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Abstract—Many novel problems in computer networking re-
quire relevant network trace data during the research process.
Unfortunately, such data can often be hard to find, which
becomes a problem within itself. While generating appropriate
data using in-lab network testbeds and simulators are feasible
solutions, the former has limitations in terms of network scale,
while the latter has limitations in the generated data. To help
address these issues, we present an approach for the generation
of realistic network trace data in a contained, large-scale
network environment. We use network emulation to enable
large-scale, in-lab networking, and a software framework we
developed to support autonomous client-side protocols and
services, including user-behavioral models which scale in a
shared CPU environment. Our framework also enables quick
experiment setup and monitoring. We show through exper-
imentation on a low-end laptop that our approach enables
network scale into the hundreds of nodes, allowing anyone with
even basic hardware to generate potentially relevant, realistic
network data.

I. INTRODUCTION

Relevant network trace data is an important component
for almost all facets of computer networking research. When
specific data needed for a research problem is available to
use, work on solving that problem can proceed. However,
what if the data is inaccessible or does not exist? What if
portions of the accessible data are missing? What if the
data does not quite fit a problem’s specification, but no
alternatives exist? Indeed, this occurs more frequently than
we would like, and can result in changes to a problem’s
approach or even to the problem specification itself.

Within the networking domain, solutions to this common
issue have often relied on in-lab physical network testbeds to
generate the appropriate network trace data needed to move
forward on solving a problem. This may be adequate for
smaller networks, such as those incorporating 5-20 nodes,
but many problems rely on the need for data captured
from large-scale networks. These networks may incorporate
hundreds or thousands of nodes. To further complicate
things, a research problem may require trace data comprising
realistic, human-originated traffic. Such networks often are
not feasible to build in a lab due to cost of hardware, space
constraints, time required to build, and possibly the number
of human volunteers needed to create the traffic that will

traverse the network. This quickly becomes a challenging
problem in its own right that needs to be solved before work
on the primary problem can begin or continue.

Solving this problem for large-scale networks typically
consists of two approaches. The first uses network simula-
tion software to simulate a network and generate user-based
traffic for capturing synthetic network data [1], [2]. However,
network simulators make simplifications and assumptions in
their models that may not map fully to the real-world. Fur-
thermore, if trying to capture network trace data originating
from real software, such as botnets, often times the software
needs to be abstracted to a simulation model. This not
only requires additional work to program, but may require
protocol simplifications that produce differing behavior from
the software in the real-world.

The second approach leverages collaboration among vari-
ous researchers to construct large-scale, physical networking
testbeds [3], [4], [5]. This approach comprises a wide-area
physical network, often spanning the facilities of the partic-
ipating researchers, but at the cost of network flexibility.
Compromise may be necessary in terms of topology or
other behavioral characteristics of the network [6]. Ideally,
a researcher should be able to deploy any experiments they
require within a network testbed that they can tailor for their
specific needs, and that is available whenever they need to
use it.

In this work, we set out to provide a solution which allows
for ease of experimental setup, execution, and data collection
in a large-scale network environment. Our approach utilizes
network emulation to enable near real-world network traffic
over an emulated network contained within a single physical
computer. We do not claim completely real-world network
traffic for two reasons: the physical and link layers of the
network stack are simulated, which introduce assumptions
typically present in network simulators, and the use of mod-
els to represent human-behavior over the emulated network.

To enable large-scale networking and experimentation
in the shared resource environment provided by a single
computer, we developed a framework for network traffic
automation and experiment management, called EMEWS,
which is designed with such constraints in mind. This
requires a design methodology that both minimizes overall



CPU usage for the entire network, and maximizes CPU
utilization at any given time during an experiment run.
Our experimental results (Section V) show that even when
deploying a heavily utilized wide-area emulated network
on a lower-end laptop, EMEWS supports networks with
hundreds of nodes.

Our main contributions are as follows:
• We provide a means to generate and collect near real-

world network data on large-scale networks without
requiring a large-scale, physical network.

• We incorporate autonomous models for human-based
traffic generation over a large-scale network which
adequately represent the desired user behavior while
minimizing CPU resources.

• We create a framework for experiment management
and automation that enables quick setup, execution
and monitoring without researcher interaction. Our ap-
proach aims to both minimize overall CPU usage and
optimize the available CPU resources among all the
components managed by the framework.

The rest of this paper is structured as follows. In Section II
we discuss relevant background and related work. Section III
discusses the EMEWS framework and the service-driven
model that it employs, including the methodology governing
our design choices. Section IV discusses our behavioral
models in depth. Section V presents our experiments and
results, with relevant discussion. We then discuss limitations
of our approach and framework, along with future work, in
Section VI, and we conclude the paper in Section VII.

II. PRELIMINARIES

In this section, we discuss relevant background and issues
in the context of related work. Much prior work in dataset
generation and collection have focused on network security
problems, more specifically intrusion detection. Indeed, in-
trusion detection is a very rapidly evolving field, and the
data available to researchers should evolve as well.

A. The Dataset Collection Problem

Obtaining real-world, relevant datasets for computer net-
working problems, such as anomaly detection, has tradi-
tionally been difficult [7], [8]. This problem is compounded
when trying to apply traditional machine learning techniques
to train a representative model of normal and anomalous
network behavioral patterns. In fact, the lack of available
training data is one reason why machine learning based
detection methods have failed to gain traction in the real-
world [7]. This dearth of available data can arise if a
desired attack behavior does not exist in the wild (i.e., the
desired behavior has not been captured), or if entities owning
relevant data do not release the data to the public. In the
latter case, an entity, such as a corporation, may not want to
disclose the data they have collected due to privacy concerns,
or due to agreements with other entities [5].

One approach to address the shortage of large-scale net-
working data takes many disjoint datasets and combines
them using a combination of packet replay and subnet
merging [9]. Replaying packets is problematic as the original
traffic behavior may be inadvertently modified due to inter-
actions of the replayed packets with other network activity,
and protocols that follow a request-reply-repeat paradigm,
such as SSH, may become unsynced at the replay source.
Subnet merging, on the other hand, results in disjoint traffic
flows, due to a lack of any interactions between the subnets
belonging to different datasets.

B. Network Emulation

Network emulation in our context is a technique to enable
networks contained within a single physical computer, while
maintaining real-world network properties and behavior at
the OSI network layer (layer 3) and above [10], [11], [12].
While network emulators have been around for a while, their
use for large-scale network dataset generation, especially for
intrusion detection and distributed denial-of-service (botnet
generated trace data), is still relatively new.

One consequence of a multi-node network living within
a single computer is shared resource usage. Unlike with
a physical network where each node is itself a physical
computer - utilizing its own CPU and memory, in an
emulated network, every node shares the same CPU and
memory - that of the physical computer in which the network
resides. This includes all client and server side protocols,
routing protocols, underlying network stack operations, and
even the simulation of the physical and link layers. Thus,
full utilization of the available shared CPU cores may result
in various network timing and throughput artifacts [11].
This also implies that the emulated network’s shared CPU
resource usage becomes an important metric to consider [12]

In this work we utilize the CORE network emulator
as a base to create a network within a single physical
computer [11]. Network hosts, routers and other nodes are
emulated within Linux namespace containers (LXC), with
each container provided its own network stack, filesystem
mountpoints, and isolated process space. The physical and
link layers in CORE are simulated, which is to be expected
from an emulation platform. While these layers can be
simulated using more complicated simulation models [13],
we opt to keep the CORE default model as it is designed
for wired networks, and uses relatively low CPU resources.

C. Autonomous User Behavior

Capturing genuinely real-world user traffic, such as web
browsing traffic, is a difficult problem to solve in both a sim-
ulated and physical network environment. User-generated
traffic relies on real users using the network for their every-
day activities, which is not feasible if the physical network
consists of a testbed within a lab. One alternative, which
can be applied to physical or emulated network testbeds, is



having users volunteer to use a network testbed for some
activity during an actively running experiment. However,
human behavior tends to change when in the presence of
a cue that suggests they are being watched [14], giving
doubt that test subjects in a lab experiment will behave
exactly as they would in the real-world. Another alternative
involves using network trace data previously captured from
other networks as a source to create behavioral models
[15], but these previously captured datasets may incorporate
characteristics that do not map past the specific network
topology in which they were captured.

One approach that addresses autonomous user-behavior
describes a platform for generating network data based on
autonomous client services called agents, driven by behavior
defined in profiles [16]. This concept of profiles provides
for a higher level specification of an experiment in general.
However, the specific implementation of the agents and
the scalability of the system is not discussed, given that
their work targeted a physical in-lab testbed, which is not
as resource constrained nor as large-scale as our target
environment.

Our work presents user-behavioral models that are based
on observations of how some users interact with a network
during specific activities, and create models that reflect more
general work flows, such as a crawling many web pages on a
specific web site. Our models abide by a design methodology
that promotes reduced CPU usage while enabling better con-
current utilization of the CPU. These user-behavioral models
and our design methodology are presented in Section IV.

III. A FRAMEWORK FOR AUTOMATION AND
DEPLOYMENT OF NETWORK EXPERIMENTS

We propose a framework, named EMEWS1, to provide a
quick and simple means of deploying large-scale network
experiments which incorporate automated client-side user
behavior. EMEWS aims to satisfy the following principles:

• Near real-world generation of network data, potentially
including very large-scale networks and over very long
periods of time.

• Quick implementation and deployment of client-side
user behavior models, protocols, and other services to
facilitate network data generation.

• Integrity of the experiment provided through alerts
triggered when unexpected behaviors are encountered.

• Hardware implementation and physical footprint of the
testbed are cost effective and appropriate for a standard
academic lab.

While each principle incorporates some related work, there
is yet to exist a solution that not only covers all of these
principles, but which is freely available for any researcher
to use.

1The latest version of EMEWS can be downloaded from the official
project page at http://mews.sv.cmu.edu/research/emews/ or directly from
GitHub at https://github.com/absolutefunk/emews.

A. Architectural Overview
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Figure 1. The EMEWS daemon architecture. Every node in the network
which requires EMEWS services will contain a daemon process. If a node is
the designated log server for distributed logging, then that node’s daemon
will also launch the logging service.

EMEWS is a distributed management and automation
system that controls and coordinates various aspects of a
network experiment, providing the means for quick ex-
periment deployment and monitoring, and written for the
resource constrained environment of an emulated network.
As figure 1 illustrates, every node in the emulated network
requiring EMEWS services (Section III-B) will launch a
single daemon process. This daemon initiates and starts
services as requested by external EMEWS request clients.

The framework employs a modular architecture similar
to OMNeT++ [1], in which simply inheriting a base class
interfaces a new component. This inheritance, combined
with additional built-in helper and decorator classes, tries to
minimize the amount of work a researcher needs to perform
to implement a component and get the component running
in the network.

The EMEWS framework is written in Python, which was
selected for its speed when prototyping new logic, such as
client-side automation protocols required for an experiment
or other components. Python also encompasses a rich set
of external libraries which can easily be incorporated when
writing new components for EMEWS, further cutting down
on the amount of time spent programming.

B. Services

Services provide the functional components that give
EMEWS its usefulness, such as automating the client-side of
a protocol. Everything that interfaces to EMEWS is a service,
including the behavioral models.

One challenge with service-based architectures is scalabil-
ity in a shared resource environment, such as the emulated
network upon which EMEWS runs. To help overcome this
challenge, we observe that many potential services, such
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Figure 2. The service design methodology. Program logic is broken down
in to small execution blocks, with periods of waiting between them. This
example shows one possible way that two services could be scheduled on
a single CPU core.

as common client side protocols, comprise small blocks of
logic which execute, often preparing and sending data over
the network, followed by a period of waiting for a response
or data. For example, if sending a request to a web server for
a web page, the logic to actually send the request requires
little CPU resources, but the wait to receive data can often
dominate in time, thus creating a task in which the web
client is mostly sitting idle.

The design methodology that we propose follows this
basic pattern of executing a small block of logic followed by
a period of waiting. A service should be written to execute
only what it needs to, including sending data, and then either
wait to receive data or until some condition is met. Figure 2
gives an example consisting of two services simultaneously
executing on a single CPU core. An entire block is executed,
then the service waits. During this wait, another execution
from another service can execute. In this way, when a service
waits, another service can utilize the CPU. Notice with the
example in Figure 2, after execution block S2(1) finishes,
service S1 still hasn’t received data, so the CPU is idle until
data is received by service S1 and execution block S1(2)
can start. Once execution block S1(2) finishes, notice that
execution block S2(2) from service S2 starts immediately.
This could be due to coincidental timing of service S2
receiving data right as execution block S1(2) finished, or
having received the data earlier but continuing to wait for
execution block S1(2) to finish.

To enable this type of CPU scheduling, each service
runs in its own thread under a single EMEWS daemon
process on each node (Figure 1). To prevent CPU context
switching while an execution block is actively running, we
take advantage of a feature in the CPython interpreter called
the global interpreter lock (GIL), which only allows context
switching during an I/O call, such as waiting for data over
a network, or even when a services sleeps. This guarantees
that our execution blocks will run in their entirety without
fear of context switching.

One question to ask is why minimizing CPU context
switching is important. As CPU context switching itself
requires additional overhead, this overhead starts to add up
in an emulated network with possibly thousands or tens of
thousands of concurrently running services. Therefore, by
using a design methodology of atomic blocks of logic, we
can context switch only when it would happen regardless

(during network I/O, for example), and prevent any other
occurrences.

C. Service Monitoring

An important aspect of any network experiment is the
ability to monitor the state of all active components during
an experimental run. With respect to EMEWS, all running
daemons and the services they each contain enable log
messages to be emitted, notifying the researcher of any
events, including anomalies.

EMEWS incorporates per-node or distributed logging. Per-
node logging logs to a file on each node, whereas distributed
logging uses one designated node as a centralized log server
(Figure 1), and all other nodes send log entries to this
designated node. The designated log server node maintains
a single log file for the entire network.

In using distributed logging, all the researcher needs to
do is monitor a single log file. While this method is pretty
simple, it requires log traffic to traverse the network, which
may not be desired. One workaround is only emitting log
messages for anomalous events, so non-anomalous experi-
mental runs will not generate log traffic over the network.

Monitoring a running network experiment using per-
node logging requires a method to monitor each node’s
log file. One approach, which takes advantage of CORE’s
underlying directory structure on the physical host computer,
is to traverse every emulated node’s root directory as it is
represented on the physical host, opening each log file found.
This way any event from any node can be logged without
network traffic being generated.

IV. CLIENT BEHAVIORAL MODELS

In this section we discuss the client-side automation
protocols we implemented as services in EMEWS, and their
underlying behavioral models. These models serve more as
a proof of concept that expressive-yet-simple models can
be run within EMEWS that preserve its network scalability.
Additional behavioral models and their services can be
written and added to EMEWS, which we actively encourage.

A. Methodology

Ideally, any EMEWS behavioral model should minimize
CPU usage. Therefore, simpler models should be preferred
providing they represent the client-side behavior adequately.
While the term “adequately” is rather subjective, for very
large-scale networks, the computational overhead of these
models can greatly affect the upper bound on network size
if they are employed on many of the network nodes.

In keeping with the design methodology of our services,
we split the user behavior into execution blocks of small
behavioral patterns governed by single distributions, and
sequence the blocks to form the completed pattern.

The following behavioral models represent generalized
scenarios based on observations of real user behavior. How-
ever, they clearly do not cover every possible user scenario,



nor do they cover specific nuances that would require a much
more complicated model, or a model which could not be
split nicely into small execution blocks.

B. SSH

The behavioral model we use for SSH client traffic follows
a pattern of initiating an SSH connection with some server
from a list, executing some commands, and exiting the
session. This behavioral pattern follows from a common
pattern observed in academia in which a user needs to
connect to an SSH server to perform a series of tasks that are
often repeated, for example logging in to collect data from
a previously run experiment and launch a new variation of
the experiment.

The model consists of the following parameters:
• sc(t): The amount of time to wait before starting the

next SSH session during timeslice t.
• cn(t): The number of commands to execute during the

SSH session at timeslice t.
• cc(t, i): Command i to send to the SSH server during

the SSH session at timeslice t.
• cd(t, i): The delay between command i and command
i+ 1 during the SSH session at timeslice t.

Each parameter is sampled with respect to a specific times-
lice of execution, t. For each timeslice t, one SSH session
is initiated, commands executed, and session terminated. A
single timeslice will incorporate many execution blocks.

We assume that sc(t) and cd(t, i) are uniformly dis-
tributed, due to such behavior consisting of a naturally high
degree of randomness and the relative computational sim-
plicity of sampling. We use a discrete uniform distribution
parameterized by lower bound a and upper bound b to define
the range of sampled values. As such, each sample x is
bounded as a ≤ x ≤ b.

We assume that cn(t), and cc(t, i) are normally dis-
tributed, which enables us to use distribution parameters
to model implicit temporal dependencies which would be
difficult to represent without a more complicated model or
breaking our design goals. This allows for a general assump-
tion that for any timeslice t, P [y(t+ 1)|y(t)] = P [y(t+ 1)],
where y(t) is a model parameter such as cn(t). We imply a
dependency between y(t + 1) and y(t) by inducing a high
probability of sampling similar values for timeslice t, t+ 1,
etc. This is accomplished by using a very low standard
deviation. The same follows for sequences of commands.
We have implicitly that command i + 1 is dependent on
command i due to the sequence of commands appear-
ing to following from one another, even though explicitly
P [cc(t, i+ 1)|cc(t, i)] = P [cc(t, i+ 1)].

We use a variation of the normal distribution called the
truncated normal, which is similarly bounded above by a
and below by b, and further defined by µ, the expectation,
and σ, the standard deviation. We set a = 0, and b = |list|,
where |list| is the number of items in a list that corresponds

to one of our model parameters, such as the total number of
commands in the list for cn(t) or cc(t, i). These constrain
the sample to an index value (once rounded), suitable for
item retrievals from lists. We further define µ = b/2, which
provides a simplification if we assume that the specific
value we are expected to sample does not matter, as long
as it is consistent across multiple samples for timeslices
t, t + 1, t + 2, ... , t + m, and for commands i, i + 1,
i + 2, ... , i + n. In other words, we care about the overall
behavior, not specific instances of the behavior. For example,
assuming some value of µ based on a fixed value for b during
timeslice t, suppose we sample cn(t) = 5. This value fits the
behavioral pattern provided that P [cn(t + 1) = 5] is high.
We induce this dependency, as discussed in the previous
paragraph, by setting σ to a small value (0.5 - 1.0 worked
well in trial runs).

This gives the following PDF ftn for our truncated normal
distribution:

ftn(x;µ, σ) =
φ(x−µσ )

σ(Φ(µσ )− Φ(−µ
σ ))

, (1)

in which φ is the normal PDF, Φ is the normal CDF, and x
is a generated sample within the range [0, b].

One final note regards the dependence relationship in
cc(t, i) between command i and i + 1. Commands are
sampled without replacement, and a dependency is intro-
duced due to b changing between samples. However, this
dependency is both desired and comes without any addi-
tional computational overhead other than a list copy (to
preserve the original list of commands for future sessions).
In terms of desirability, similar sequences of commands per
SSH session are produced with high probability given an
appropriate σ. Further, when a selected command deviates
from the expectation, the rest of the sequence now has a
high probability of being shifted to some other sequence
of commands (based on our µ being fixed to the middle
command in the list), mimicking potential user behavior
during similar real-world deviations.

To complete the definition of the model, we define the
following parameters which need to be set manually (all of
them distribution parameters): a1 and b1, which define the
range of time for sc(t), a2 and b2, which define the range
of time for cd(t, i), σ1, which defines the standard deviation
for cn(t), and σ2, which defines the standard deviation for
cc(t, i).

C. HTTP

The behavioral model we use for HTTP (and by extension
HTTPS) is based on an observation that for some web
sites, such as online banking, a pattern is often followed in
which given the first hyperlink (link) clicked, the subsequent
links tend to follow a consistent pattern across multiple
accesses of the site. For example, if the first link clicked
is ‘login to online banking’, then the next link clicked has



a high probability of being the ‘login’ button after entering
credentials.

This type of path-based pattern in web browsing has also
been observed in the domain of link prediction [17], [18],
though the models used are much more complex than what
we believe a large-scale emulated network can handle in
bulk. Thus, we developed a model that can represent this
type of path-based work flow, using the same principles as
for SSH (Section IV-B).

The model consists of the following parameters:
• hc(t): The amount of time to wait before starting the

next HTTP session during timeslice t.
• hv(t): The HTTP server to connect to at timeslice t.
• pn(t): The number of web pages to request during the

HTTP session at timeslice t.
• pp(t, i): Web page i to request during an HTTP session

at timeslice t.
• pd(t, i): The delay between web page request i and web

page request i+1 during the HTTP session at timeslice
t.

We use the same distributions and definitions of a, b, and
µ as for the SSH behavioral model (Section IV-B). Param-
eters hc(t), hv(t), and pd(t, i) are uniformly distributed,
whereas pn(t) and pp(t, i) are normally distributed (using
Equation 1).

To keep the number of web pages crawled to a realistic
value, we use a heuristic in which once the first web page is
returned to us (i = 0), and the index of the next link to crawl
selected, we use this index as b when sampling pn(t). Thus,
E[pn(t)] = E[pp(t, 0)]/2. Note that crawling will also stop
if a web page is reached that consists of no links.

We define P [pp(t, i : i > 0)|pp(t, 0)] = P [pp(t, i : i >
0)] and represent the dependency implicitly by sampling
pp(t, 0) ∼ TN(µ, σ3) and pp(t, i : i > 0) ∼ TN(µ, σ4),
where TN(µ, σ) represents the truncated normal distribution
we are sampling from (Equation 1), σ3 is the standard
deviation used when sampling the first link to click (i = 0),
and σ4 is the standard deviation used when sampling all
subsequent links (i = 1...b− 1). We set σ3 > σ4 to signify
that after the first link is clicked, subsequent links clicked
have a higher probability of following a specific pattern (i.e.,
a higher probability of the middle-index link being clicked).

When a web page is requested through a link, that web
page is returned, containing a new set of links. Thus, b
often changes between page requests, inducing a dependency
between pp(t, i) and pp(t, i+ 1). Even if b doesn’t change,
most likely the list of specific links will. This follows from
the real-world in which a link that a user clicks is directly
dependent on the web page that contains the link, which
itself is dependent on the previous link that loaded the page.

To complete the definition of the model, we define the
following parameters which need to be set manually (all
of them distribution parameters): a3 and b3, which define
the range of time for hc(t), a4 and b4, which define the

range of time for pd(t, i), σ3 and σ4, which defines the
standard deviation for pp(t, i), for the first link clicked and
subsequent links clicked, respectively, and σ5, which defines
the standard deviation for pn(t).

V. EXPERIMENTS

We aim to see how well an emulated network running
EMEWS scales up. We start with a small emulated network
consisting of a set of 100Mb and 1Gb LANs connected
to a few routers, and deploy EMEWS SSH and HTTP
services on a majority of the nodes, each connecting to
various servers on other nodes and emulating sessions. This
emulated network also consists of an iPerf 1Gb client-
server session running to serve as a canary for throughput
anomalies. The iPerf client and server are disconnected from
the rest of the network, to minimize throughput fluctuations
due to other traffic. Starting from a modestly sized network
topology, we continue to scale up the emulated network
by adding more client and server nodes until either the
throughput from the iPerf session starts to drop, or we run
out of computing resources.

The EMEWS HTTP and SSH services were configured to
be more aggressive to increase overall network utilization.
For HTTP, model parameters hc(t) and pd(t, i) were config-
ured to decrease the average time spent waiting to connect
to a web server, and clicking on links, respectively. For
SSH, model parameters sc(t) and cd(t, i) were configured
to decrease the average time spent waiting to connect to
an SSH server, and sending commands, respectively. We
also purposely configured the distributed logger to log all
events, which provided another source of traffic to increase
our network utilization.

All experiments were run for 1 hour to help ensure
stability in CPU usage (ie, the average CPU usage should not
increase over time). We also monitored average memory us-
age, which also should not increase during our experiments.

While data collection was not a primary focus of our
experiments, we did collect PCAP data from a single node
on our emulated network. This node ran both an SSH and
HTTP server, which captured data originating from our SSH
and HTTP EMEWS services, respectively.

All experiments were run on a Dell Inspiron laptop,
consisting of an Intel Core i7-7500U CPU running at
2.70GHz (dual core with hyperthreading), 8GB of RAM, and
running Ubuntu 17.10 (kernel 4.13.0-39). Our experiments
used CORE 5.0 and EMEWS 0.32. In addition to CORE
and EMEWS, our emulated network also ran instances of
Apache2 2.4.27, OpenSSH 7.5p1, and iPerf 3.1.3.

A. Scalability Results

Looking at Table I, the overall scalability of the emulated
network was surprisingly good considering the hardware in
which we performed the experiments. Most surprising was
why we stopped at 263 nodes. With an average CPU usage



Node Count Host Count Client Count CPU Usage (Avg)
Total HTTP SSH Total HTTP SSH

75 11 8 4 40 27 17 21%
157 19 16 4 86 58 37 34%
215 26 23 4 118 82 50 47%
263 30 27 4 146 103 62 65%

Table I
OUR NETWORK EMULATION SCALABILITY RESULTS INCLUDE MULTIPLE TRIALS WITH VARIABLE NODE COUNT IN THE EMULATED NETWORK. HOST

COUNT (TOTAL) AND CLIENT COUNT (TOTAL) REPRESENT THE TOTAL NUMBER OF NODES THAT ARE CONFIGURED AS HOSTS AND CLIENTS,
RESPECTIVELY. SOME HOSTS AND CLIENTS ARE CONFIGURED TO HANDLE BOTH HTTP AND SSH SESSIONS, WHICH IS WHY THE SUM OF HTTP AND

SSH CLIENTS IS GREATER THAN THE TOTAL COUNT.

of 65%, it would seem we had some room left to grow, but
unfortunately we did not have enough memory to proceed. In
fact, during the 215 node trial, the network was consuming
7.1GB of RAM and 5.4GB of swap (out of 7.9GB). When
we scaled up to 263 nodes, we hit 7.5GB of RAM consumed
and 7.2GB of swap. At this point, 6 EMEWS services could
not start due to insufficient memory.

The iPerf results were very stable at 958Mbps average
throughput per trial, rounded to the nearest megabit per
second. For each trial, iPerf comprised 7% of the average
CPU usage. Because we hit our memory limit before we
could exhaust CPU resources, this result is to be expected.

CPU usage seemed to scale linearly as the node count
increased. This would suggest that, given more RAM, we
could have reached a node count in the upper 300s. Consid-
ering that the experiments comprise of hundreds of concur-
rent threads running on a dual core processor, an emulated
network consisting of 300+ nodes is quite acceptable. With
even a modest desktop computer, emulated networks with
thousands of nodes should be possible.

One last point to touch upon regards CPU and memory
usage over time. Average CPU usage remained very consis-
tent over our experimental runs, as expected. Memory usage
spiked during EMEWS service initialization at the beginning
of each experimental run, which was also expected. EMEWS
services initialize using external client processes that request
them to the daemon (Figure 1), and these processes terminate
after a request. What was unexpected is that memory usage
slowly started increasing again as our experimental runs
proceeded. To measure exactly how long an experiment can
run before exhausting memory, we re-ran our last experiment
(263 node count), which comes close to exhausting memory
during EMEWS service initialization. The experiment ran for
10 hours before memory exhaustion. The underlying reason
could be EMEWS, a network protocol running outside of
EMEWS (an SSH or HTTP server, for example), or the
CORE network emulator. Further investigation is needed to
discover the culprit.

VI. LIMITATIONS AND FUTURE WORK

While our solution is a step closer to reaching the ideal
goal of cost-efficient, in-house, real-world network experi-

mentation, some limitations inherent to our approach need
to be addressed.

Experimentation utilizing emulated wireless networks
pose many of the same challenges as using a network simu-
lator. While the network stacks are real-world, the physical
medium in an emulated wireless network is still simulated,
with many of the same limitations and simplifying assump-
tions made in network simulators. Thus, some wireless
experiments, especially those which require measurement of
physical signal properties such as received signal strength
(RSSI) [19], may not be suitable for emulation.

In a wired setting, as discussed in Section II-B, network
emulation provides for real-world network behavior from the
network layer (layer 3) upward. Experiments which focus on
the physical or link layers may not be suitable for emulation.

If a researcher wishes to conduct experiments to learn
about how humans interact within a network environment,
or research exploring various human quirks that may arise
while using a network, they clearly would need an actual
human in the loop. This type of data collection most likely
would require either a large-scale public network (that the
researcher could collect network trace data from), or a
smaller network with many users.

The SSH and HTTP behavioral models may not represent
some scenarios very well, and certainly, there are many in
which they will not represent well at all, even with model
parameter tuning. However, one strength of EMEWS is the
ability to quickly implement custom services, including new
behavioral models. Indeed, one motivation for the creation of
EMEWS was to enable this kind of expansion of individual
services under a common framework.

Auto-labeling of network trace data is a feature we would
like to implement in EMEWS. While the foundation for this
already exists, an EMEWS service would need to be written
to correlate and label the traces.

Another future work direction is implementing a bot-
net EMEWS service. Flooding-based botnets do not re-
quire human-based behavioral models for traffic generation,
as these botnets generate traffic autonomously. With the
command and control overhead already implemented, a
researcher would only need to define the botnet traffic
generation model, or simply set the parameters for the



default model. We think this would open the door for large-
scale botnet network trace data generation.

VII. CONCLUSION

In this paper, we showed that large-scale, realistic network
data generation using network emulation and our EMEWS
framework is indeed possible on cheaper hardware. While
we do not expect most academic labs to be confined to
laptops for performing experiments, our results give good
insight into how well even a modest desktop could perform.
And by implementing additional EMEWS services, many dif-
ferent types of networking experiments and data generation
can be performed, all within the comfort of a lab.
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