
Lifting the Smokescreen: Detecting Underlying
Anomalies During a DDoS Attack

Brian Ricks
Computer Science Department
University of Texas at Dallas

Richardson, USA
Email: bwr031000@utdallas.edu

Bhavani Thuraisingham
Computer Science Department
University of Texas at Dallas

Richardson, USA
Email: bxt043000@utdallas.edu

Patrick Tague
Electrical & Computer Engineering

Carnegie Mellon University
Moffett Field, USA

Email: tague@cmu.edu

Abstract—While DDoS attacks have become an ever-growing
threat in the last decade, a new variation is taking root in
which the DDoS is used as a distraction or smokescreen to hide
other malicious activity. This variation, which we call DDoS as
a Smokescreen (DaaSS), often results in data theft and financial
loss. Furthermore, DaaSS attacks are often only detected because
the theft or other malicious activity is discovered independently,
long after the DDoS has ceased. In this work, we set out
to describe these attacks and introduce a novel approach to
detect them using real-world network trace data. We present
experimental results showing promise that DaaSS attacks can be
detected in a manner conducive to practical deployment.

Index Terms—DDoS, distributed denial-of-service, smoke-
screen, DaaSS, eMews, anomaly detection, intrusion detection

I. INTRODUCTION

Distributed Denial-of-Service (DDoS) attacks have been a
mainstay of the Internet for well over two decades. These
disruptive attacks utilize many networked computers, often
hijacked to form centrally-controlled botnets, for the purpose
of flooding a target computer or network with packet data.
Successful attacks may cripple the target from interacting with
normal users such as online customers, and cause millions in
lost revenue per year.

More recently, DDoS has evolved from a primary mode of
attack to something which is supposed to look like a primary
mode of attack. In this scenario, the goal of the attackers is to
utilize the DDoS to provide a smokescreen for the execution
of some other attack. This new intent of launching a DDoS,
which we call DDoS as a Smokescreen (DaaSS), is often
employed to steal data, finances, or perform other stealthy
activities. The underlying attack which accompanies a DaaSS
could, for example, be logins to a user account, withdrawal of
funds from an ATM, or an intrusion which exploits a network
vulnerability.

One of the earliest documented examples of a DaaSS
attack occurred in 2011 on the Sony PlayStation network [1].
The DaaSS attack started with a massive DDoS that lasted
several days, followed by an intrusion that resulted in the
exfiltration of personal data from 77 million Sony PlayStation

customers. The intrusion occurred while Sony was still taking
action against the DDoS, and Sony Computer Entertainment
America’s head at the time stated in a subsequent letter to
Congress that the DDoS may have hindered earlier detection
of the intrusion.

Since the Sony PlayStation network attack, many other
DaaSS attacks have been observed. In 2015, Carphone Ware-
house, a UK-based mobile phone retailer, was hit with a large
DDoS attack that was later discovered to have served as a
smokescreen for the theft of personal and banking details of
2.4 million customers [2].

Traditionally, network intrusion detection systems (IDS) are
employed to detect DDoS [3] and perhaps other concurrent at-
tacks. IDS often utilize models trained from data, and the data
itself often has a significant class imbalance favoring normal
behavior over threats. Misuse-based IDS [4] overcome this
issue by using labeled training data when learning a model,
enabling detection of previously observed (known) attacks
with high accuracy. Unfortunately, they tend to perform poorly
when given a previously unobserved (unknown) threat to de-
tect, and thus may not be suitable for DaaSS attacks. Anomaly-
based IDS [5]–[10], on the other hand, use unlabeled data
when learning a model. These approaches typically attempt to
generalize from the under-represented classes (threats) to learn
a model which can detect both known attacks and potentially
unknown threats. Unfortunately, anomaly-based IDS tend to
incur a significant false positive rate, which in part hinders
them from being deployed outside of academia [11].

In this work, we aim to design an anomaly-based IDS to
capture underlying anomalies during an active DDoS which
may point to a DaaSS attack, but under the assumptions that
our unlabeled training data is balanced and only includes two
classes: DDoS behavior, and normal (benign) behavior during
an active DDoS. We learn a model which only incorporates
representations for these two classes. Underlying anomalies
are represented in the model as the entire space outside of the
behavior representations we learn from the data, thus giving
a well-defined boundary between what we have learned and
what we do not know.

To the best of our knowledge, this is the first work that
attempts to detect DaaSS type attacks, requiring us to derive
novel solutions from data collection to the detection approach.978-1-5386-7848-0/18/$31.00 c©2018 IEEE

Our main contributions are as follows:
• We provide a formal characterization of the DaaSS threat.
• We propose mechanisms for the capture and feature

engineering of datasets incorporating DaaSS behavior on
a large-scale network, utilizing a large-scale botnet for
the DDoS, and automating client-side user behavior.

• We develop a simple-yet-novel approach for DaaSS de-
tection, using unsupervised methods to learn a model in
which no DaaSS-specific training data is required.

The remainder of this paper is structured accordingly. Sec-
tion II characterizes the DaaSS threat in depth. Section III
describes our approach, from dataset collection, feature en-
gineering, model training, and classification. Section IV dis-
cusses our experimental methodology and results, followed by
limitations and future work in Section V. We finally wrap up
our discussion in Section VI.

II. CHARACTERIZING THE DAASS THREAT

A DaaSS attack incorporates two main components: an
active distributed denial-of-service (DDoS) and an intentional
underlying anomaly1, which could be a single anomaly or a
collection of anomalous behaviors. An anomaly in this context
is defined as an action or set of actions originated by a
nefarious agent (an attacker).

DaaSS attacks are similar in nature to the Coordinated
Attack with Role Distribution (CARD) threat model discussed
by Samarji et al. [12], except that we do not assume the
underlying anomaly would (or should) be classified as an
attack outside of an active DDoS. This key difference com-
pared to traditional simultaneous attack scenarios changes the
way we must think about potential solutions. In the following
paragraphs, we discuss the two components which comprise
a DaaSS attack.

A DDoS can originate from any source, such as a botnet,
and may not necessarily be a packet flooding-based attack.
For example, TCP SYN flood-based DDoS may consume very
little bandwidth [13]. However, an important characteristic a
DDoS must incorporate is easy detectability, otherwise it will
not serve well as a smokescreen.

We define the period of time that a DDoS is considered
‘active’ as being from the initial start of the DDoS to when
any smokescreen effects of the DDoS cease. For example, if
the purpose of the DDoS is to distract corporate IT staff, then
the active time period extends until IT personnel are no longer
diverting resources and attention for mitigation (which often
extends past the cessation of the DDoS). If the purpose of
the DDoS is, for example, to disable online banking, then the
active time period extends until banking services are restored.

The intentional underlying anomaly may resemble behavior
that outside the DDoS context could be completely normal. For
example, multiple ATM withdrawals from multiple customers
over a short time period should not be flagged if no other
evidence exists to suggest that these actions are anomalous.

1We use the terms ‘intentional underlying anomaly’ and ‘underlying
anomaly’ interchangeably.

Dataset Collection

Feature Engineering

PCAP packet data

Argus netflow data

Argus

Model Training
(DDoS Data)

aggregated
netflow data

Model

Classification
(DaaSS Data)

aggregated
netflow data

Boundary
Learning

representation
boundaries

definedrepresen-
tations
defined

Fig. 1. The pipeline of our approach. We start with dataset collection, then
feature engineering, and finally model training with a DDoS training dataset.
Model training is a two step process: learning our representations and then
their boundaries, which enables DaaSS attack classification.

Flagging such events outside of an active DDoS could lead
to false positives and many angry customers. As another
example, a savvy attacker with a working knowledge of
traditional anomaly-based IDS may purposely try to engineer
an underlying anomaly to resemble normal behavior, providing
a possible extra layer of protection in case the DDoS fails as
a smokescreen.

In order for an attack to be considered a DaaSS, an inten-
tional underlying anomaly must occur during an active DDoS.
Note that the group responsible for the DDoS may not be
connected to the group responsible for the underlying anomaly.
It is possible that the DDoS is launched independently, and
another group takes advantage of the situation to launch an
underlying attack, especially given the variety of third-party
services that will launch and manage DDoS attacks for a
fee [14].

III. DESIGN OF DAASS DETECTION MECHANISMS

The following sections discuss our approach to DaaSS
detection in depth (Figure 1), starting with dataset collection.

A. Dataset Collection

DDoS datasets are not always readily available to the public.
Of those which are, such as CTU-13 [15], the primary focus
is on the DDoS itself, and no underlying anomalies which
would define a DaaSS attack are present (at least not present
on purpose). We are unaware of any datasets which explicitly
capture DaaSS attacks, leading us to capture our own.

To this end, we use the CORE network emulator [16]
with the EMEWS network automation and management frame-
work [17] to capture the data we require. CORE enables
us to build up a large-scale network testbed in our lab,
while utilizing the same protocols that are deployed in real-
world, physical networks. EMEWS supports client-side user
behavior automation and experimental monitoring, allowing
us to capture network trace data comprising of hundreds of
client-side users without requiring human interaction, while
alerting us to issues during a data capture session which may
comprise the integrity of the captured data.

We only capture data during an active DDoS, thereby
preventing normal behavior before and after the DDoS from
being captured. This is partly because, according to the threat
characterization in Section II, we only detect underlying
anomalies during an active DDoS. Constraining our data in
this manner also helps to increase the likelihood of detecting
underlying anomalies which may resemble normal behavior
outside of an active DDoS, as our model will never learn to
classify such behavior as normal.

The resulting data, captured in a controlled environment,
is guaranteed to be free from anomalies such as undetected
attacks. If such anomalies are accidentally captured in our data,
then we risk our model skewing either or both of the normal
or DDoS behavior representations during training.

B. Feature Engineering

Our captured data is converted to the Audit Record Gener-
ation and Utilization System (Argus) network flow (netflow)
format [18]. An Argus netflow contains individual traffic flows,
in which each flow comprises feature values, including source
and destination information, start time, and various aggregated
features such as total bytes and packets transmitted. Each flow
is broken up into one or more examples, with each example
from a common flow sharing the same source IP, source port,
destination IP, destination port, and protocol. While the netflow
data provides a good starting point for training our model as
in Section III-C1, additional feature engineering is required to
capture specific traffic behavioral properties of interest.

We observe that flooding-based DDoS attacks display much
higher throughput compared to benign traffic, but the Argus
netflow data tends to be too fine-grained, often splitting up a
single flow into many examples of small duration. This leads to
complications in differentiating DDoS examples from benign,
if not considering example start times.

To prevent unnecessary computations involving example
start times and duration during the model training process,
we opt instead to aggregate examples which appear to belong
to the same flow. For examples xi and xj with a common
source IP, destination IP, destination port, and protocol, we
merge the examples if the start times of both fall within a
small time interval δx. More formally, merge examples xi and
xj if |ts(xj)−ts(xi)| < δx. Repeat this process until no more
examples can be merged. We let x = {x1, . . . ,xn} represent
the final collection of examples after merging is completed.

One issue when aggregating by time in this manner is
potential correlations between feature values and the time
span in which the network flow data was captured. For
example, if DDoS flows are aggregated such that each example
comprises all traffic from a specific source IP address (δx equal
to the entire netflow duration), then feature values such as
total packets and bytes will increase proportionally with the
capture time. This correlates the netflow data’s total duration
to specific features values. To prevent this behavior, we set
a hard threshold, βx, for the duration of a single aggregated
example. This prevents creation of very long examples such as

DDoS flows, enabling feature values independent of network
flow capture duration.

Features such as the total number of packets and bytes
transmitted during an example need to be aggregated. We
accomplish this by using sum-based aggregation,

∑
i vji,

where vji is the value of the jth feature (e.g., total packets or
total bytes) for the ith example.

In addition, when examples are merged, the resulting dura-
tion is aggregated to include the duration between the original
examples, namely as the difference between start times ts(xj)
and ts(xi), where xj is the last example that we can merge.
Note that as we do not have end times for examples, the
duration of the final merged example is not recorded.

The features we use in our time-aggregated netflow datasets
include example duration (numeric), example protocol (cate-
gorical), destination IP (categorical), destination port (categor-
ical), total packets transmitted during an example (numeric),
and total bytes transmitted during an example (numeric).

C. Clustering

In keeping with the practicality of our overall approach, we
do not assume that our data is labeled, nor do we assume
that we have any data on what underlying anomalies look
like. Hence, we will use unsupervised methods to cluster the
data we do have: benign and DDoS behavioral characteristics.
While using unsupervised clustering techniques for anomaly
detection is not new [7], [19], we must be mindful of the
fact that the model we train will not be aware of what an
underlying anomaly looks like, and will not be able to detect
them without additional methods.

Given that our feature space is mixed, we utilize k-
prototypes [20], [21], an unsupervised hard-clustering learning
algorithm which natively allows both categorical and numer-
ical features. k-prototypes is an extension of the categorical
k-modes clustering algorithm [21], but comprises two sim-
ilarity measures, one for categorical features and the other
for numerical features. When determining cluster assignment,
k-prototypes will use the similarity measure appropriate to
the feature for which the measure is being applied. We use
Euclidean distance as the similarity measure for numerical
features, and feature value matching for categorical features,
which utilizes counts of dissimilar feature values.

In our setting, we have two clusters which we know
exist: examples belonging to an ongoing DDoS, and benign
examples. However, we also have a third, unknown cluster,
in which underlying anomalous examples belong. Because we
have no training data for this third cluster, we cannot include
it during training, but rather treat the space external to all
learned clusters as a ‘catch-all’ to classify examples which do
not belong to any cluster.

In the following subsections, we discuss the training and
classification processes.

1) Training: Cluster centroid initialization comprises two
parts, due to our feature space being mixed. For initialization
of our categorical dimensions, we use the method provided
by Cao et al. [22], called density of points (examples). This

method calculates the average density Dens(xi) of each
example xi, and selects the first cluster centroid c1 as the
example x with the maximum average density

c1 = argmax
xi∈x

Dens(xi).

The second cluster centroid c2 is selected in a similar fashion,
except that the distance from c1 is also considered, picking an
example x which maximizes the product of its distance to c1
and its average density

c2 = argmax
xi∈x

d(xi, c1)Dens(xi).

Note that thus far our centroids do not contain any numerical
dimensions. Initialization of these dimensions involves sam-
pling from normal distributions whose parameters are derived
from our examples. For each numeric feature fi, we sample
two values fi(k) ∼ N(xi, si), in which

xi =

 |xi|∑
j=1

xij

 /|xi|, si =

√√√√√
 |xi|∑
j=1

(xij − xi)2

 /|xi|,

and k = 1, 2 corresponding to our clusters2.
Once the clusters centroids cj have been initialized, the

training phase proceeds through m iterations in which every
example is assigned to a cluster, and the cluster centroids
updated, respectively. The step of updating the centroids after
example assignment can affect which cluster an example is
assigned to on the next iteration. The iterations stop upon
convergence, defined as when an iteration completes in entirety
without any examples changing their cluster assignment. In our
experimentation, convergence occurred after m = 3 iterations
on average.

When the training process is complete, we can identify each
cluster in the set c by its centroid as cj ∈ c and its associated
radius rj [23] that determines its boundary within the space
containing the training examples.

Clearly, the performance of the classification step will
depend on how this radius is defined. To allow for flexible
performance tuning, we define the radius rj of cluster cj as

rj = αr max
xi∈cj

d(xi, cj), (1)

namely a scaled version of the maximum distance between
the cluster centroid and an example assigned to the cluster,
where the scaling factor αr > 0 is a tuneable hyperparameter
to control model sensitivity. If αr = 1.0, for any cluster cj , rj
is guaranteed to be the minimum length needed to correctly
classify any training example xi that was originally assigned
to cj during training.

Values for αr in the range [0, 1.0) will result in greater
sensitivity for underlying anomaly detection, but with a poten-
tially high false positive rate of underlying anomalies, whereas
values of 1.0 or greater limit false positives at the potential
expense of missing underlying anomalies.

2Bessel’s correction was not used in our si derivation due to it having no
effect on our learned cluster centroids after training.

With the addition of cluster radii, we can now formally
define the external space, denoted as cext, as the portion of
the space that is not contained in any of the clusters cj ∈ c.

2) Classification: With the addition of the external space
cext, k-prototypes can assign each test example xi according
to the cluster radii for cj ∈ c or to cext if there is no cluster cj
such that d(xi, cj) ≤ rj , thereby declaring xi as an underlying
anomaly. More simply stated, an example xi is anomalous if
∀j d(xi, cj) > rj . If an example xi satisfies d(xi, cj) ≤ rj
for multiple clusters cj , then we assign it to the cluster cj
with minimum distance d(xi, cj) to the centroid.

IV. EXPERIMENTS

Our experiments are performed with datasets captured using
the EMEWS network automation and management framework
[17] and underlying CORE network emulator [16] (Sec-
tion III-A). We discuss our experimental methodology next,
followed by discussion of our results.

A. Experimental Methodology

Our experimental network consists of 312 nodes, of which
130 are benign HTTPS clients, 31 are benign SSH clients,
and 89 are bots which comprise the botnet for DDoS attacks.
The benign nodes randomly connect to one of three HTTPS
servers for web crawling, whereas the botnet nodes only
connect to a single target HTTPS server for the purpose of
launching and sustaining a request-based DDoS attack. This
target HTTPS server is located on a LAN referred to as the
target network, which along with the aforementioned HTTPS
server, contains an SSH server and workstation nodes for
hypothetical employees (or insiders). Our data is captured from
the target network’s primary router.

We partition our experimental scenarios into two categories:
(1) DDoS attacks with no underlying anomalies and (2)
DaaSS scenarios which incorporate a DDoS with underlying
anomalies. For our experiments, we consider two underlying
anomalies. The first incorporates SSH logins and data exfiltra-
tion originating from two attackers within the target network,
emulating an insider-type of DaaSS attack. The second attack
originates external from the target network, with multiple
attackers performing large-volume data exfiltration from the
same server as which the active DDoS is targeting, and with
traffic patterns that resemble the DDoS itself.

A training set comprising two hours of captured network
traces is used to learn our clusters, and nine additional datasets
each comprising 30 minutes (except for scenario DDoS-5
which is two hours) of captured network traces make up our
test data. Our test sets comprise five DDoS scenarios without
any underlying anomalies and four DaaSS scenarios. Each
dataset collected is processed using the methods discussed in
Section III-B, with δx = 30 seconds and βx = 180 seconds.

The metric we aim to minimize is the number of false
positives in terms of underlying anomalies. Because the num-
ber of examples corresponding to these anomalies is largely
imbalanced compared to benign and DDoS examples, we use
precision and recall to display our results for the DaaSS

Scn Exmple αr = 1.0 αr = 1.25 αr = 1.5
Ct #FP Rate #FP Rate #FP Rate

DDoS-1 1499 1 0.07% 0 0% 0 0%
DDoS-2 1538 2 0.13% 1 0.07% 0 0%
DDoS-3 1646 12 0.73% 4 0.24% 2 0.12%
DDoS-4 1725 0 0% 0 0% 0 0%
DDoS-5 5490 19 0.35% 8 0.16% 4 0.07%

TABLE I
RESULTS OF THE DDOS SCENARIOS WITH NO INTENTIONAL UNDERLYING

ANOMALIES. ‘SCN’ IS THE EXPERIMENTAL SCENARIO WHICH WE ARE
EVALUATING, ‘EXMPLE CT’ IS THE NUMBER OF EXAMPLES THE

SCENARIO COMPRISES, ‘#FP’ IS THE NUMBER OF FALSE POSITIVES
PRODUCED BY A SCENARIO, AND ‘RATE’ IS THE FALSE POSITIVE RATE.

scenarios. The DDoS scenarios naturally cannot use these
metrics due to comprising only benign and DDoS examples,
so we use false positive rate to display their results.

B. Experimental Results

Table I gives the results for our DDoS scenarios. The goal
of these experiments is to observe the false positive count of
our approach, in terms of underlying anomalies, during DDoS
attacks without any underlying anomalies. For our system to
be considered for practical deployment, a very low number of
false positives is a baseline requirement.

Scenarios DDoS-1 and DDoS-2 comprised benign user
behavior resembling that captured in our training set. All
false positives were eliminated with αr = 1.5. The results
for αr = 1.0 may seem acceptable, as two false positives
for scenario DDoS-2 is rather low, but considering that our
examples are aggregated and may comprise a large length of
time, even one false positive may be significant enough to
trigger a false alarm, depending on how (or if) outliers are
filtered. Thus, we consider any number of false positives to
be significant.

Scenarios DDoS-3, DDoS-4, and DDoS-5 were captured
with slightly different benign behavior, to emulate drift in
user behavior over time from when the model was originally
trained. A particularly resilient model would not have to be
retrained as often. As expected, these scenarios produced
a larger number of false positives, with the exception of
scenario DDoS-4, which produced zero false positives even
with an αr value of 1.0, surpassing that of even the non-
drift scenarios. Scenario DDoS-5 was captured for two hours,
as we were curious if the length of an active DDoS affected
our false positive rate. In that regard, this scenario resulted
in a lower false positive rate than scenario DDoS-3, which is
promising even though we still consider four false positives
with αr = 1.5 to be significant.

How well does our approach actually detect DaaSS attacks?
Our results, given in Table II, show promise that our original
goal of reliable DaaSS detection while minimizing false pos-
itives can be realized.

Scenarios DaaSS-1 and DaaSS-2 comprised benign user
behavior resembling that captured in our training set, and used
the insider threat discussed in Section IV-A. An αr value of
1.25 eliminated all false positives, which is promising given

that an αr value of 1.5 was needed to completely eliminate
false positives in DDoS scenarios DDoS-1 and DDoS-2. While
our recall for scenario DaaSS-2 is a bit low, detecting two-
thirds of the underlying anomalies is arguably enough to
reliably detect the DaaSS attack.

Scenarios DaaSS-3 and DaaSS-4 incorporate drift in user
behavior, with scenario DaaSS-3 using the insider threat,
and scenario DaaSS-4 using the external threat discussed in
Section IV-A. Expectedly, these scenarios had higher false
positives, but using an αr value of 1.5 eliminated all of them.
Surprisingly, we were able to achieve perfect classification
on scenario DaaSS-4, in spite of the underlying anomaly
resembling the active DDoS.

How high of an αr value can be set before we lose recall?
For scenario DaaSS-3, we were able to set αr = 4.0 before
our recall started decreasing, and for scenario DaaSS-4, we
could go all the way up to αr = 26.0. This may imply that as
benign behavior changes over time, simply setting a higher αr

value may at least buy some time from having to retrain the
model. It may also imply that our underlying anomalies are
distant enough from our clusters to be reliably detected given
that the external space shrinks as αr increases.

V. LIMITATIONS AND FUTURE WORK

A natural limitation when using a hard-clustering approach
with a small number of clusters involves separation of distinct
behavioral patterns. Using only one cluster to represent all
benign behavioral patterns naturally results in a cluster with
a large radius, and can potentially lower recall for DaaSS
attacks. As our DDoS cluster only represents one type of
DDoS, our approach was able to correctly classify all under-
lying anomaly examples for scenario DaaSS-5, even though
the underlying anomaly itself resembled the DDoS. By sub-
dividing the benign (normal) cluster by specific patterns of
benign behavior, we should end up with clusters of smaller
radius as compared to our single benign cluster. This should
enable our approach to detect a wider range of underlying
anomalies, and provide better recall for scenarios such as
DaaSS-2.

Outlier detection for our setting in terms of βx may not
be practical, as a single outlier could in reality encompass
an entire underlying anomaly, due to 180 seconds potentially
being adequate enough to finish the attack. Further experimen-
tation with lower βx values (and potentially lower δx values)
is needed to determine how this would affect DDoS detection
and false positives related to underlying anomalies. From an
issue of trust, we feel it is better for the system to occasionally
miss a DaaSS attack, than to falsely alert the presence of one.
On one hand, we do not want IT personnel diverted to handling
a potential underlying attack which did not actually occur. On
the other hand, we do not want the system to be so cautious
that it rarely detects underlying anomalies.

Setting αr may require some knowledge or intuition of what
kinds of anomalies are possible or expected during an active
DDoS. Fortunately, as our experiments show (Section IV-B),
there seems to be a wide range of values that αr can take

Scn Exmple Exmple αr = 1.0 αr = 1.25 αr = 1.5
Ct DaaSS #FP Precision Recall #FP Precision Recall #FP Precision Recall

DaaSS-1 1406 3 1 75% 100% 0 100% 100% 0 100% 100%
DaaSS-2 1497 9 1 85.71% 66.67% 0 100% 66.67% 0 100% 66.67%
DaaSS-3 1405 14 6 68.42% 92.86% 1 92.86% 92.86% 0 100% 92.86%
DaaSS-4 1687 14 1 93.33% 100% 1 93.33% 100% 0 100% 100%

TABLE II
RESULTS OF THE DAASS SCENARIOS. AS IN TABLE I, ‘SCN’ IS THE EXPERIMENTAL SCENARIO WHICH WE ARE EVALUATING, ‘EXMPLE CT’ IS THE
NUMBER OF EXAMPLES THE SCENARIO COMPRISES, ‘EXMPLE DAASS’ GIVES THE NUMBER OF EXAMPLES CORRESPONDING TO AN INTENTIONAL

UNDERLYING ANOMALY, AND ‘#FP’ IS THE NUMBER OF FALSE POSITIVES PRODUCED BY A SCENARIO. PRECISION IS DEFINED AS TP/(TP + FP) AND
RECALL IS DEFINED AS TP/(TP + FN). TP IS THE NUMBER OF EXAMPLES CORRECTLY CLASSIFIED AS AN INTENTIONAL UNDERLYING ANOMALY,
FP IS THE NUMBER OF EXAMPLES INCORRECTLY CLASSIFIED AS AN INTENTIONAL UNDERLYING ANOMALY, AND FN IS THE NUMBER OF EXAMPLES

THAT SHOULD HAVE BEEN CLASSIFIED AS AN INTENTIONAL UNDERLYING ANOMALY.

to lower the number of false positives while maintaining an
acceptable recall, though this is dependent on how close the
underlying anomalies represent other types of behavior.

Much of our future work is centered around learning more
expressive models that can capture a wide variety of benign
and DDoS behaviors while maintaining a very low false
positive rate in terms of DaaSS attacks. Ideally we would
like to accomplish this while maintaining the mostly high
recall numbers shown in Table II. We also plan to expand
our network testbed to include more diverse network traffic
sources and larger botnets, enabling us to capture a wider range
of benign, DDoS, and DaaSS behavior.

VI. CONCLUSION

In this work we discussed a recent variation of a DDoS
attack, named DaaSS, and presented a novel approach on
detecting these attacks, from dataset collection all the way
up to a model suitable for detection. Our experimental results
show promise that ‘lifting the smokescreen’ of a DDoS is
indeed possible, and we hope that this work becomes one of
many to solve practical DaaSS problems.

VII. ACKNOWLEDGEMENTS

This work was supported in part by a grant from the
National Science Foundation (#ACI-1443019).

REFERENCES

[1] P. Wagenseil, “Sony Blames Anonymous for PlayStation Network
Attack,” http://www.nbcnews.com/id/42909386/ns/technology\ and\
science-security/t/sony-blames-anonymous-playstation-network-attack/,
2011.

[2] C. Williams, “Carphone Warehouse hackers ’used traffic bombardment
smokescreen’,” https://www.telegraph.co.uk/finance/newsbysector/
epic/cpw/11794521/Carphone-Warehouse-hackers-used-traffic-
bombardment-smokescreen.html, 2011.

[3] G. Carl, G. Kesidis, R. R. Brooks, and S. Rai, “Denial-of-Service Attack-
Detection Techniques,” IEEE Internet Computing, vol. 10, no. 1, pp.
82–89, Jan 2006.

[4] J. Cannady, “Artificial Neural Networks for Misuse Detection,” in
National Information Systems Security Conference, 1998, pp. 443–456.

[5] D. E. Denning, “An Intrusion-Detection Model,” IEEE Transactions on
Software Engineering, vol. SE-13, no. 2, pp. 222–232, Feb 1987.

[6] N. Ye, “A Markov Chain Model of Temporal Behavior for Anomaly De-
tection,” in In Proceedings of the 2000 IEEE Workshop on Information
Assurance and Security, 2000, pp. 171–174.

[7] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion Detection with Unlabeled
Data Using Clustering,” in In Proceedings of ACM CSS Workshop on
Data Mining Applied to Security (DMSA-2001, 2001, pp. 5–8.

[8] A. Patcha and J. M. Park, “An Overview of Anomaly Detection Tech-
niques: Existing Solutions and Latest Technological Trends,” Computer
Networks, vol. 51, no. 12, pp. 3448 – 3470, 2007.

[9] X. Xu, Y. Sun, and Z. Huang, “Defending DDoS Attacks Using
Hidden Markov Models and Cooperative Reinforcement Learning”,” in
Intelligence and Security Informatics. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 196–207.

[10] C. J. Dietrich, C. Rossow, and N. Pohlmann, “CoCoSpot: Clustering
and Recognizing Botnet Command and Control Channels Using Traffic
Analysis,” Comput. Netw., vol. 57, no. 2, pp. 475–486, Feb. 2013.

[11] R. Sommer and V. Paxson, “Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection,” in Proceedings
of the 2010 IEEE Symposium on Security and Privacy, ser. SP ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 305–316.

[12] L. Samarji, F. Cuppens, N. Cuppens-Boulahia, W. Kanoun, and
S. Dubus, “Situation Calculus and Graph Based Defensive Modeling
of Simultaneous Attacks,” in Cyberspace Safety and Security. Springer
International Publishing, 2013, pp. 132–150.

[13] B. Ricks and P. Tague, “Isolation of Multiple Anonymous Attackers
in Mobile Networks,” in Network and System Security. Springer
International Publishing, 2015, pp. 32–45.

[14] M. Karami and D. McCoy, “Understanding the Emerging Threat of
DDoS-as-a-Service,” in Presented as part of the 6th USENIX Workshop
on Large-Scale Exploits and Emergent Threats. Washington, D.C.:
USENIX, 2013.

[15] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An Empirical Com-
parison of Botnet Detection Methods,” Computers & Security, vol. 45,
pp. 100–123, 2014.

[16] J. Ahrenholz, “Comparison of CORE Network Emulation Platforms,”
in MILCOM 2010 Military Communications Conference, Oct 2010, pp.
166–171.

[17] B. Ricks, P. Tague, and B. Thuraisingham, “Large-Scale Realistic Net-
work Data Generation on a Budget,” in 19th International Conference
on Information Reuse and Integration (IRI). IEEE, 2018.

[18] Qosient, “Audit Record Generation and Utilization System (Argus),”
https://qosient.com/, 2018.

[19] K. Leung and C. Leckie, “Unsupervised Anomaly Detection in Network
Intrusion Detection Using Clusters,” in Proceedings of the Twenty-
eighth Australasian Conference on Computer Science, ser. ACSC ’05,
Darlinghurst, Australia, 2005, pp. 333–342.

[20] Z. Huang, “Clustering Large Data Sets with Mixed Numeric and Cate-
gorical Values,” in In The First Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 1997, pp. 21–34.

[21] ——, “Extensions to the k-Means Algorithm for Clustering Large Data
Sets with Categorical Values,” Data Mining and Knowledge Discovery,
vol. 2, no. 3, pp. 283–304, Sep 1998.

[22] F. Cao, J. Liang, and L. Bai, “A New Initialization Method for
Categorical Data Clustering,” Expert Syst. Appl., vol. 36, no. 7, pp.
10 223–10 228, Sep. 2009.

[23] M. Masud, J. Gao, L. Khan, J. Han, and B. M. Thuraisingham,
“Classification and Novel Class Detection in Concept-Drifting Data
Streams Under Time Constraints,” IEEE Trans. on Knowl. and Data
Eng., vol. 23, no. 6, pp. 859–874, Jun. 2011.

