approach in extreme case and also obtain insights of user behaviors on di�erent

types of devices.

In addition to usage behaviors of each subject across eight devices, we also need to study the variation of

behaviors on the same devices by di�erent subjects. To this end, we recruit twenty subjects from di�erent

demographic groups to participate in the data collection, giving essentially 160 sets of usage data in terms of

the 〈user ,device〉 pair. With the data, we are able to study inter-user, intra-user, inter-device and intra-device

behavioral similarity or di�erence. Moreover, per our discussion in Section 4.3.1, the coarse-grained grouping

can signi�cantly narrow down the cross-device recognition to within relatively small groups. From the 160 sets

of usage data, we can e�ectively construct such groups for studying �ne-grained pairing within the groups.

�at said, we admi�edly note that it is favorable to include more devices and participants into this user study.

However, our e�ort is limited by the constraints of time and hardware. We do not have dozens of mobile devices

for simultaneous data collection from many participants, and collecting data on eight devices for even one user

is already time-demanding. In this paper, we hope to deliver proof-of-concept results on this new cross-device

recognition problem, which we believe can be ful�lled with the 160 sets of usage data.

A�er we distribute devices to a subject for data collection, we do not give speci�c instructions to use the

experimental app other than a basic introduction of the app. �ey use the app in accordance to their own

preference and habit. In this fashion, we hope the subjects exhibit their own pa�erns in the usage that are not

biased by any particular recipe. Each subject uses the experimental app on eight devices. �is does not mean

they need to view the same content from the app on all devices. �e subjects switch between devices in their

usage. For the twenty subjects, we have collect usage data of e�ectively two to ten weeks, including hundreds to

thousands of clicks and swipes.

Last, due to limited resources, the device models we use are only a small portion of all models on market.

�e four device types in our experiment consist of phones and tablets of di�erent models, sizes and hardware.

Although they are not completely representative of all devices, they present di�erences we hope to have and

deliver meaningful results.

5.2 Experimental Data Generation
Without access to large-scale data that a commercial app provider would collect, we have a�empted to approximate

various scenarios. We collected usage data of real users using our app on real devices. However, we are not able

to a�ract a large number of users to study the coarse-grained grouping step. �erefore, we simulate probable

grouping outputs using the 160 sets of usage data. �ere are three primary parameters describing a group: 1)

total number of devices of the group, 2) number of devices per user, which determines the number of underlying

users given the total number of devices, and 3) diversity of devices which de�nes the number of di�erent types

of devices. With respect to the set partitioning problem, the �rst parameter speci�es the size of the set to be

partitioned. �e second parameter tells the number of clusters. �e third parameter describes diversity which

a�ects the similarity and di�erence between behaviors on devices within a group.

Our data allow us the �exibility to simulate various groups of di�erent parameter se�ings. With 160 sets of

〈user ,device〉 data, we can simulate a group of up to 160 devices with its correct partition being twenty subsets

each of eight devices, which might be rare but can test some properties about our approach such as scalability.

�e size will be smaller considering the withheld training data in our supervised approach.

We will conduct several experiments in the next section. Without otherwise stated, we use 80 devices from ten

users as training data, and the remaining for testing. Additionally, the results are averaged over ten di�erent

sets of training-test split. Some other details about the setup will be presented along with results in the next

section. �e training phase essentially models similarities or di�erences of behaviors on 80 devices, which are the
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distances between behaviors represented as feature vectors instead of isolated behaviors on individual devices. In

training, we include all eight devices of ten users to obtain su�cient positive and negative instances of device

pairs. A positive instance refers to the case that two devices belong to the same user, while a negative instance

denotes the opposite. Having two devices of 100 users can also help achieve the goal of having su�cient positive

and negative instances. Unfortunately, we are not able to perform a study at that scale. �ough it might be

di�cult to �nd real users with eight devices, the se�ing does not undermine practical implications of this study.

Having eight device from each user gives no advantages to modeling. It is more about having enough positive

instances with fewer users under our experimental se�ings. Additionally, we will evaluate XRec against di�erent

training se�ings where we have fewer training instances.

6 PERFORMANCE EVALUATION
In this section, we evaluate our approach in terms of its recognition performance. We aim to provide insights by

investigating the following questions.

• What is the overall performance of XRec?

• How does the group size a�ect recognition results?

• How does the recognition performance change with the number of devices per user on average?

• How well can our approach perform with a mixture of multiple di�erent device types?

• What is the generalization capability in terms of users, i.e. can XRec generalize from a few users to many

others?

• What is the generalization capability in terms of devices, i.e. can XRec generalize from a few devices to

other devices?

6.1 Performance Metrics
Recall from previous discussion, the user recognition problem can be formalized as set partition. To evaluate

XRec, we need to compute the distance between the estimated partition ρ̂ and the correct partition ρ. Denoeud et

al. [12] compared several distance metrics between set partitions such as the Rand index, the Jaccard index, the

corrected Rand index, the Wallace index and the normalized Lerman index. We employ two widely used metrics

for partitioning evaluation: the Jaccard and Rand index.

To compute the Jaccard index between ρ̂ and ρ, we need to evaluate on all pairs of elements in the set. For any

pair 〈x ,y〉, they can be joined or separated in each partition: joined means they are labeled as 1 while separated

means the opposite. We denote as r the number of pairs simultaneously joined in both partition, s the number of

pairs simultaneously separated, u the number of pairs joined in ρ̂ and separated in ρ, and v the number of pairs

separated in ρ̂ and joined in ρ. �en the Jaccard index between the two partitions is de�ned as:

J(ρ, ρ̂) = r

r + u +v
.

�e Jaccard index omits s since its inventor believes a partition is typically interpreted as joining elements.

In our evaluation, we may also want to reward correct separations. �e Rand index gives equal emphasis on

simultaneously joined or separated pairs. We also assess our approach using this index to o�er another angle of

perspective. �e Rand index is de�ned as:

R(ρ, ρ̂) = r + s

r + s + u +v
.

�e evaluation metrics on group partitioning are in terms of pairs within the group. From the perspective of

pairwise binary classi�cation, the aforementioned r , s,u,v are respectively true positive (tp), true negative (tn),

false positive (f p) and false negative (f n). In this sense, the Rand index is essentially the accuracy. To help
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Fig. 8. We illustrate the elbow method used in the k-means algorithm when the number of clusters is not known. It examines
the percentage of variance explained and identifies the ‘elbow’ point indicated by the red circle.

understand the e�ect of our re�nement algorithm, we also use metrics de�ned as follows:

precision =
r

r + u
=

tp

tp + f p
, recall =

r

r +v
=

tp

tp + f n
.

6.2 Recognition Performance At A Glance
First, we evaluate on all test data of 80 devices from ten users. Even though a group of 80 devices might be rare,

we hope the result can give an overall impression on the performance, and also demonstrate the scalability of the

algorithm. We also compare the performance with several baseline approaches. Moreover, we present analytical

results to highlight the e�ect of the re�nement algorithm.

6.2.1 Baseline Approaches. Our approach is compared to three baseline approaches including: 1) a naı̈ve

baseline method (Naı̈ve); 2) k-means algorithm (Kmeans); and 3) a heuristic method (Heuristic).

�e Naı̈ve baseline randomly guesses (0,1)-labels for all pairs during the binary classi�cation phase and

employs our re�nement algorithm I and II. �e Kmeans approach incorporates the elbow method [37], which is

used to determine the number of clusters in k-means. As shown in Figure 8, the method plots the percentage of

variance explained by the clusters against the number of clusters. �e ‘elbow’ point is indicated by the red circle.

�e Heuristic method trains a distance threshold on labeled data that maximizes the Jaccard value. �en the

distance is used to link any pair within the threshold during the binary classi�cation. Re�nement methods I and

II are applied subsequently.

Both the Naı̈ve and Heuristic methods require re�nement since they �rst make a binary prediction of each

pair. �e Kmeans approach, on the other hand, directly partitions the device set and requires no re�nement.

6.2.2 Performance Comparison. As shown in Figure 9(a), XRec with re�nement II achieves the highest per-

formance by Jaccard index, Rand index and precision. For 80 devices and thus

(
80

2

)
= 3160 pairs, XRec achieves

70% Jaccard value, 98% Rand value and precision, and 70% recall. XRec with re�nement I obtains high recall

value, but loses precision. Re�nement I causes low performance for Naı̈ve, Heuristic and XRec since it blindly

increases recall by aggressively adding positive instances, many of which are unfortunately false. On another

hand, re�nement II leverages a topology constraint and makes appropriate adjustments to the binary classi�cation

results. We will present experimental results shortly to further reveal its mechanism.

As also shown in the �gure, XRec performs signi�cantly be�er than all baseline results. Overall, the Rand

value is satisfying since there are many more negative instances than positive ones and it is relatively easy to

correctly predict the negatives. However, for the baseline approaches that employ re�nement I, the Rand values

decrease signi�cantly since re�nement I predicts many negative instances as positive. �e recall values for some

baseline approaches are satisfying. �e high recall is due to the fact that these methods make su�cient amount
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Fig. 9. In figure (a), we contrast XRec with baseline approaches. Refinement I and II are also compared. In figure (b) and (c),
we further illustrate its performance for di�erent group outputs from coarse-grained grouping.

of positive predictions so that the true positives are predicted. All baseline methods underperform in terms of

Jaccard and precision values.

�e Naı̈ve method makes random guesses and gives a lower bound for the performance. Its precision and

Jaccard values are low regardless of the re�nement methods employed. Kmeans slightly outperforms the Naı̈ve
method. �e Kmeans method, as a clustering method in nature, makes use of topological characteristics of the

group of devices. However, without knowledge of the underlying number of clusters, the uncertainty compromises

its performance. Additionally, the high dimensionality of the feature space makes clustering even more di�cult.

�e Heuristic with re�nement II achieves about 30% Jaccard value, outperforming other baseline approaches

with a Jaccard value below 15%. �is method learns a distance threshold to maximize the Jaccard value. �e

learning process takes into account behavioral similarity between devices and topological characteristics of

groups. �e excessive amount of information incorporated in the learning process creates sparsity. When the

learned model is applied to test data, the performance su�ers from the lack of generalizability because the test

data might exhibit dissimilar behavioral and topological pa�erns.

Second, we want to evaluate XRec on test data of diverse formations representing various group scenarios.

To this end, we randomly sample from the whole test data to construct a variety of di�erent groups. A group

is de�ned by the three parameters as discussed before: 1) total number of devices, 2) number of underlying

users, and 3) number of di�erent types of devices. To construct di�erent types of groups, we �rst sample two to

ten users. For each user, we sample one to eight devices. In total, we obtain 2000 sets of test data. Figure 9(b)

shows two of the three parameters for the 2000 groups. �e two do�ed lines de�ne possible area for the two

parameters as each user has one to eight devices. For each group, we depict its Jaccard and Rand indexes obtained
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in Figure 9(c). As shown in Figure 9(c), points concentrate on upper-right corner. �e variance of performance

comes from not only the di�erence in group formation but also speci�c users included in certain groups. If some

users in a group have very similar behavioral pa�erns, the performance will be undermined since our approach

relies on behavioral distinctions. In this case, the app simply loses the potential added-value brought by XRec on

these users if they happen to be in the same group. On average for all randomly sampled 2000 groups, XRec

(re�nement II) achieves 91% Rand value and 61% Jaccard value. Since XRec relies on behavioral pa�erns of users

and the topological constraint, its performance hinges on various factors. For some speci�c group scenarios,

the performance is far below the average level. It might be caused by various reasons such as: 1) some users

in the same group exhibit similar behaviors, 2) the group is small and each misclassi�cation thus incurs high

performance loss. To further improve the recognition performance, we may want to introduce new features that

capture other aspects of user behaviors. For instance, we can possibly use accelerometer data to reveal user’s

holding posture. �is potential improvement comes with the price of extra overhead since accelerometer has a

relatively high sampling rate. Moreover, it requires extra permission to access the data.

�e added value brought by XRec can enhance advertising, recommendation and user experience. �e working

mechanism is similar to cookie-based online tracking. Web cookies track users across websites while XRec tracks

users across mobile devices. �e primary goal for both is to link the current user to his previous activities. In

this sense, XRec works in parallel with the advertising and recommendation systems. XRec makes predictions

about the linkage among users on di�erent devices. �en the content viewed by the user on other devices also

indicate his interest and can be leveraged for optimization on the current device. �e XRec outcome is fed to

recommendation algorithms so that they can make use of the history content viewed by the user to recommend

new content the user might be interested in. �e same procedure applies to advertising. �e past trace exposes

user interest and there is higher chance that related advertisements being clicked. XRec also o�ers opportunity

for enhancing user experience with the app. For example, a news article le� open on another device can be

displayed on the current device in case the user may want to continue reading that article. �ough the experience

optimization process is app speci�c and requires careful design and implementation, the information relating to

user identity is generally useful. XRec aims to serve downstream services that favor a notion of user identity to

be�er ful�ll their goals.

In this experiment, XRec achieves 70% recall and 98% precision. �e recall is a measurement of the percentage of

true positives that get predicted. If we predict all instances as positive, all true positives are predicted as positives.

�e recall value is 100%. However, all negatives are also predicted as positives, incurring many errors. �e

precision o�ers another perspective. It measures the percentage of true positives among all predicted positives.

Hence, if we do not make any positive predictions, we do not even risk making mistakes. �e precision value

will be high. In this sense, there is a trade-o� between recall and precision. With 70% recall, it means 70% of

device pairs that belong to the same users are predicted as positives. �ey are the true positives. �e remaining

30% are hence false negatives. From the perspective of precision, 98% of predicated positive pairs prove to belong

to the same users. Only 2% of them are actually owned by di�erent users. �is is important to conservative

applications that tend to predict less positives yet predict correctly. �e four metrics used in this study measure

the partitioning performance, which cannot be directly translated into the performance gain of downstream

applications based on XRec. For example, an advertising application can leverage XRec outcomes to deliver more

relevant advertisements. �e improvement on click-through-rate will depend on several factors such as ads

quality and relevance, user intent and engagement. Even though it is di�cult to quantify the impact of XRec in

this process without experimental study, a satisfying partitioning performance can contribute to the downstream

application by providing this notion of identity across devices.

6.2.3 E�ect of Refinement. We also reveal the working mechanism of the proposed classi�cation-plus-

re�nement algorithm. �e pairwise classi�cation outputs con�dence scores from 0 to 1. A boundary is chosen
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Fig. 10. We illustrate analytical results under di�erent decision boundaries to demonstrate how refinement boosts recognition
performance. The refinement a�er binary classification significantly enhances precision without sacrificing much recall.

(a) Correct partition 

1 

2 
3 4 

5 9 

10 

11 6 8 

7 

(b) Binary classification 

(c) Refinement II 

Fig. 11. We present an illustrative example to show how refinement can improve recognition performance. The binary
classification excessively predicts associated pairs, which creates false positives (indicated as red lines) compared to the
correct partition. The subsequent refinement procedure selectively removes edges, most of which are false positives.

to further produce (0,1)-labels indicating whether a pair of devices belong to the same user. Figure 10 shows

the e�ect of the decision boundary on the performance of re�nement II measured in four metrics. We use 80

devices as training data and the remaining 80 devices as test data. In terms of all four metrics except recall, we

can observe that performance with re�nement II is consistently be�er than the performance without re�nement.

Re�nement II only slightly reduces the recall value by about 5%. By wisely removing positives as shown in
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Fig. 12. We illustrate the performance of XRec against changes of three controlling factors that describe a group scenario.

Figure 7, re�nement II boosts precision by 80% without sacri�cing much recall. Recall evaluates if all true positives

get predicted, while precision assesses if the predicted positives are true. �e balance between recall and precision

can be achieved by adjusting the decision boundary in binary classi�cation. As shown in the �gure, a suitable

decision boundary value from 0.4 to 0.6 gives satisfactory results in our experiment.

Figure 11 presents an illustrative example how the re�nement based on the topological constraint improves

performance. Sub-�gure (a) shows the correct partitioning of eleven devices. In the binary classi�cation, we

intentionally adjust the decision boundary to predict more positive instances, maintaining high recall value.

However, aggressive prediction generates some false positives indicated as red lines in sub-�gure (b). Subsequently,

the re�nement phase removes a substantial amount of false positives by enforcing the topological constraint

(namely the fully-connection clique constraint) in the graph.

6.3 Three Controlling Parameters
As mentioned above, a group is described with three parameters. We study the e�ect of di�erent group scenarios

on performance. We employ XRec with re�nement II, and use the same model trained in the above experiment.

6.3.1 Comparison of Di�erent Group Sizes. Group size is the total number of devices in a group obtained from

coarse-grained grouping. Depending on the strictness of the grouping method, physical proximity of devices,

population density and other factors, the group size may vary. To generate test data for this problem, we �x the

number of devices per user at three: a Nexus 4, a Nexus 7-2012 and a Nexus 7-2013, while the number of users

changes from three to ten (the maximum number of users available in test data), giving a range of group size

from 9 to 30. We generate nine sets of data per se�ing except for the number of users being ten, and compute the

average performance value.

Figure 12(a) plots the results. For most se�ings, XRec can achieve about 55% Jaccard value and 90% Rand

index. With the increase of devices, the performance is on a slight upward trend. An explanation is more devices

introduce more positive instances which is captured by the Jaccard index. Moreover, the re�nement can reduce

false positives. �e combined e�ect brings the values slightly higher. Intuitively, a smaller group size makes the

partitioning task less challenging. However, it also depends on the dissimilarity of behaviors from di�erent users.

If users within a small group happen to share common behavioral pa�erns. XRec is likely to treat them as the

same user. Moreover, when the group size is small, each misclassi�cation can incur higher performance loss.

6.3.2 Number of Partitions. �e number of partitions of a group is essentially the number of underlying users.

To prepare test data, the group size is �xed at 20 devices. Varying the number of partitions from three to ten, we

randomly generate several corresponding partitions. For instance, three implies partitions such as (8, 8, 4), (8, 7, 5).

PACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 1. Publication date: May 2017.



1:22 • X. Wang et al.

Moreover, the three users are randomly chosen from all ten users. For each se�ing, we generate ten sets of test

data and obtain average performance.

As shown in Figure 12(b), XRec achieves above 50% Jaccard value and 80% Rand value. �e case of 5 users each

with 4 devices gives best Jaccard value. Going either side decreases the value. Similarly, the reason might be the

number of positive instances in each combination. �e true positives can be well-presented by the Jaccard index.

Moreover, the re�nement in XRec relies on the topological constraint that every clique is fully connected. With 5

users and 4 devices each, the clique size and the number of cliques are medium. A graph with many small clusters

is sparse. It is easier for XRec to output small cliques since they require much less mutually connected pairs. For

example, an edge alone can generate a two-node clique. �e performance is penalized if a small clique is actually

incorrect. On another hand, a graph with a few large clusters is dense. In this type of graphs, to output a large

clique, XRec needs to correctly predict all pairs within the clique. Missing edges will break the large clique into

smaller ones, and incur performance loss. From this perspective, a medium number of cliques of medium size can

potentially bene�t the partitioning.

6.3.3 Di�erent Combinations of Devices. Our experiment uses four device types. We are interested in possible

variance between recognizing users across two phones and across phone-tablet. To prepare test data, we �x

group size at twenty: ten users each of two device types.

Figure 12(c) shows the results for di�erent combinations. Identifying users across Nexus S and 4 reaches

80% Jaccard value, while it is about 50% for the phone-tablet combinations, and 65% between the two tablets.

�e recognition across the same type of devices outperforms that across phone-tablet. User behaviors on the

same type of devices tend to be similar. �e screen size and hardware on di�erent devices might cause subtle

changes on some aspects of the behaviors. In this sense, XRec loses some discriminating information from those

device-dependent features. �e calibration during data preprocessing can help with the situation to some extent.

Our recognition is probabilistic in nature. From this perspective, the recognition made for the same type of

devices has higher chance to be correct. �is observation can be taken into consideration by downstream services

when they make use of the XRec outputs.

6.4 Di�erent Se�ings for Training Data
In this section, we change our training se�ing to investigate how XRec generalizes its knowledge on users and

devices. We also provide insight into how much training data are appropriate to achieve satisfactory performance.

We only use a subset of the original training data. �e test data consist of the remaining 80 devices.

6.4.1 Cross-User Generalization. For training, we choose two to ten users each with eight devices. We plot our

result in Figure 13(a). XRec achieves above 60% Jaccard value and the trend is stable. Even with two users each of

eight devices, XRec can capture behavioral di�erences among users across devices. It reduces the demand for

extensive training samples. By the design of XRec, the input feature vector to the binary classi�cation algorithm

is the di�erence between behavioral pa�erns on two devices. �e algorithm aims to capture the relative di�erence

instead of absolute pa�erns, which lowers the importance of learning the pa�erns of any speci�c users. In this

sense, a few users on multiple devices can o�er su�cient instances for XRec to model behavioral di�erences

across devices. �is is a favorable advantage even though it is not di�cult to recruit more users.

6.4.2 Cross-Device Generalization. We vary the number of devices per user from two to eight with ten users

for training and 80 other devices for test. Figure 13(b) shows that the Jaccard value initially increases with the

number of devices per user and then becomes stable. With two or three devices, XRec might fail to capture

behavioral di�erences of users between enough devices of di�erent types. As we use more devices per user for

training, XRec observes more devices and can be�er model the di�erences. In this experiment, the test dataset

contains all eight devices. It is desirable that XRec can observe instances from all devices in training. If the test
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Fig. 13. We illustrate how di�erent se�ings of training data a�ect recognition performance. In (a), the training data contain
data from di�erent numbers of distinct users. It aims to show whether the learned model can be applied to other users. In
(b), the training data contain data from di�erent numbers of devices. It a�empts to show whether the model can be applied
to other devices. In (c), the training data vary in length, showing the e�ect of the amount of training data on performance.

Fig. 14. We present the performance results when test sessions contain various numbers of swipes (an indicator of the
e�ective length of a session). We observe an upward trend as more behavior data are available for modeling session users.
The performance fla�ens out when extra data bring no additional entropy.

data and the training data come from di�erent distributions, the trained model is likely to underperform for the

test data. Hence, if we do not have all devices in the training data, we hope the devices at least are di�erent in

type so that the algorithm can incorporate this di�erence into the model. In real practice, XRec favors to include

more types of devices into its training dataset so that the optimal performance can be achieved.

6.4.3 The Amount of Training Data. To study the e�ect of the amount of training data, we use 80 devices as

training data and the remaining 80 devices for test. �is se�ing is the same as the experiment shown in Figure 9.

However, we vary the amount of training data per device, measured as the number of sessions. We randomly

sample the sessions from a device’s complete data.

Figure 13(c) shows the performance. �e Rand index is constantly high since this measurement rewards

correctly predicted negatives. �e Jaccard value starts with about 40% with 5 sessions per device. It gradually

increases to about 68% as the learning algorithm observes more data from each device. More data help the

algorithm be�er model the behavioral pa�erns of app users. �e increasing trend �a�ens out a�er about 20

sessions as extra data contribute no additional entropy for discrimination.

6.5 The E�ect of Test Data Length
Performance concerns arise when a session with the app is short and there is insu�cient data to model the

behaviors of the current user. Hence, we are also interested in the e�ect of test data length. To set up the
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Fig. 15. We present the recognition performance on individual devices. We study the scenarios where the app has one to five
users on each single device. XRec achives about 90% Rand index and above 70% Jaccard index.

experiment, we use 80 devices from ten users as training data. For the test data, we use data from the remaining

80 devices. Some sessions might not contain su�cient information for behavior modeling. �e duration of a

session is not a good metric since some long sessions are actually inactive and lack usage data. We observe that

users generate more swipes than clicks in their use of this news reader app. We partition the sessions based on

the number of swipes which indicates the e�ective length of the test data. �e bins we use for the partition are

1 − 10, 11 − 20, 21 − 30, · · · , 91 − 100, 100+ swipes per session. In one experiment, each bin has 30 sessions. We

report the averaged results over ten experiments in Figure 14.

�e Rand index maintains high values above 90% even when the e�ective length is short. �e Jaccard value starts

from 30% when there are only less than 10 swipes in the sessions. �e low engagement of users renders behavior

modeling less accurate. Nevertheless, the data can still indicate some pa�erns of users such as handedness, swipe

speed, position and so forth. As there are more swipes, the Jaccard index climbs to about 67% and stays on that

level. More data provide more entropy and improve the recognition performance. �e trend eventually converges

as extra data bring no extra entropy for our algorithm.

�ere could be many inactive sessions in which users have limited interactions with the app. �e lack of

behavior data compromises the accuracy in user modeling and subsequently the recognition performance. From

our data, 76% of sessions have more than 20 swipes. �e small size of screens of mobile devices makes list layout

a common design choice of many apps. Swipe is hence a frequent gesture for users to interact with the apps.

6.6 Session Segmentation on Individual Devices
While this paper concentrates on the problem of cross-device recognition, we also want to show experimental

results of session segmentation on individual devices. Typically, device sharing happens on family-held devices.

Moreover, the number of users frequently using the same app on the shared device is even less since they might

have di�erent interests and preferences. In our experiment, we study the session segmentation on all eight

devices each with one to �ve users. �e training data remain the same using ten users’ data on eight devices. �e

remaining ten users’ data are used as test data. For each of the eight devices, we simulate di�erent scenarios

where the app has one to �ve users on one device. For each device, we partition 50 sessions. For each number of

users, we generate 100 group scenarios. For instance, for one device with three users, we randomly sample 50

sessions from three users and evaluate the performance on the data. We repeat this procedure 100 times and

obtain the average performance for that device under the scenario of three users. �e same procedure applies to

other all devices with di�erent numbers of users.

Figure 15 shows the average performance on eight devices measured in Jaccard and Rand indices. �e Rand

index exceeds 90% regardless of number of the shared users. �e Jaccard index achieves above 70% for all cases.

�e performance on individual devices surpasses that in the cross-device recognition. A user’s behavior tends
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to be more consistent on the same device, which makes pa�ern recognition less challenging in this scenario.

Moreover, the number of shared users on one device is smaller compared to the total number of users across

multiple devices. �e data are more concentrated than distributed. �e combined e�ect improves the overall

performance on single devices.

7 CONCLUSION
We present the design, implementation and evaluation of XRec for cross-device user recognition. Distinct from

existing research work that investigates user identi�cation or authentication by the operating system on an

individual device, XRec deals with tracking users across multiple mobile devices by an app provider’s back-end.

Moreover, previous work typically concentrates on binary identi�cation of owner or non-owner of a single device

while our problem inherently demands multi-class recognition of multiple users across multiple devices. To

tackle challenges present in this problem, we propose to use coarse-grained grouping based on location proximity

plus �ne-grained pairing based on usage behaviors. Algorithmically, XRec leverages pairwise classi�cation plus

re�nement to solve the particular partitioning problem required for �ne-grained pairing in this context. We

evaluate XRec on 160 sets of usage data on eight devices of four types. For di�erent group scenarios, XRec

achieves an average Rand value of 91% and Jaccard value of 61%. �ese results o�er con�dence that user behaviors

provide entropy for recognition even across device types and form factors. XRec o�ers the opportunity to

optimize many downstream services across devices such as recommendation, advertising and user experience

enhancement. XRec provides a notion of identity to these services so that they can track down users’ activities

across multiple devices. �e history activities on other devices also indicate a user’s interest and preference.

XRec enables the mining of data at the user level instead of at the device level, enriching information available to

other services for be�er performance.
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