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Abstract—Among the many challenges in computer network
trace data collection is the automation, or mimicking, of human
users in situations where humans-in-the-loop are either imprac-
ticable or not possible. While client-side human behavior has
been automated in various static settings, autonomous clients
which dynamically change their behavior as the environment
changes may result in a more accurate representation of human
behavior in captured network trace data, and thus may be better
suited for problems in which humans-in-the-loop are important.
In this work, we set out to create dynamic autonomous client-
side behavioral models, which we call agents, that can interact
with the network environment in much the same way that
humans do, and are scalable in shared-resource environments,
such as emulated computer networks. We show through multiple
experiments and a web crawling case study on an emulated
network that our agents can mimic interactive human behavior,
and do so at scale.

I. INTRODUCTION

Network trace data which adequately captures behavior
required for research problems is often scarce or non exis-
tent [1], forcing researchers to either produce their own data, or
perhaps change research directions. While the latter is usually
undesirable, the former poses many challenges on its own,
and may become a problem in its own right. A researcher
tasked with collecting or generating relevant network trace
data may need to solve problems such as locating a viable
computer network in which data can be collected from, and
assessing if such a network is adequate to capture behavior
related to the research problem [2]. Even if a suitable target
computer network exists and data can be collected from,
further complications arise if human user behavior needs to be
included in the capture, such as policy to permit such capture,
how human users react to environments in which they know
their data is being captured [3], and issues that will naturally
arise if specific human behavior needs to be represented in the
captured data.

In this work we aim to take client-side human users out of
the loop and generate realistic network trace data by using
dynamic agents to replace human users. An agent is an
autonomous client which can interact with its environment,
dynamically changing its behavior based on what it sees, or
senses [4]. The idea is to create agents which can adapt their
behavior when interacting within a network, in much the same
way that humans do. Our goal is to mimic specific human

behavior given the same environmental conditions that would
be present to human users.

As a rolling example presented throughout this paper, we
consider the use case of video streaming services, such as
YouTube. Sequences of videos which a typical human user
may watch on a video streaming service is heavily influ-
enced by what the recommendation algorithm features to that
user [5], [6]. Recommendations from the algorithm may be
based on many different factors, such as viral videos - videos
that are currently popular on the service, and new videos which
other creators recently uploaded. To properly mimic human
users, an autonomous client needs to not only sense these
factors, but use them in the decision making process.

This work focuses on a specific type of computer network
in which humans-in-the-loop are impracticable or impossible:
shared-resource emulated computer networks. An emulated
computer network comprises one or few physical computers
hosting a large-scale computer network by means of virtualiz-
ing network hosts and simulating the physical links between
them. Each virtual network host must share the resources of
the physical computer among all other virtual hosts. Emulated
computer networks are important in areas such as academic
labs in which physical network testbeds are often difficult to
build due to time and financial constraints [7].

Our main contributions in this work are as follows:
• The development of agents which can make decisions, in

part, based on what is going on around them, similar in
nature to how humans often make decisions.

• An agent architecture that is conducive for deployment
in shared-resource computer networks, which is important
for researchers who need to generate or collect network
trace data incorporating human user behavior, but without
the proper physical resources to perform the task.

The rest of this paper is structured as follows. In Sec-
tion II we discuss relevant background and related work.
Section III discusses our approach to mimicking human behav-
ior as agents, including interactive human behavioral models
and agent architecture. Section IV presents our experiments
and results, with relevant discussion. More specifically, Sec-
tion IV-B presents experimental results involving our agent-
based autonomous clients, and Section IV-C presents our
shared-resource scalability results. We then discuss limitations



of our approach and framework, along with future work, in
Section V, and we conclude the paper in Section VI.

II. PRELIMINARIES

A. Network Testbed Methodologies

Computer network testbeds can roughly be divided into
three categories: physical networks, emulated networks, and
simulated networks. Physical networks, as the name suggests,
are networks which comprise physical hosts, links, and other
infrastructure [8], [9]. While physical networks are ideal
for realistic network trace data generation, they suffer from
limitations which particularly affect academic labs. Cost and
time to build these networks often rule them out for data
collection purposes, and space considerations also can be a
limiting factor. Physical networks also do not scale well in
terms of reliability.

On the other end are simulated networks, which enable
simulation of an entire physical network on a single physical
host, and often at scale even on modest hardware [10], [11].
However, because network links and the entire network stack
is simulated, accompanying assumptions and simplifications
may hinder the generation of data realistic enough for a given
problem. Also to note, experimentation in real-time is typically
not possible as network simulators often use event-queues to
dispatch network events as opposed to timers [10].

A middle-of-the-road approach uses network emula-
tion [12], [13], [14], which offers advantages present from
both physical and simulated networks. Like physical networks,
emulated networks run the same network stacks and host
services/protocols. Like simulated networks, an emulated net-
work can run entirely within a single physical host, which is
where the limitations come into play. Hosts within an emulated
network each run in a virtualized environment [15], and links
between them must be simulated as the network itself is not
physical. However, as long as the physical host has enough
computational and memory resources to properly host an
emulated network, resource contention should not be an issue.
Also, provided that the emulated network is simulating wired
links, such as Ethernet links, the simplifications present with
such links should not impede the generation and collection of
realistic network trace data.

The approach presented in this paper will utilize network
emulation to achieve the goals laid out in Section I.

B. Network Traffic Automation

Physical and emulated networks require either real humans
to interact with the network, or a form of automation to
emulate human user behavior. Bringing real human beings
into the loop is challenging not only in terms of scale, but
also in terms of behavior preservation [3]. Therefore, while
not ideal, it may be more practical to automate client-side
user behavioral patterns.

Prior work utilizes varying approaches to automate client-
side user behavior, such as using previously captured network
trace data to build autonomous clients [16], or utilizing expert-
defined profiles to drive autonomous behavior [17]. Our prior

work automated client-side user behavior in a static nature,
with behavior that is independent of the network environ-
ment [7]. In this work, we would like to enable dynamic
client-side behavior that is interactive with the network. This
requires an approach to enable our client-side agents to interact
with the environment (network) in a manner that is scalable
in a shared-resource computer network, such as an emulated
network.

Building off our prior work, we augment the EMEWS net-
work traffic automation and experiment management frame-
work [7]. EMEWS enables user automation through the use of
behavioral models, called services, while providing a verbose
logging environment to monitor a running network experiment.
Also of importance, the framework is designed to run on
shared-resource networks, enabling many services to run at
scale. We extend EMEWS to support our agent-based system,
which already provides much of the lower level network and
centralized communication required for our implementation.1

C. Intelligent Agents

An intelligent agent typically uses on-board sensors to
collect or sense information, or evidence, from the environ-
ment within which it interacts, and uses this evidence to
guide its decision process in terms of the next action to
take [4]. For any given action performed by an agent, evidence
within the environment may change. For example, consider an
autonomous vacuum cleaner which cleans any area it finds is
dirty. The vacuum cleaner is the agent, cleaning is an action
the agent takes, and sensing whether an area is clean or dirty
is evidence collection from the environment. Evidence can
change when a dirty area is cleaned.

In our domain, the network itself serves as the environ-
ment, and our client-side agents manifest as programs within
network hosts. Agents make decisions, in part, on network
state based evidence, which could comprise anything ranging
from host input traffic to the actions of other agents from other
network hosts. In terms of our viral video example, an agent
could base its decision of which video to click, in part, on
any viral videos the agent is made aware of. This strategy
departs from approaches used in similar domains, such as link
prediction [18], [19], in which decisions in the present are
often determined from prior decisions.

EMEWS static client-side automation services (Section II-B)
decide which actions to perform by distribution sampling,
whose parameters are mostly determined from expert knowl-
edge [7]. One exception is the SiteCrawler service, a web
site link crawler, which for any currently loaded web page
containing a set of links, decides which link to click by sam-
pling from a truncated normal distribution whose parameters
are determined by the number of links which comprise the
currently loaded page. This induces an implicit dependence on
the currently loaded web page when the SiteCrawler service
is making a decision on which link to follow, which arguably
may be considered dynamic behavior. However, in this case,

1eMews can be downloaded here: http://mews.sv.cmu.edu/research/emews/



the service itself is bounded to making a decision within the
space of links on the currently loaded page, and that decision
is strictly by sampling. An intelligent agent, on the other
hand, may factor in additional information it senses from the
environment when making a decision.

III. MIMICKING HUMAN BEHAVIOR

We start this section by introducing the underlying archi-
tecture necessary for our agent-based approach to work. Then
we discuss our agent implementation, from the perspective of
a web crawling agent, which is a generalization of the video
streaming example presented in Section I. The overall goal of
mimicking human behavior using this approach is to provide
such behavior that can be captured in network trace data.

A. Approach Architecture

Our approach utilizes a common concept with agents known
as ask/tell, in which an agent can sense (ask) the envi-
ronment to obtain evidence for decision making, and also
can update (tell) the environment directly about its actions,
decision processes, etc., which we call observations. Giving
observations directly to the environment is feasible in our
domain by network message passing. The environment itself
lives as an EMEWS server module on a single virtual host,
supporting multiple simultaneous ask/tell requests from agents
in a centralized manner.

Whenever an agent gives observations to the environment
(tell), the observations are processed by the environment
for evidence generation. Newly generated evidence is stored
within the environment for agents to query (ask).

Exactly how new evidence is produced is dictated by logic
which form part of the schema for an experiment. For example,
if agents are crawling a video streaming server, these agents
may give to the environment observations regarding which
video they are currently crawling. The environment may
contain logic which dictates to produce evidence of a viral
video if the number of crawls to that video reaches a specific
threshold within some time interval. This evidence could then
be queried by an agent to guide its decision as to which video
to crawl next. This specific example implies that evidence is
not necessarily produced each time an agent gives observations
to the environment, but rather produced when specific sets of
observations are given by perhaps multiple agents and perhaps
over a varying interval of time.

One subtlety with how our approach handles evidence deals
with expiration. For example, it wouldn’t be very realistic for
evidence of a viral video to remain indefinitely. This implies
that whenever an agent asks the environment for evidence, the
evidence returned is relevant at the time of asking.

B. Web Crawling Case Study

We demonstrate our approach in terms of an agent for web
crawling. A web crawling agent connects to a web server (web
site) and proceeds to visit pages. Each page embeds links,
which when clicked load another page corresponding to the
link clicked. The agent will then pick a link on the newly

loaded page to click, and the pattern continues. A sequence
of clicked links comprises a page crawl. The web crawling
activity is sub-divided into sessions, in which a single session
comprises a series of page crawling from a single web server.
During a session, the task of an agent is to decide a link to
click given a current page that the agent is visiting (crawling).

For any given page that an agent is visiting, it will be
presented with n links contained on the page to choose from
to click next. The agent can also query evidence from the
environment by type. For example, a list of links which are
currently viral constitutes one type of evidence, and a query for
this type will return all the links on the current page which are
viral. Making the closed world assumption that a link present
on the page but not present in the list is non-viral, and is in
itself evidence, the total pieces of evidence pertaining to viral
and non-viral links is equal to the number of links on the page,
or in other words, |page links| = |viral link evidence| =
n. The evidence types we use for our model adhere to this
property.

Our web crawling agent model supports two types of
evidence: viral links, and previously visited links. Viral links
are analogous to the concept of viral videos presented in our
rolling example from Section I, and we generalize this concept
for links to include any link which is recommended to an
agent, or in other words, provided to an agent as evidence.
Previously visited links are links which an agent has already
visited during the current web crawling session. Note that both
types of evidence contain n pieces, one for each page link, for
a total of 2n pieces of evidence in total.

1) Agent Environment Overview: As mentioned briefly in
Section III-A, the agent environment is tasked with producing
evidence that agents can then ask for. For the evidence type
of viral videos, the environment determines whether a link
is viral by counting clicks to that link among all the agents.
The environment will know when an agent clicks on a link
because the agent will tell the environment about its actions.
Whenever the total count of clicks for any link on any specific
web server reaches a threshold, given in the schema, then the
environment will produce new evidence of the viral link. This
is accomplished by using a unique identifier to index the link
and adding it to a list of viral links present on the currently
visited page. The environment knows which indices map to
which links as agents tell the environment about which web
server they are crawling and links clicked in terms of these
same indices.

The visited links evidence type does not require the envi-
ronment, as agents keep track of their visited links for a given
session.

2) Agent Model: The key goals of our agents are to provide
for easy configuration of desired human behavior, and in a
manner conducive for deployment in a shared-resource envi-
ronment, possibly running hundreds or thousands of agents
concurrently. Based on the methodology proposed in Ricks et
al. [7], our agent model should comprise of logic blocks that
are in themselves not time-consuming to execute. In that spirit,
we present the following model.



At the heart of the agent is a model which determines
which link to click next on the currently visited web page,
given evidence. The model is represented as a discrete joint
probability distribution D, in which a random variable X
captures the state space of possible agent actions x ∈ X , and
each piece of evidence ei, 1 ≤ i ≤ mn is represented as a
random variable Ei in D. Here, m is the number of evidence
types, and n is the number of variables which comprise a
specific type. So for mn pieces of evidence, we have a joint
distribution comprising mn+1 random variables. The goal of
the agent is to sample from D the next action x ∈ X , given
evidence e.

If we represent the joint distribution D as a table, then it will
contain |X| ∗ |E|mn parameters, where |X| is the number of
states (cardinality) for variable X , and |E| is the cardinality for
each evidence variable Ei, assuming each variable Ei has the
same cardinality. This can become intractable quite fast. For
example, if the agent has 10 links to choose from (|X| = 10),
and each piece of evidence represents either a specific link
that has gone viral (either the link is viral or not: |Ei| =
2) or a visited link (again, the link is either visited or not),
then we have a total of 10 ∗ 22∗10 = 10, 485, 760 parameters.
10, 485, 760 parameters would clearly be too many to specify,
and assuming each parameter is stored as a 32 bit integer,
a single agent would need 40 MB in the worst case just to
store the model, not to mention inference overhead. As the
number of links increase, the memory requirements increase
exponentially.

X

... ... ...

E11
...

Evidence Type 1

...
Evidence Type m

...E12 E1n
E

m1
E

m2
E

mn

Action Variable

Fig. 1. The factorization strategy used in our agent model. Evidence is
categorized as types, with each type comprising |X| random variables.
Variable X’s state space are the possible actions an agent can take, which for
our use case are the clickable links on the currently visited page.

Given these challenges and our shared-resource constraint,
we opt to use a common assumption of independence among
our evidence variables, known as the naive Bayes assumption,
which states that every evidence variable is independent of
every other evidence variable given an action2. This allows
us to factorize our joint probability distribution as a Bayesian
network [20] representing a naive Bayes structure, reducing
parameter space to only those required to specify each joint
conditional probability distribution of each evidence variable
given an action (Figure 1). Taking the example above, this
assumption reduces the number of parameters we need to

2This assumption is not always accurate to make, but tends to work well
in practice.

define from 10, 485, 760 to |X|+ (mn)|E| ∗ |X| = 10+ 20 ∗
2∗10 = 410 parameters, a drastic reduction, but still too many
to specify manually.

To work around the need to specify all parameters, we
instead define hyper-parameters, and use those to generate
the model parameters. We define three strictly positive hyper-
parameters that need to be specified by the researcher col-
lecting the data: α, the relative strength that an agent should
click a link that is viral, β, the relative strength that an agent
should click a link it has already visited in a given crawling
session, and δ, the relative strength that a set of links should be
preferred to click over all others. The term ‘strength’ refers to
a number that defines a ratio between specific probabilities to
all others in a distribution. For example, in a given distribution,
a strength of 10 means that probabilities in which the strength
is applied will be scaled at a factor of 10 relative to all other
probabilities in the distribution.

The hyper-parameters α and β are used to calculate the
conditional probabilities for the evidence variables, and cor-
respond to the evidence types of viral links and visited links,
respectively. The hyper-parameter δ is used to calculate the
probabilities for our prior distribution X .

Given that a link j was clicked, the conditional probability
that link j was given as positive evidence y (for example, link
j is viral or previously visited), is defined for all evidence
variables Ei as:

P (Ei = y|X = xj) =
ρ

ρ+ |X| − 1
, (1)

in which ρ is the hyper-parameter (for example α or β). Once
calculated, only two parameters are stored per evidence type,
P (Ei = y|X = xj), defined above, and P (Ei = y|X 6= xj),
for all evidence variables Ei, which is calculated by:

P (Ei = y|X 6= xj) =
1

ρ+ |X| − 1
. (2)

To incorporate additional types of evidence in this way, we
would need one additional hyper-parameter for each type of
evidence, and |X| additional random variables.

Note that for any evidence variable Ei and clicked link j,
P (Ei = y|X = xj) + (|X| − 1) ∗ P (Ei = y|X 6= xj) = 1.
This a side effect of normalizing the probabilities (Equations 1
and 2) to have the correct ratio based on the given strength
hyper-parameters. This is dependent on the number of links,
as an agent ultimately samples a link to click, and the strength
ratios need to be correct in the posterior (Section III-B3).

Our prior belief that a specific link will be clicked is
represented by X , the action variable. The probabilities for
this distribution are calculated using hyper-parameter δ and
a set of links {L} which are preferred to be clicked by the
agent, for each preferred link j, using the following:

P (X = xj) =
δ

δ ∗ |{L}|′ + |X| − |{L}|′
, (3)



where |{L}|′ is the cardinality of preferred links which are
present in the current page. For each non-preferred link k, we
calculate the probability using the following:

P (X = xk) =
1

δ ∗ |{L}|′ + |X| − |{L}|′
, (4)

where
∑

j 1 +
∑

k 1 = |X|. This results in two parameters
that are stored to define X .

The proof that X is a valid probability distribution follows
that |{L}|′ ∗ P (X = xj) + (|X| − |{L}|′) ∗ P (X = xk) = 1,
where j is a preferred link and k is not, and 0 ≤ P (X =
xi) ≤ 1, for all links i.

Each time the agent crawls to a new page, it is presented
with a new set of links to choose from. This implies that the
joint distribution to sample the next link could have a different
value for |X|, also implying that the number of variables may
change. Thus, we recompute the distribution parameters with
the new value of |X| every time a new page is crawled. Note
that the hyper-parameters act as constants, and do not change
value during a crawling session.

To complete the agent model specification, two additional
discrete univariate distributions are used to sample the amount
of time that an agent waits between web crawling sessions,
and the amount of time an agent waits between clicking links
during a session. Each distribution requires two parameters,
a lower and upper bound, and values within this bound are
sampled uniformly.

3) Agent Model Inference: An agent decides the next
link to click by sampling from the discrete joint probability
distribution D described in Section III-B2. The query we need
to perform proper sampling is P (X|e), the distribution of X
given our evidence e, called our posterior. For a naive Bayes
model, the standard way of accomplishing this is by using the
chain rule for probability:

P (X = x|e) = γP (X = x)

|E|∑
i=0

P (Ei v e|X = x),

for all x ∈ X , where γ is a normalization constant, |E| is the
number of evidence variables, and v meaning that the variable
Ei is consistent with evidence e.

Normalization constant γ is equivalent to P (e), the proba-
bility of evidence, and gives us valid probabilities for our pos-
terior. Once our posterior probabilities are normalized, we then
sample a value x ∈ X directly from the posterior by sampling
a continuous value r uniformly within the interval [0, 1), and
building up a cumulative distribution function (CDF) of the
posterior in which each step in the CDF represents a distinct
x ∈ X . Whenever the cumulative value of the CDF becomes
greater than r, we take as the sample the value x at that step.

IV. EXPERIMENTS

In this section we discuss our experimental methodology
and present results in terms of our agent behavioral patterns
and scalability.

A. Methodology

Our agent experiments (Section IV-B) focus on specific use
cases of real human behavior that a researcher may want to
capture in network trace data. This distinction is important
as we are not trying to generalize human behavior, but rather
mimic specific behavior so it can be captured. We also present
scalability results, which are important in showing that our
agents can scale on shared-resource hardware.

To this end, we used a Dell Inspiron laptop to run our exper-
iments, with the following configuration: Intel 7th generation
i7 dual-core processor with hyperthreading (4 threads), 16GB
RAM, and running Ubuntu 18.04 LTS. A lower-end laptop
such as this one was chosen purposefully to demonstrate that
even modest resources can be used to successfully generate
relevant network trace data. CORE 5.2 served as our emulated
network framework, running eMews 0.4, which includes our
extensions to enable agents and the environment.

The environment schema for the viral evidence type is as
follows: the number of times a link needs to be clicked before
going viral is set to 10, and the interval of time in which a
viral link would remain viral is set to 60 seconds. The web
server hosts a single page with 18 links that loop back to the
same page. This way we eliminate any dependencies induced
from partitioning the links over multiple web pages.

B. Results - Agent Experiments

We start with agents that utilize only some of the evidence
available to them, and build up to agents which not only utilize
all available evidence, but also have their own behavioral
preferences on link selection. We present the results in terms
of specific use cases from the video streaming service domain
introduced in Section I.

1) Use Case 1: Open-Minded and Curious: Figure 2 il-
lustrates an agent in action crawling page links. This agent is
configured to only utilize evidence of the viral link type. Thus,
when no links are viral, it displays a uniform pattern of link
selection, basically picking links at random. However, during
the period of time illustrated in the figure by a red box, the link
at index 1 was viral. During this time period, the agent clearly
had a preference for this link, as shown in Figure 2. This is to
be expected, as the agent has no aversion to clicking on links
it has already visited in the same web crawling session.

Human behavior that this agent would mimic includes bored
humans randomly clicking videos but preferring the videos
recommended to them, or humans that predominantly click on
recommended videos, the latter being the mimicked behavior
if the link space was larger and more agents were simultane-
ously clicking links. This behavior is also characterized by a
tendency to re-watch the same video multiple times if it is not
viral, which humans may do if the video has a high re-watch
value, such as music videos.

2) Use Case 2: Closed-Minded and not Curious: Figure 3
illustrates an agent with link preferences, but no other uti-
lization of evidence. Perhaps unsurprisingly, this results in a
large skew of clicked links to the preferred links, which for
this agent are the links at indices 5 and 10. While some of
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Fig. 2. Sequence of link clicks by an agent configured to utilize viral link evidence. Its parameters are configured as: α = 10.0, β = 1.0, δ = 1.0. The
values for β and δ render the agent blind to previously clicked links, and gives the agent no prior link preference. The red box in this figure illustrates the
time period in which the link at index 1 went viral. The agent clicked on that link 9 times during the short time period in which it was viral, and 11 times
when the link was not viral, which encompasses a much larger interval of time.
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Fig. 3. Distribution of link clicks by an agent with the following parameters:
α = 1.0, β = 1.0, δ = 10.0 with link indices 5 and 10 as preferred. Note
that the α and β parameter values render the agent blind to all evidence. The
preferred links are noticeable in the figure as having the most clicks between
them, dominating the other links.

the links went viral during this agent’s crawling sessions, that
evidence would have had no impact on the decisions made by
the agent.

Human behavior that this agent would mimic comprises
picky humans that know which videos they want to watch, and
do not pay attention to the recommended videos. This behavior
is also characterized by a natural aversion to watching the
same video multiple times, which is common place for types
of videos that do not have a high re-watch value, such as news
clips.

3) Use Case 3: Closed-Minded and Curious: Referring to
Figure 4, we now move to an agent that utilizes all available
evidence. Notice that link indices 5 and 10 have the most
clicks, which makes sense as these are the agent’s preferred
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Fig. 4. Distribution of link clicks by an agent with the following parameters:
α = 10.0, β = 0.01, δ = 10.0 with link indices 5 and 10 as preferred. The
preferred links are noticeable in the figure as having the most clicks between
them, but is not as dominating as the preferred link clicks from the agent
represented in Figure 3.

links to click. Link index 2 did go viral during this run, but the
number of clicks for this index was not as high as indices 5
or 10. This intuitively makes sense, as this agent is configured
with parameter β = 0.01, giving the agent a relatively high
aversion to clicking on links it has already visited, in spite of
any of them going viral. The higher click count for link index
2 is most likely due to the agent leaving the web server and
coming back to start to a new session; it finds link index 2
is still viral, and it had not clicked it yet during the new web
crawling session.

Human behavior that this agent would mimic includes
humans that know which videos they would like to watch,
but are curious about the recommended videos as well, and



Agent Count Memory Usage (Avg) CPU Usage (Avg)
12 600MB 3%
30 1.52GB 7%
60 2.83GB 15%

126 6.14GB 34%
216 9.91GB 49%
235 10.74GB 51%
331 13.36GB 57%

TABLE I
SCALABILITY RESULTS OF AGENT DEPLOYMENT IN SHARED-RESOURCE
NETWORKS. EACH AGENT RAN ON ITS OWN VIRTUAL HOST WITHIN THE

EMULATED NETWORK. AVERAGE MEMORY AND CPU USAGE WERE
MEASURED FROM THE PHYSICAL HOST, SO RESOURCE USAGE FROM

OTHER PROCESSES ARE ALSO PRESENT.

will consider them when they are presented. A natural aversion
is present to re-watching videos in general, which increases as
the link space increases.

4) Agent Interaction: When multiple agents are running
concurrently on a network, their individual actions may influ-
ence the actions of other agents. For example, when a link goes
viral, that evidence alone may influence the decisions of some
agents, but the clicks to get the link to become viral in the
first place may have been the act of other agents. This type of
indirect interaction among agents is one of the key motivations
for this agent-based approach, and we capture such a scenario
in Figure 5. Here we have the distribution of link clicks
among five agents running concurrently. No two agents exhibit
the same web crawling behavior, but some interaction based
dependencies are present. The agent represented by the blue
bars (blue agent) in Figure 5 has a very strong preference for
clicking on links at indices 2 and 6. This behavior helped drive
the link at index 2 to become viral, which then influenced other
agents, specifically the yellow and green agents, to click on
this link, as illustrated by a click count of 6 and 3 for these
agents, respectively.

C. Results - Scalability

The goal of these experiments were to measure how well
our agents scale in a shared-resource computer network en-
vironment. Referring to Table I, we were able to reach 331
concurrently running agents before memory became a concern.
Compared to the results given for static services [7], we
doubled the RAM available to the emulated network, but
disabled swap space, so the total amount of memory remained
equal. Our agents actually used slightly less memory than the
static services. We believe this is due, in part, to optimiza-
tions we employed to reduce the overall memory footprint
of our agents and environment structure, in anticipation of
the inevitable overhead induced from our architecture on the
original EMEWS framework.

While we were hoping for even better scalability results,
running 300+ agents concurrently on a laptop we feel is still
adequate for many experimental scenarios in which a cheap
laptop would suffice as the physical host for the emulated
network. On physical hosts with more resources available,
such as a mid-range server, running thousands of agents
concurrently should be possible.

D. Discussion

One question that may loom at the forefront is whether the
agent-based behavior presented here can adequately mimic a
wide enough range of real human behavior to be useful for
capture. While this is to a degree subjective, it is worthwhile to
point out that depending on configuration, agents in the web
crawling use case behave in a manner consistent with how
recommendation algorithms expect human users to behave.
And these algorithms have been improved on for well over
a decade. If they didn’t work well with enough human users,
they would most likely not be used at all.

The naive Bayes assumption may not be reasonable for
all types of evidence an agent asks for. The reduction in the
parameter space, however, is necessary in our shared-resource
network environment, and the evidence types we present in
this paper are reasonable for the naive Bayes assumption. For
example, if multiple links are viral at one given time, a user
can still only click one of them, and without any additional
context as to which viral link a user may click, we can simply
assume that the user may click any viral link with the same
probability, which is what our model captures.

It is to note that exactly how the agent model hyper-
parameters are set is based on the network trace data that
is desired to be captured. One advantage of using autonomous
agents as opposed to real humans is specific human-like
behavior can be produced by our agents that may be difficult
to get real humans to produce without telling said humans
how to act, which defeats the purpose of using real humans.
This is also one reason why we do not compare real human
behavioral trials to our agents, as the use cases themselves are
considered ground truth.

V. LIMITATIONS AND FUTURE WORK

Mimicking real human behavior is a difficult problem due
to the sometimes unpredictable way that humans act. There
may be cases in which our agents do not mimics humans in
a way desirable for some specific data capture. This is part of
the nature of the problem in general, as there is no approach
which will successfully mimic any human being. Rather, our
goal is to mimic some common human behavioral patterns in
a dynamic manner, for specific use cases.

This work is limited to only one agent type, the web
crawling agent. However, the same basic approach coupled
with new environment schemas can be applied to produce
other agent types.

Future work includes producing additional agent types
which can mimic human behavior for other tasks outside of
web crawling, and further increasing the scalability of our
approach architecture. We also plan to use our approach to
generate network trace data for specific networking problems
in which currently available data is sparse.

VI. CONCLUSION

In this work we set out to automate dynamic human
client-side behavior in a network environment. Our agent-
based approach, as shown in Section IV-B, mimics human-like
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Fig. 5. Distribution of link clicks by five agents. Each agent had its own link preferences and willingness to click on viral links. Each of these agents produced
unique behavior, comparable to how human behavior often differs from person to person. For example, the agent represented by the blue bars (blue agent)
has a very strong preference for clicking on links at indices 2 and 6, as illustrated by a click count of 8 and 15, respectively. This behavior helped drive the
link at index 2 to become viral, which then influenced other agents, specifically the yellow and green agents, to click on this link.

behavior that is dynamic both among the network environment
and among other agents, and in a manner that is conducive for
deployment within shared-resource networks and at scale, even
on modest physical hosts. We hope that this work provides a
way for researchers who need realistic human behavior in their
network trace data to capture such data from the comfort of
their own labs.
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