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Abstract—Sharing sensitive context information among mul-
tiple distributed components in mobile environments introduces
major security concerns. The distributed sensing, processing and
actuating components of these applications can be compromised
and modified or impersonated to extract private and confidential
information or to inject false information. In this paper we
present the Anubis protocol for remote code attestation and
access control of distributed components using remote execution
of trusted code. Our Anubis protocol leverages previous work
in the fields of wireless sensor networks and secure web-
browsing. Anubis allows new components to be introduced to
the environment without updating existing components. Our
implementation of Anubis in Android G1 based applications
shows that the protocol introduces manageable overhead (less
than 600 ms latency and 35 kB packet overhead) which does not
significantly impact the user experience.

I. INTRODUCTION

Many distributed software architectures for context-aware
applications, i.e.- applications that sense the context or situa-
tion of the user and adjusts their behavior proactively, have
been proposed and a large number have been successfully
employed in specific applications [1]. These distributed archi-
tectures are becoming even more appropriate as applications
begin to take advantage of the rich array of sensors that
are appearing on mobile computing devices and in smart
infrastructure as mobile computing and ubiquitous computing
become feasible mainstream technologies [2]. Especially when
a multitude of sensors are used in conjunction with virtual
sensors such as calendar services, map services and weather
services [3]. Furthermore with the immense quantities of
raw data gleaned from sensors, a distributed architecture is
required to provide the processing power and the storage
capacity needed to effectively utilize them in decision making
processes. The trend to combine context information from
devices and distributed computing services can already be
seen with the growth of cloud computing services [4]. As
components of applications are deployed on various platforms
and devices some of which are in physically insecure loca-
tions these devices are susceptible to capture. Components
running on a captured device are susceptible to modification,
replacement by malicious components, information extraction,
and/or information injection, putting the security and privacy
of the entire context-aware application and its user at risk.
Therefore it is essential to ensure that, 1) components are

tamper proof or 2) any modifications to components are
detected and compromised components are avoided.

Recent research in context-aware application security has
focused on specific applications [5], but it remains an aspect of
distributed context-aware architectures that has received little
attention. However, distributed system security has been an
area of considerable study, including wireless sensor networks
[6], and distributed computing on untrusted infrastructure [7].
The techniques used in these fields become untenable when
considering context-aware applications in general as very few
assumptions can be made about the physical and virtual
environment, especially in dynamically changing mobile com-
puting environments where connectivity is not guaranteed.
Specifically, distributed components have neither a reliable vir-
tual connection to a trusted authority nor guaranteed physical
connections to components on neighbouring devices.

In order to address the immediate threats due to component
compromise, we present the Anubis protocol to protect the in-
tegrity of distributed components and ensure that context infor-
mation is shared only with authorized components. The Anubis
protocol is based on the principle that software components
can be initially authorized offline and then attested locally
between communicating components using remote execution
of trusted code. The only requirements placed by Anubis on
a device are that it 1)should contain enough computational
power to perform asymmetric key cryptographic operations,
and 2)has sufficient storage capacity to hold signatures of
its own code and extra code segments used for remote code
execution. Though Anubis does not explicitly require a Trusted
Platform Module (TPM) [8] on each device, Anubis can take
advantage of such hardware when available.

In this work, we make the following contributions toward
the problem of ensuring component integrity and controlling
the exposure of sensitive context information:

• We present the Anubis protocol for online attestation and
access control of distributed software components in the
absence of a trusted third party.

• We implement the Anubis protocol over a sample dis-
tributed software application on an Android-based mobile
computing platform.

• We show that the Anubis protocol requires minimal
computation, communication, and storage overheads.



Map Server 

Widget 

BMO Server 

Widget 

Time 

Widget 

First user’s 

system 

BMO Client 

Widget 

Other users’ systems 

GPS 

Widget 
Cell ID 

Widget 

RedPin 

Widget 

Locationing 

Widget 

Fig. 1. Decomposition of the BMO application into widgets

II. MODELS AND ASSUMPTIONS

In this section, we present the assumptions made in the
design of the Anubis protocol, the trust model Anubis creates
and the types of attacks it repulses.

A. Distributed Application Model - Widget Model

While the Anubis protocol can be applied to most dis-
tributed computational applications in general, in this paper
we focus on using Anubis to secure distributed context-aware
applications. The context-aware applications we consider use
the widget model presented by Dey et al. [1]. The widget
model is widely used [9] in context-aware applications as
it usefully encapsulates how distributed context information
is sensed, processed and utilized in mobile environments.
In the widget context model, an application is divided into
components called widgets, each in charge of a particular type
of context information. Widgets can run on a single device, but
more common in practice is for widgets of a single application
to execute on separate devices. Widgets dynamically connect
with each other usually forming a tree-like topology, where
the leaf nodes encompass sensors (hardware and software), the
internal nodes represent filtering, inferring and/or the aggre-
gation of information, and the root node encompasses a user
interface or actuator. To exemplify this concept we present a
widget based design of a Business Meeting Organizer (BMO)
application that uses the context information of individuals
registered with the system to intelligently arrange meetings
by selecting convenient venues and times [10]. The decom-
position of the overall application into individual widgets is
depicted in Figure 1. The locationing widgets and BMO Client
widget reside on the mobile device while all other widgets
reside on servers and in the cloud.

B. System Model

In this work, we make minimal assumptions about the
hardware on which widgets exist and execute, but are more
concerned about the software existing on the system on which
each widget resides. We assume that a device has sufficient
computing power to verify public-key signatures, and that a
device has sufficient memory to store a public key, a couple of
hash values and code files used for remote execution. We also
assume that widgets use a protocol similar to the Authenticated
Diffie-Hellman Key exchange protocol [11] to set up a secure

channel of communication before the authentication process
begins. A further assumption is that any software in the
system hosting a widget is tamper free or that the operating
system hosting the system is tamper free. In applications that
require a higher level of security, where this assumption is not
tenable, we assume that the widgets exist on devices equipped
with TPMs. We assume that widgets interested in a certain
entity1 will always be certified by authentication services that
share secret credentials, which is not a unique assumption for
authentication schemes used in distributed applications.

C. Trust Model

Anubis’ trust model is built upon a widget securely ensuring
another widget’s application logic is unchanged from the
point in time at which the second widget was signed. Before
deployment a widget is submitted to an authentication service
which verifies whether the widget should have the authority
to provide or consume context regarding a particular entity,
then it generates signed authentication information about the
widget. This information is stored within the widget. At run-
time when a widget requests a connection to another widget,
widgets perform checks on each other. The widgets provide
the other party signed authentication information. A widget
also provides the other party the opportunity to check if the
widget is in compliance with the authentication information it
provided. We assume a stronger trust model where a widget
performs a check on another widget to ensure it is unchanged
since it was signed by an authentication service. Therefore
the reliance on a third party is limited to a one time offline
interaction. This is one of the major advantages of Anubis
over existing work.

D. Attacker Model

Here we present attackers with two types of intent (en-
compassing the most common types of attacks on distributed
context-aware applications), 1) to extract secret information
from the system or 2) inject false information into the system.
We consider computationally bounded attackers who cannot
break basic cryptographic primitives. Attacker can eavesdrop,
intercept, and manipulate any transmitted message. Attackers
do not have physical access to the device that holds the context
information which they want to extract. The attacker has
physical access to any other widget in the system for a limited
amount time, enabling modification or replication of those
widgets. In these attacks we assume that the attacker only
has limited access to widgets. In this paper we also describe
features of Anubis which will increase its robustness against
attackers who have continuous access to devices hosting
widgets.

III. ANUBIS

Anubis is a protocol that allows loosely coupled components
in a distributed context-aware application to remotely attest to
their code and provide access control to context information.

1An entity is any location, object, animal or person whose context infor-
mation is of some interest.



Anubis utilizes remote hashing to securely generate a signature
of a component and compares it against a signature of the
expected component. The expected component signature is
signed by an authentication server before the component is
deployed. Therefore Anubis does not rely on an omnipresent
trusted third party for attestation. Our key insight is the use
of remote hashing to gain a trustworthy signature of the
current state of a remote component. A pair of components
that successfully complete the Anubis protocol with respect
to an entity, can reasonably assume each component has
access rights to that entity’s context information and that the
components are tamper-free.

A. Logical Architecture of a Widget

The Anubis system logically divides up a widget into four
separate sections (Figure 2). The logical sections are, 1) Code
Area (contains the widget’s application logic), 2) Data Area
(holds all application variables and context information) 3)
Code Interpreter (an interpreter with a simple instruction set,
used by other widgets in the authentication process of this
widget) 4) Code Interpreter Data Area (area for variables
belonging to scripts running on the code interpreter).

B. Anubis Protocol Overview

The Anubis protocol has two stages of operation, the signing
stage and the authentication stage.

Signing Stage: The signing stage of a widget occurs off-
line before deployment, by an Authentication Service (AS).
The AS must have the credentials to sign on behalf of the
entity whose context information the widget will be handling.
To perform the signing the AS will first obtain separate hash
values for the code area and the data area of the widget, con-
catenate them and sign the string using a private key (unique
to the entity whose context information will be handled by
the widget). The service will also extract “code files” from
the widget and sign the code files with the private key. The
code files are simple scripts that are sent for execution on other
widgets to authenticate them (see section on Code Interpreter
and Code Files for details). Finally the AS will store the
signed hash codes and signed code files along with the public
key required to decrypt them within the widget’s data area.
See Figure 2. In applications that require greater security
and execute on devices containing TPMs, the signing service
captures the values of the Platform Configuration Registers
(PCR) of the TPM, and combines them with the hash codes
described above to create signatures of the widgets.

Authentication Stage: The authentication stage is triggered
when a widget (widget A) discovers another widget (B) from
which it requires context information and they setup a secure
channel [11] through which A requests a connection from
B. The authentication request sent by widget A contains the
signatures of itself created and signed by the authentication
service. In response widget B will send a code file (randomly
selected from B’s code file bank), which A must decrypt
using the public key it received during the signing process
and execute the file on its code interpreter. The code file

creates hash codes of the code and code interpreter areas of
the widget, and of itself (when TPMs are employed the code
file captures the values of the PCRs and combines them with
the hash codes). The code file will proceed to check the return
address of the code interpreter at the end of executing the code
file (i.e. - the first instruction within the widget scheduled to
be executed after the code file finishes execution), to ensure
it points to an address within the code area of widget A.
Checking the return address of the interpreter to be within
the code segment being hashed, ensures that the code file is
not hashing a “dummy copy” of an untampered widget kept
in the data section of a modified widget. Finally the code
file will proceed to place a timestamp and the three hash
codes it generated in a packet with a format unique to that
code file and transmit the packet to widget B. The timestamps
prevent compromised widgets from using transmissions from
earlier authentications (before being compromised) to forge
authenticity. From the moment that widget B transmits the
code file to widget A, B will begin a countdown to effect a
time-out after a predefined interval, thus ending the attestation
process in failure. The predefined interval is decided by the
designer of widget B, and it is recommended to keep the
interval as low as possible while allowing time for the back and
forth transmissions and execution time of the code file. Once
B has received the packet from the code file, it will extract the
three hash codes and ensure that the hash code of the code file
has the expected value. Next Widget B will decrypt the initial
string received with the authentication request, which contains
the hash codes of the code area and the code interpreter
calculated by the authentication server. Since widget B also
handles context information of the same entity that widget A
is interested in, widget B should also be signed by an AS with
credentials (private and public keys) of that entity. Therefore
B would have received the public key required for verification
of the string sent by A along with the attestation request.
Widget B will extract the hash codes from the decrypted string
and compare them against the hash codes calculated by the
code file. If the hash codes match, then B can safely assume
that A is tamper-free and authorized to access the entity’s
context information. The attestation process of widget A is
illustrated in Figure 3. Once B has authenticated A, widget
A will proceed to authenticate B using the same process in
reverse. The authentication will time-out after a random period
of time (triggered by either of the two widgets), and after
a time-out the widgets must re-authenticate using the same
procedure (the maximum interval for authentication validity is
a trade-off between communication/time cost of authentication
versus the criticality of information held by the widget).

C. Code Interpreter and Code Files

The code interpreter is a simplistic interpreter used to
execute code files received from other widgets during authen-
tication. Code files running on the interpreter have three tasks,
i.e. - to calculate hash codes of sections of the widget, to check
the return address of the code interpreter to the main body
of code, and transmit the calculated values to the code file’s
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parent widget. The code interpreter must be flexible enough
to allow the code files to perform their tasks, while protecting
the interpreter’s widget and data. To this end we specify a set
of rules that an interpreter must enforce.

1) Disallow writes to any part of the widget’s memory
except to the interpreter’s data area, thus protecting the
widget’s data and code.

2) Block access to the widget’s data area to prevent the
code file from pilfering information.

3) Read-only access to the widget’s call stack, allowing
checks of the return address of the interpreter.

Methods to enforce these rules are very dependent on the
device hardware, firmware and operating system on which the
widget exists.

Each widget has multiple code files from which it chooses
one at random to use when authenticating another widget. As
the number of code files carried by a widget increase, the
Anubis protocol’s authentication strength against a widget that
is continuously controlled by an adversary also increases.

D. Authenticating for Multiple Entities

In cases where a widget is interested in context information
belonging to more than one entity, Anubis can simply be
implemented separately for each entity. The widget would be
separately signed by authentication services that have creden-
tials for each entity. When two widgets interested in multiple
entities authenticate each other, they repeat the authentication
process for each of entities that they want to share context
information about.

IV. IMPLEMENTATION

We have implemented a prototype version of the Anubis
protocol and created a sample application which uses the
protocol, as proof of concept and for collecting performance
statistics. The implementations are on commodity laptops
running Ubuntu Linux and HTC Android G1 phones. The
Android platform was selected as a proof of concept for
operation in mobile computing environments.

A. Prototype Implementation

The prototype implementation consists of three separate
components, 1) the data source/server widget, 2) the data con-
sumer/client widget, and an authentication service component.
The prototype is implemented in C++ and compiled using the
standard GCC compiler collection in Linux (Android based
components were compiled using a GCC compiler with a
custom build environment).

Authentication Service: The Authentication Service (AS)
is an application designed to execute in the widget’s native
platform once, before the deployment of the widget. It also has
the ability to generate credentials for an entity, in the form of
a pair of public and private keys (for signing and attestation)
using an Elliptic Curve Integrated Encryption Scheme (ECIES)
[12]. Our implementation of the AS acts in the same manner
as a separate widget would to authenticate a widget. First the
authentication server executes the widget and then invokes an
authentication, during which the widget is sent a code file to
create hash codes (using the SHA-1 hash algorithm) of the
internal structure of the widget. Then AS kills the widget’s
process and signs the hash codes using the entity’s private
key with the ECIES scheme. Next the widget’s executable file



is opened by the AS to insert the signatures and the entity’s
public key into empty space (identified by unique place holder
values) assigned during widget development. Then the code
files are extracted (located using predefined marker values),
signed and replaced. In out prototype we use three unique
code files per widget.

Widgets: The implementation of the Widgets do not change
drastically when the Anubis protocol is implemented, apart
from allocating extra memory locations (filled with place-
holder values) to hold signatures and keys provided by the
authentication service. The widgets will also hold a code
interpreter, which is common across all widgets.

Code Interpreter: Our interpreter implementations simulate
the platform on which the widget itself is executing. In a
previous section we discussed the rules an interpreter must
enforce to ensure a code file does not act maliciously, in our
implementation we check that the code files adhere to these
rules during the signing process in the AS.

Cryptographic Algorithms: The hash function used in our
implementations is SHA-1 which provides a 160 bit hash
code. The public key cryptography system used in this imple-
mentation is an Elliptic Curve Integrated Encryption Scheme
(ECIES). The decision to use these algorithms (as opposed
to RSA and SHA-2) are based on the trade-off between
encryption key size and computational overhead versus the
security gained.

B. Business Meeting Organizer Implementation

The Business Meeting Organizer (BMO) system, described
earlier was implemented to use just the location information of
the users when arranging a meeting. Once the BMO widgets
were implemented each set of widgets belonging to just one
user were signed with his credentials. The central decision
making widget (BMO server widget) was signed repeatedly
with each users’ credentials. In order to introduce a new user
into the system, the decision making widget has to be re-signed
with the new user’s credentials.

V. EVALUATION

A. Method

In the first performance evaluation we use the Anubis
system on two widgets executing on two Dell Latitude D630
laptops running Ubuntu Linux, while in the second evaluation
we use two Android G1 mobile phones. We characterize
processing overhead and data exchanged during authentication
against the size of the widget being authenticated.

We keep the size of one widget (A) constant while the size
of the second widget (B) is changed. For each size of B, a
set of 10 readings for authentication time and communication
overhead are measured and averaged. The size of B was in-
creased by inserting code to perform place-holder calculations,
and this additional code is not called before or during the
authentication process. This performance data is gathered over
an unencrypted network to capture the true overhead of the
protocol. To capture the true overhead of the protocol, data is
gathered over an unencrypted network.
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B. Results

As can be seen from Figures 4 and 5, the authentication
processing time increases as the size of a widget increases.
This comes as no surprise as the amount of binary code the
code file has to hash increases with the size of the widget. The
code segments and code interpreter sizes shown in Figures 4
and 5 are in words, i.e. - 4 bytes in 32 bit architectures of the
laptops and the G1 phones. And from our sample application
we have observed that the average code segment of a widget
remains within 20 kilobytes (or approximately 5000 words),
which again is an estimation that overcompensates. Therefore
it is safe to assume that a widget in general would authenticate
in under 110 ms on a PC and under 300 ms smart-phone.

It was also observed that the data exchanged during au-
thentication process of a single widget remained at a constant
level of just below 17 kilobytes. Therefore the bidirectional
authentication would have a communication overhead of under
35 kilobytes. This observation is in line with the theoretical
predictions as the data exchanged are authentication requests,
hash codes, timestamps, etc. which are completely independent
(in size) of the size of the widget being authenticated.

VI. RELATED WORK

The concept of component-based context-aware applications
are not novel [1], but it is only with the advances in mobile
computing and telecommunication bandwidth that components
or widgets are being placed on physically distant devices.
When components execute in a secure environment the need
to authenticate is minimal, therefore only recently has this
come to the forefront. Prior work in the area of security in
context-aware applications[13], has largely focused on a very
small application classes or on a single application, and related
work with generic security in this area is limited.



There are other fields, such as wireless sensor networks,
where operating environments pose similar security problems
while posing slightly different constraints on security pro-
tocols. Causes for security threats faced by wireless sensor
networks, described by [6], are very similar to the causes of
security issues faced by distributed context-aware applications.
The two main approaches in this field to deal with security
issues are 1) using trusted entities for authentication [14] and
2) using of probabilistic key management [15]. The approaches
focus on authenticating sensors to ensure that they belong to
the network but focus only on limiting the damage caused
by the compromise of a sensor node rather than attempting
to detect compromised nodes. Probabilistic key management
protocols such as [15], require a large number of nodes to
be present with at least a minimum level of node density,
which cannot be predetermined in a context-aware application
environment. Perrig et al.[14] assigns certain nodes as base-
stations to act as mediators for communicating nodes to
authenticate each other. In our work, we deal with context-
aware applications in general, and as such we cannot guarantee
that a widget would have access to a trusted widget or service
for authentication. Furthermore, we envision newer context-
aware applications will leverage already deployed widgets,
requiring new widgets to be deployed into existing networks,
but the schemes proposed in [14], [15] are unable to handle
this requirement.

Using hash codes for authenticating software is not a novel
concept. The use of hash codes to verify software executing
on remote platforms has been performed in previous work [7].
By requiring a reboot and respectively checking the BIOS,
the permanent storage medium, the operating system, and
finally each software component it guarantees an high level
of security at a heavy computational expense. Device reboots
causing widgets to, 1) loose existing connections and 2) rely on
slow permanent storage to retain gathered context information,
are not acceptable for our application domain. Garris et al. [7]
rely on the TPM that resides on the remote device, to create
hash codes, while the Anubis protocol is able can operate
without a TPM being present.

Verifying the execution of code files. The techniques
reviewed in [16] provides valuable theoretical insights on
checking the results of a process. But are many practical
limitations when implementing a real system. An interesting
mechanism for ensuring a piece of code was executed securely
on an untrusted host is introduced in [17]. The main limitations
of this work is its high computational overhead and that it
requires access to trusted services for key distribution and
management, interpreter certification.

VII. CONCLUSION

In this work, we presented the Anubis protocol for online
attestation and access control of distributed software compo-
nents for context-aware applications, but it can be easily ex-
panded to general distributed component-based software. Anu-
bis achieves online component attestation using component
signatures created at design-time and compared against actual

components at run-time by a component on a communicating
device. The primary benefit of Anubis is that it does not rely
on the run-time presence of a trusted authority. Moreover,
the system allows new components to be introduced into the
distributed environment without interaction or modification of
existing components. We believe that the security provided by
the Anubis protocol is a reasonable trade for the marginal
increase in execution time and required storage space on
each component, both well within the capabilities of existing
commercial devices.
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