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Abstract—Jamming, broadcasting to intentionally interfere
with wireless reception, has long been a problem for wireless
systems. Recent research demonstrates numerous advances in
jamming techniques that increase attack efficiency or reduce
the probability an attack will be detected by choosing attack
parameters based on a system’s configuration. In this work,
we extend the attacker’s capabilities by modifying the attack
parameters in response to the observed performance of the
target system, effectively creating a feedback loop in our attack
model. This framework allows for more intricate attack models
that are tuned online allowing for closer to optimal attacks
against legitimate systems. To show the feasibility of the listening
and attacking framework we introduce an attack called Self-
Tuned, Inference-based, Real-time jamming or STIR-jamming.
This attack listens to legitimate communication traffic, infers the
systems performance, and optimizes jamming parameters. We
propose the two types of STIR-jamming, mSTIR-jamming and
tSTIR-jamming, and implement these attacks against an IEEE
802.15.4 link as a case study. With the empirical results, we
demonstrate the attack system adapting to various scenarios and
finding stable solutions.

I. INTRODUCTION

Wireless communications allow for the open and convenient
exchange of data without the use of costly wired connections
[1]. This provides great benefits to legitimate users but makes
them susceptible to denial-of-service (DOS) attacks known as
jamming attacks [2].

Traditionally, a communication system mitigates the effects
of jamming by raising the cost of an equally effective attack [3]
using spread spectrum techniques. However, spread spectrum is
not effective against wide-band or high-power jamming attacks.
Recently, to dissuade attackers from mounting high-power
attacks, jamming detection techniques have been proposed [4],
[5], [6], [7]. If a jamming attack can be detected, there are
techniques to mitigate their effect, including spatial or frequency
retreats [7], jamming aware routing [8], or the jammer can be
decommissioned.

Recent literature [9] also motivates using low-power jamming
from the vantage point of energy conservation. Mounting
jamming attacks from mobile platforms is desirable for some
attack scenarios and efficient low-power attacks can increase
a mobile attackers lifespan. Understanding, designing, and
optimizing these type of low-power attacks allows for insights
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into threats on critical devices and infrastructure (Medical,
military, safety, etc.). There has been some interest in using
reactive jamming to mount efficient low power attack [10].
These attacks are feasible but require special hardware that is
expensive and infeasible to implement in commodity hardware.

Intelligent jamming attacks have been designed recently
but generally just using a static strategy against a particular
protocol [2]. A low-power attack that has been suggested is
short form periodic jamming (SFPJ) [11]. The SFPJ attack uses
very short loud bursts to interfere with DSSS communications.
Such an attacker is very effective against IEEE 802.15.4, which
is commonly used in sensor networking, but requires tuning
against a system and node geometry to obtain good results.
In this work we present Self-Tuning, Inference-based, Real-
time jamming or STIR-jamming which explores an attacker
which continually adapts its attack parameters with performance
informations obtained from the system under attack. To do
this we envision an attacker with both inference and jamming
capabilities. The attacker’s inference capability estimates the
performance of the legitimate network in real time. Using the
inferred information, the attacker then tunes its jamming attack
to achieve better performance. This attack differs greatly from
traditional jamming in that it looks to continually optimize the
physical layer jamming attack in real time. This type of attack
could use commodity sensor network hardware to make an
efficient and long lasting attack, showing the need for more
research in detecting and mitigating low-power jamming attacks
against DSSS.

The major contributions of this work are as follows.

o We propose the STIR-jamming framework for continually
modified jamming attacks using an observe-and-attack
feedback loop between the attacker and the target system.

o We present two instances of STIR-jamming. The first
algorithm performs repeated parameter optimization using
a reference model to predict the effect of parameter
selection. The second algorithm iteratively tunes the
parameters to increase or decrease the attack impact.

o We show results from a proof-of-concept implementation
of the two STIR-jamming algorithms against a link using
the 802.15.4 protocol and empirically show these attacks
achieve relatively stable performance.

The remainder of this paper is organized as follower. In
Section II, we explore jamming attack and defense literature.
In Section III, we introduce our system model and in Section IV
we introduce the STIR-jamming framework and algorithms.
We show how the two STIR-jamming algorithms can be



implemented against an 802.15.4 link in Section V and present
empirical results in Section VI. Finally, Section VII concludes
the paper.

II. RELATED WORK

Before presenting our proposed attack model, we discuss
related work that provides the basis for our investigation.

One of the simplest forms of jamming is the modulation
of a single tone at the carrier frequency, known as tone
jamming. Spread spectrum is an effective defense against this
basic jamming attack [1], aiming to increase the cost for an
attacker to mount an equally-effective jamming attack. One such
technique is direct sequence spread spectrum (DSSS) which
maps a narrow-band signal to a wider frequency band providing
increased robustness of the transmission against a narrow-
band attacker through redundancy. A second technique is
frequency hopping spread spectrum (FHSS), in which a sender
and receiver “hop” between channels using a pre-determined
schedule. FHSS is very effective at defending against narrow-
band attacks provided the two nodes are time-synchronized,
the hopping schedule remains secret, and a sufficient number
of orthogonal channels are used [12].

Detection of jamming attacks via system monitoring is
another approach to jamming mitigation, allowing the system
under attack to change its operation or impose a penalty on the
attacker. One such detection technique is to monitor network
performance metrics and verify consistency. For example,
observing a low packet delivery ratio and consistently high
received signal strength, a receiver may infer the presence of
a jammer [13]. Such detection techniques can then be used to
trigger anti-jamming mechanisms [14], [7], [15].

To counteract the anti-jamming capabilities of spread spec-
trum, attackers must either increase their resource usage or
increase their attack efficiency [13]. An efficient alternative is
through random or periodic jamming, in which the jammer
alternates between an attacking mode and a sleeping mode to
reduce energy usage [9]. Another alternative which combines
efficiency and effectiveness is reactive jamming, in which the
attacker listens to the channel and transmits a high-power
jamming signal when it senses a packet transmission [10]. An
additional benefit of random, periodic, and reactive jamming
attacks is the reduced likelihood of being detected, a natural
protection against the detect-and-respond approaches above.

Another way that attackers can increase efficiency and
reduce detectability is by incorporating higher-layer information
in the jamming attack formulation. Jamming attackers can
incorporate MAC layer information to precisely time jamming
emissions [2], [9], [16], for example by jamming the channel
when acknowledgement (ACK), clear-to-send (CTS), or data
packets are expected according to protocol schedules. Attackers
can further incorporate network layer information by observing
traffic flows and tuning jammers across the network to minimize
network throughput [17].

Attackers can also adapt jamming behaviors based on system
performance. Maintaining a network history allows an attacker
to decide whether or not it will jam at a particular time using a
game theoretic approach [16] or choosing which of a group of
jammers should be used at a particular time [17]. Our work in
this paper is similar in spirit to these adaptive attacks, but we
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Fig. 1: Our attack model gives the attacker both observation
and jamming capabilities allowing for continual modification of
attack parameters from observed performance characteristics.

TABLE I: We provide a summary of the notation used through
the remainder of this paper.

Definitions
k Discrete time variable
ug(t) Signal broadcast by the jammer in time step k
wy (t) Signal observed by the jammer in time step k
H System transfer function
by Performance parameters for time step k
S Jamming strategy
Py Jammer parameters for k" time step
M (S,p) | Jamming metrics for strategy S
S, p) Jamming metric for impact
s(S,p) Jamming metric for stealth
n(S,p) Jamming metric for expenditure

k Packet delivery ratio for time step k
Probability of attack detection

Discrete mapping of p — ¢

€ Error in estimate of ¢

o Normalized combination of jamming metrics
T Target value for tuning based STIR-jamming

investigate parameter adaptation at the physical layer and with
a much finer granularity of control, noting that our approach
can be combined with the above-mentioned attacks to further
increase efficiency and reduce detectability.

III. SYSTEM MODEL

In this section, we introduce the system model and no-
tation used for the remainder of this work. We consider a
communication system containing a sender, a receiver, and
an attacker as shown in Figure 1. The sender transmits both
data and control packets, and the receiver responds only with
corresponding control packets. We assume that all parties
remain in communication range of each other and that the
sender and receiver are able to communicate with low error
under benign conditions.

The attacker in our model performs two functions: observing
and jamming. In the jamming role, the attacker can choose
from a variety of jamming strategies and corresponding param-
eters. In the observing role, the attacker infers performance
characteristics of the sender and receiver. In order to formulate
the jamming attack model of interest, we first present a
mathematical model for this system from the perspective of
the attacker. The notation used for the remainder of this paper
is given in Table I.

Although the signals transmitted and received by the attacker
are continuous, the packet observations and attack decisions
are discrete-time events. We thus define the system model,
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Fig. 2: In our system model, the attacker generates a jamming
signal uk1(t) in response to previously observed signals wy, ()
from the target system, represented by a transfer function H.
We further abstract this model to relate the jammers parameter
selection p,, to the observed signal ¢,.
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as viewed by the attacker, in terms of a discrete time step k,
where the length of k can be periodic or event driven.

We define the continuous signal that the attacker broadcasts
during time step k as uy(¢) and the continuous signal observed
by the attacker during time step k as wy(¢). To capture the
relationship between the jamming signal u(¢) and the jammer-
influenced observation wy(t), we define the transfer function
‘H. In terms of the model in Figure 1, H replaces the sender,
receiver, and the channels between the three parties, yielding
the jammer-centric mathematical model shown in Figure 2.

The continuous signal wy(t) is composed of both control and
data packet communication between the sender and receiver.
The observed communications are under the influence of both
noise and fading over the wireless sender-to-attacker and
receiver-to-attacker channels respectively. In order to facilitate
the discrete decision process of the attacker, we suppose that
the attacker aggregates and summarizes the time domain signals
into a vector ¢, which represents an observation of a set of
sender-to-receiver performance metrics of interest. We further
discuss the mapping between the observed signal wy(t) and
the summary ¢, in Section IV-A.

We define uy(t) as the continuous signal that the jammer
transmits using a mapping from the discrete parameter space
of the jammer to the actual jamming signal. We define a
jamming strategy function S and a jamming parameter vector
Py, such that ug(t) = S(p,.). The strategy S defines the type
of jamming attack being mounted, and the parameter vector
;. specifies a number of parameters that are left free by the
general strategy.

Similar to the continuous transfer function 7 that maps
ug(t) — wi(t), we define a discrete representation G of the
transfer function that virtually maps the jamming strategy S
and parameter vector p,, to the observation summary ¢,,. The
ability for the attacker to dynamically modify its attack is thus
determined by choosing p;, according to estimates of G and
observations ¢,.

IV. STIR-JAMMING

Using the system model given in Section III, we next
introduce STIR-jamming or self-tuned, inference-based, real-
time jamming, in which the attacker observes the sender’s
and receiver’s communications to continually modify attack

parameters with the aim of mounting high-efficiency jamming
attacks. We describe the actions of STIR-jamming as follows.

1) Observe: From the observed signal wy(t), create a
summary of the performance metrics ¢,.

2) Estimate: Given the previously chosen parameters p;
and the observation ¢,,, characterize the effect of the
attack efforts.

3) Optimize: Use the estimate above to select parameters
Py41 according to a given collection of jamming metrics
M(S,p).

Before presenting the algorithms in Section IV-C, we de-
scribe the estimation of performance characteristics ¢, in
Section IV-A and selection of jamming metrics M (S, p) in
Section IV-B.

A. Observation

In the observations phase of STIR-jamming the attacker
converts an observed signal wy(t) into performance parameters
@,.- There are two major considerations for observation, what
information is desired and how to obtain that information. What
information is desired depends dramatically on the goal of the
attacker. In this work, we focus on attacking a single link so
we consider packet delivery ratio (PDR) as a metric.

The second question about the observation of a legitimate
system is how to obtain this information. To do this an
attacker can observe packet transmissions only when it is
not jamming, and use statistical analysis to estimate the PDR
metric. Consideration of appropriate statistical techniques and
the resulting estimation accuracy is left as future work.

B. Jamming Metrics

As previously defined, the jamming metrics in the set
M (S, p) are used to gauge the effectiveness of a jamming
strategy S with parameters p. We consider three jamming
metrics that are important for an effective jamming attack.
These metrics are impact, stealth, and expenditure, respectively
denoted as (S, p), (S, p), and 7(S, p).

1) Impact: We define impact «(S,p) as the amount of
degradation a jammer causes in the sender-receiver system.
One measure of impact is reduction of the PDR, also used as
a performance metric in Section IV-A. In other words, a lower
PDR indicates a higher impact.

2) Stealth: We define stealth ¢(S, p) as the ability of a jam-
mer to evade detection by the sender-receiver communication
system. Stealth is important because if an attack is detected,
the legitimate nodes can take appropriate actions to compensate
for the attack impacts or directly penalize the attacker. We
propose using a stealth metric that is inversely proportional to
the probability of detection Py;.

3) Expenditure: We define expenditure 7)(S,p) as the
amount of resources the attacker uses to mount an attack.
Many metrics can be considered for the resource usage in
expenditure (e.g., bandwidth, energy, broadcast time, etc) but
we focus specifically on average power in this work, supposing
that the attacker could be a battery-powered mobile device
or sensor node. Average power is a straightforward metric
defined in terms of the amount of time spend jamming and
the jamming signal power and can be used as an indication of
energy consumption.



C. Attack Algorithm

In this section, we present our attack algorithm which uses
the observation methods presented in Section IV-A to optimize
the jamming metrics in Section IV-B. We consider estimation
and optimization with two approaches. The first approach
is model-based or mSTIR-jamming, which uses a non-linear
reference model and rigorous optimization methods. The second
approach is tuning-based or tSTIR-jamming, which uses a tech-
nique of adjusting jamming parameters to increase or decrease
the attack’s effect without the need for designing reference
model. In what follows, we present jamming algorithms for
these two approaches and a comparison of the resulting attacks.

1) mSTIR-jamming: The mSTIR-jamming algorithm in-
volves the three steps of observing the performance parameters
¢, estimating the discrete transfer function Gj;; that is
expected in the next time step, and using the estimate of
Gr+1 to choose the subsequent attack parameters p; ;. The
proposed algorithm uses the observation technique described
in Section IV-A to compute the performance parameters ¢, at
each time step.

The algorithm relies on the attacker’s ability to compute an
estimate Gy of the discrete transfer function G, which maps
(S,py,) — ¢, i.e. mapping the jammer’s effort to its observed
effect. As part of the mSTIR-jamming algorithm, the attacker
updates its estimate of the discrete transfer function, using
¢, and G, to estimate Gry1. To facilitate this process, we
introduce a scalar error value e computed using the function

error(¢gy, Qk,,pk) as
(D

Using (1), we define the function for updating the transfer
function estimate as

§k+1 = update(ék, €k)- )

In Section V-C, we show how the update function can be
constructed by adding a tuning parameter into the transfer
function model that can be updated to better match the expected
and observed performance metrics.

The third step in the mSTIR-jamming attack is to choose
the attack parameters to optimize the desired jamming attack
metrics. This requires a decision of how to jointly optimize
the jamming metrics in the set M (S, p). Toward this end, we
define the optimization objective function (S, p, Gi+1) as the
combination of metrics in M (S, p) the attacker will aim to
maximize. Assuming the existence of lower and upper bounds
on the jamming parameters p, denoted by p,,;,, and D,
respectively, we define the optimization problem as

ex, = error(dy, Gk, Py,)-

maximize u(S,p, ng)
p 3)

subject 0 Prin <P < Prnaz-

One of the benefits of mSTIR-jamming is that it does not
require a perfect model of the system and parameters to be
efficient. In this paper we use a simple reference model based
off of Friis equation to optimize and, as shown in section VI,
obtain good results. We anticipate that in future work it
is possible to use universal approximators [18] and obtain
good results or include context awareness to make the system
adaptation even better.

2) tSTIR-jamming: The mSTIR-jamming attack is effective
in optimizing the jamming parameters, but relies on availability
of a usable approximation of the system G. In many cases,
estimating G with sufficient accuracy may be prohibitively
costly or even infeasible. Hence, we present tSTIR-jamming
to eliminate the need for this expensive estimation step.

tSTIR-jamming uses the same observation method proposed
in Section IV-A. We define a target value T' which serves as
the desired value for ¢. We then measure the error €5 between
the observation and the target as

e = error(¢y, T), 4)

where a positive € indicates that the attack was too aggressive
and a negative value indicates the attack was not aggressive
enough. We define the decision variable d;, € {—1,0,1} at
time step k to indicate whether the attack effort should increase,
remain unchanged, or decrease for the subsequent time step.
We let p indicate the threshold at which the attack should be
changed, yielding

-1, ife < —p
0 = < 1, if e, >p &)
0, else.

We use an intuitive update algorithm for the tSTIR-jamming
attack. If 5 = 0, then no change to the attack parameters
is required, so p,,; = p;. If 6y is non-zero, the attack
effort is decreased or increased accordingly. To modify the
attack parameters, we use a one-step transition in any one
of the parameters in p,, effectively taking a one-dimensional
step in the parameter space. Letting kaf and p, be the sets
of all possible one-step parameter vectors with increased
and decreased attack impact ¢(S, p;,), respectively, the next
parameters p,_ ; are chosen from the corresponding one-step
parameter space using the expenditure metric 7(S, py).

In general, the resulting conditional optimization problem is
thus given by

if 6 =0
Piy1 = Pg
else if 6, =1
Py = arg min 7(S,p) (6)
PED,
else if 0, = —1
Pj41 = argmin (S, p)
pEp;

A two-parameter example of the one-step transitions used
in the tSTIR-jamming attack is illustrated in Figure 3 for
two parameters p; and po. If p, = (p1,p2) and & = —1,
the attacker can choose p, ., = (p1 + Ay,p2) or ppyy =
(p1,p2 + Ag), where A; and A, are pre-determined step
sizes for each parameter, depending on which results in lower
energy expenditure. A similar state-transition diagram can
be envisioned in a higher-dimensional space for arbitrary
parameters p.

3) Comparison: These two algorithms both have advan-
tages and disadvantages. mSTIR-jamming is able to estimate
information on stealth which could be a huge advantage in a
stealth-critical situation. The cost for using the model-based
attack, however, is a large increase in computation because
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Fig. 3: State transition rule. At the beginning of each time step,
the attacker is operating at a point (p1,p2) in the state space;
this is the center dot in the diagram. For the next time step,
it can remain where it is (holding both p; and p, constant)
or move to one of the other four points (incrementing or
decrementing p; or pg, but not both).

the optimization problems in mSTIR-jamming are non-trivial
optimization problems for attackers with little computational
power. tSTIR-jamming is not able to cope with stealth due to
relaxation of the model, but it is more computationally efficient.
Ultimately the choice of algorithm depends on the availability
of a reasonable reference model, the need to predict stealth,
and the associated computation overhead.

V. CASE StuDY: IEEE 802.15.4

In this section, we use the STIR-jamming framework
presented in Section IV to design a proof of concept for
both model-based and tuning-based STIR-jamming attacks
targeting a sender-receiver system using the IEEE 802.15.4
protocol [19]. 802.15.4 is a popular low-power personal area
network protocol used in many sensor network platforms. The
implementations suggested in this section are just proof-of-
concepts and not optimally designed attacks, we leave further
research into optimal controller design for STIR-jamming as
future work.

A. IEEFE 802.15.4 overview

The 802.15.4 protocol is a low-power personal area network
protocol commonly used in wireless sensor network platforms.
In this work we are primarily concerned with the 2.4 GHz
physical layer protocol defined in the 802.15.4 specification
[19]. This protocol uses direct sequence spread spectrum to
provide robust transmission against noise and interference. The
use of DSSS maps 4-bit symbols to 32-chip quasi-orthogonal
patterns that are then sent at a data rate of 2 Mcps (mega-chips
per second), yielding an effective data rate of 250 kbps.

We note that while the use of DSSS provides strong chip-
error correction capability at the symbol level, there is no
packet level error correction in the 802.15.4 standard. Instead,
a two-byte checksum is included in each packet to allow the
receiver to detect, with high probability, if the packet is received
in error but does not allow for error correction.

B. Short Form Periodic Jamming

Short Form Periodic Jamming (SFPJ) is an efficient class
of jamming attacks against the 802.15.4 protocol described in
Section V-A which can be tuned to have high impact with low
cost [20].

In a SFPJ attack, the jamming signal is cycled on and off
with a period on the order of the symbol duration, as compared
to the order of the packet duration as proposed in previous
work [20]. A periodic jamming attack can be defined in terms
of three jamming parameters: period, defined as the number of
symbols per on-off cycle; duty cycle, defined as the percent of
time the jammer is on; and amplitude, defined as the jamming
signal power. It can be shown that it is possible to effectively
jam an 802.15.4 link with a small duty cycle. It has been shown
that SFPJ can interfere with 95% of 802.15.4 communications
with a duty cycle under 10% [20].

1) SFPJ Metrics against 802.15.4: As discussed in Sec-
tion IV-B, STIR-jamming is largely dependent on jamming
metric definitions. Here we formulate specific instances of
the impact, expenditure, and stealth metrics for the 802.15.4
network scenario that are used for both mSTIR-jamming and
tSTIR-jamming attacks. We define our metrics in terms of the
jamming signal amplitude a and duty cycle d, holding the
signal period constant.

Impact: We consider packet delivery ratio (PDR) as the
measure of impact on the IEEE 802.15.4 system. To do this
we estimate the PDR as a function of the amplitude a and duty
cycle d. Because no error correction is used in the 802.15.4
protocol, the PDR Il(a, d) can be estimated as

(a,d) = (1 = Py(a))"(1 = Ps(0))" =%, (7
where Ps(x) is the probability of symbol error with jamming
signal average power x and n is the number of symbols per
packet. For the 802.15.4 protocol, the symbol error Ps(z) can
be further decomposed as

32

P(x) =)

=17

(32-2) Pu(2)'(1 — P.(z))®7, ®)

where P.(z) is the probability of chip error for 802.15.4 under
attack with a jamming signal amplitude z. This probability of
chip error can be estimated as

_ 1 T.F(dy)Ste — T F(djy)x
P.(x) = 2Q \/ o J :

)

where T¢ is the chip duration, d;, and d;, are the respective
transmitter-to-receiver and jammer-to-receiver distances, St
is the average signal power from the transmitter, Ny is the
ambient noise power, and F'(d) is a model for path loss. As
long as the relative geometry (i.e., d¢ and d;,-) and the transmit
power S, are known to the attacker, the PDR estimate in (7)
can be used to define the impact metric as

L(Sap) =1- H(a7 d)v (10)
where p = (a,d) as previously described.

Stealth: We consider the use of a combination of PDR and
estimated signal strength .S,.,, at the receiver to measure stealth
¢(S8,p). For p = (a,d) as above, the jammer can estimate the
received signal strength Sy, (a,d) as

Srz(a,d) = Stz F(dir) + adF (djr) (11)



on average. The jammer can then estimate the probability Py,
of being detected as
-1

Pyet(a,d) = (1 + e—(Sm(a,d)—nH(a,d))) , (12)
where « is a scaling parameter that determines an acceptable
threshold to relate the acceptable PDR for a given received
signal strength. We provide our derivation for this equation in
Appendix ??. The estimation of the probability of detection at
another node is still an open problem so when better methods
are discovered they can be used in place of (12). The detection
probability can then be used to define the stealth metric as

<(S,p) =1 = Puer(a,d), 13)

where p = (a, d).

Expenditure: As previously discussed, we measure expendi-
ture in terms of the energy of the jamming signal. This energy
expenditure can be measured directly by the jamming device
as the combination of signal amplitude and duty cycle as

n(S,p) = ad (14)

where p = (a,d).

C. mSTIR-Jamming Design

In this section, we present an instance of the mSTIR-jamming
attack presented in Section IV-C1 using the metrics given in
Section V-B1 for a periodic jamming attack on an 802.15.4
system. As in Section IV, we break our attack description into
the steps of observing, estimating, and optimizing.

1) Observation: As previously described in Section IV-A,
we use the PDR as the observation metric to gauge the actual
effect of the jamming attack on the sender-receiver system. At
every time step k, the jammer thus observes a PDR value Il.

2) Estimation: The estimation step for the mSTIR-jamming
attack relies on the ability for the attacker to estimate the
transfer function Gy, in each time step. We present an estimation
method based on the same metrics used in Section V-B1, with
a slight modifications to allow for adaptation. Accepting the
fact that the physical layer model assumed in the computation
of the chip error probability in (9) is not a perfect model, we
introduce an additional parameter oy, to assist in fitting the
model to the observations made by the attacker. We thus define
the modified chip error, symbol error, and packet delivery
probabilities respectively as

Pe(e) = 5Q \/ e
82 rag ' _
rw =Y (F)re@ia- @, as
=17
11%(a,d) = (1 = P{(a))™(1 = P2(0))"0 7. (17)

The estimated transfer function G;, mapping p,, = (ax, di) to
¢, = I1%*(ay,dy) is thus provided by (15), (16), and (17),
parameterized by the tuning variable a which is updated at
each time step.

Using this estimation model in the mSTIR-jamming attack
algorithm to compute an estimate Gy, via ay, then allows for the

error between the predicted PDR II%* (ay, dj) and the observed
PDR II;, at time step k to be defined as

error (Hk,Hak (ak,dk), (ak, dk)) = Hk — IT% (ak, dk) (18)

Using the above model, we also define the update function
via ag41 as a function of the previous aj and ¢ as

Ozk(1+€k), if e >0
= 19
Ghl {ak(l —ex)” !, otherwise. (19

3) Optimization: Lastly, we present the optimization for-
mulation used for the mSTIR-jamming. In choosing p;,; =
(ak+1,dr+1), the algorithm imposes lower bound p,,;, =
(@min, dmin) and upper bound p,,,.. = (Gmaz, dmaz ), Where
Gmin = 0, Gmar > 0 is the maximum jamming power,
and d,,;, and d,,4, are specified bounds on the duty cycle
(satisfyigg 0 < dpmin < dmaz < 1). The objective function
w(S,p,Gr+1) = p(a, d) can be any combination of the metrics
in M (S). We choose a linear combination of the impact, stealth,
and expenditure metrics defined in Section IV-B, modified for
use with the oy parameterization, as

pla,d) = B, (a,d) = Byn™*+ (a, d) + B (a, d),
(20)
where 3,, By, and 3. are scalar weights to indicate the attacker’s
preference and to scale the metrics into comparable ranges.
We further discuss the § parameters in Section VI.

D. tSTIR-Jamming Design

We next present an instance of the tSTIR-jamming attack
presented in Section IV-C2 using the metrics in Section V-B1
for a similar periodic jamming attack on an 802.15.4 system.

Similar to the case of the model-based attack, we use the
PDR as the observation metric of interest to measure the impact
of the jamming attack on the sender-receiver system, again
through the observation of a PDR value II; at each time step.
In the tuning-based attack, the estimation and optimization
steps are computationally simpler than in the model-based
attack. Given the target value 7" as the PDR desired by the
attacker, the error between the observed PDR 11, and the target
T is given by

error(Il, T) =11, — T. 21

For a given value of p, the d;, decision parameter then allows for
the one-step transition to be made from the previous parameters
(ag, dy) to the subsequent parameters (a1, dg+1). In this case,
the one-step transitions follow the logic given in the example
in Figure 3.

VI. IMPLEMENTATION RESULTS

In this section, we discuss our proof-of-concept imple-
mentation of mSTIR-jamming and tSTIR-jamming attacks
described in Section V and present our performance results. The
implementation of both algorithms uses the USRP2 software-
defined radio platform [21] with the GNU Radio software
package [22]. We use a previously developed implementation
of the 802.15.4 protocol from UCLA [23], and we develop
our customized jamming attack mechanisms to implement the
attacks. We present the results individually and then provide a
brief comparison of the two sets of results.
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Fig. 4: The results for the mSTIR-jamming attack are shown,

£ = 10%.

A. mSTIR-Jamming Results

We implemented the mSTIR-jamming attack as described in
Section V-C. As previously mentioned, the estimation process
involved in observing the PDR IIj in each time step, so we
instead provide this statistic to the attacker via a direct line
from the receiver. However, to test the performance of our
STIR-jamming formulation with various levels of error, we
induce errors into the observed PDR II;. In particular, the
observation II; given to the attacker is equal to the true PDR
perturbed by a uniform random variable in the interval [—¢, ],
and we test several values of £ in our implementation.

The results of one trial run of the mSTIR-jamming attack
are shown in Figure 4. From the right-hand column, it can be
seen that the jamming amplitude, probability of detection, and
PDR goal rapidly stabilize; the actual achieved PDR fluctuates
on a moment-to-moment basis but rarely exceeds 0.2, marking
a successful attack. Probability of detection is also consistently
low. The left-hand column shows the time evolution of the
tuning parameter «, which does jitter a bit but is stable overall,
and the duty cycle and average power, which track a precisely
(the apparent additional variation is an artifact of the scale).

Figure 5a and Figure 5b demonstrate an STIR-jamming
scenario where the jamming metrics are not equally weighted
in (20). In both of these figures, the weights for the im-
pact and stealth metrics are fixed at 8, = 3. = 50%,
while the weight for the expenditure metric is varied among
By = 25%, 50%, 75%, 100% during the four tests. When the
expenditure is weighted heavily (5, = 75% and 5, = 100%),
the resulting signal power and the corresponding jamming
impact are both reduced. When the expenditure is lightly
weighted (3, = 50%), the attack requires significantly higher
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with 8, = ;. = 3, = 50% and induced measurement error

resources but also yields significantly higher impact (i.e., lower
PDR). We note that the attacker could also adapt these weights
depending on energy availability (i.e., system health), change
in jamming goals, or other dynamics, though such weight
modification is beyond the scope of this work.

B. tSTIR-Jamming Results

We also demonstrate the effect of the induced error in the
PDR measurements taken by the attacker. Figure 6 shows the
error in PDR estimation as a function of the level of error
¢ induced in the measurement. The worst case (§ = 50%)
parameter tested demonstrates that the measurement error does
affect the result but does not defeat the STIR-jamming attack.

We implemented the tSTIR-jamming attack as described
in Section V-D. Figure 7 illustrates the parameter trajectory
through the state space for two target values, 7" = 30% PDR
and T = 70% PDR. In both cases, we see that the attack
parameters stabilize relatively quickly to a small region of
the state space, although in the case of T' = 30% PDR, the
parameters jump to a different region after a short time.

The results of the tSTIR-jamming attack are shown in detail
in Figure 8. This attacker can hold the system under attack to
within about 15% of the PDR goal, although with a great deal
of variance. Though this is generally undesirable for control
systems, it may actually benefit the attacker in terms of reducing
the chance of detection.

The plot of signal power in Figure 8 also sheds some light
on the jump in the state space that was observed in Figure 7.
After about 500 seconds during the 7" = 30% trial, something
changed in the experimental environment (possibly a reduction
of external network use) that allowed the sender-receiver system
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Fig. 5: In (a) we show the average power consumed by the
jammer, for four possible values of the expenditure parameter
By, with 3, and S fixed at 50%. In this figure, higher values
of 3, cause the jammer to reduce power consumption. In (b)
We show the PDR achieved by the jammer, with the same
settings as (a).
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Fig. 6: The percent error in the attacker’s estimated PDR
compared to the actual PDR at the receiver is plotted as
a function of the level of error ¢ induced in the PDR
measurements. The error bars show one standard deviation
around the mean (with a minimum of zero).

to improve packet delivery. The attacker reacted to this external
event by first increasing its duty cycle and then increasing the
signal power. After only a few seconds, the attacker adapted to
the changes and drove the PDR back to the desired target. This
ability to adapt to dynamic environmental conditions is one of
the major advantages of STIR-jamming attacks compared to
using static parameters.

Comparing the mSTIR-jamming and tSTIR-jamming attacks
is interesting, but since the trials were taken during different
times of day with slightly different hardware configuration a

direct comparison is not possible at this time. However, one
interesting point of comparison is that the tuning-based attack
uses considerably less power. Since the model-based attack
re-optimizes the power level and duty cycle at every time
step, it often leads to very loud pulses with power near the
maximum, whereas the tuning-based attack slowly changes the
power level only when the benefit of doing so is sufficiently
large. Another trend we observed is that the model-based attack
tends to be more stable than the tuning-based attack, as the
estimate of the system transfer function converges relatively
quickly with considerably less variance. Further comparison
of the different attack types and investigation of the stability
of the attacks are beyond the scope of this work and are left
for future consideration.

VII. CONCLUSIONS

This paper introduces a framework for adaptation in wireless
network attackers. This basic framework allows an attacker
to listen to and infer information about a legitimate system
using commodity hardware and adapt its attack to find more
robust attack models. To prove the value of this concept
we introduce self-tuned, inference-based, real-time jamming
or STIR-jamming. This attack allows for jamming attack
parameters to be tuned real-time to optimize an attacker’s
impact, stealth, or expenditure. This is accomplished by
continually observing the system under attack, estimating the
impact of jamming, and using this information to optimize its
attacks. We show two proof of concept implementations for this
attack, mSTIR-jamming which uses a rough channel model to
optimize over possible attack parameters and tSTIR-jamming
which searches for optimal attacks by taking small search
steps in the parameter space. We implement proof of concept
versions of these attacks which are able to find stable attack
parameter locations to degrade an 802.15.4 links performance
with high efficiency and low detectability.
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Fig. 7: The time evolution of control parameters for the tSTIR-
jamming attack is shown, with two different PDR targets. The
boxes are jittered slightly to reveal where the search stabilized:
denser blobs indicate longer dwell times.
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APPENDIX

To compute the probability of detection Pyet, we assume
that the defending system will implement a detection strategy
which checks for consistency in received signal strength (RSS)
and packet delivery ratio (PDR) [13]. Originally, this work
divided the RSS v. PDR plane into a jammed region and non-
jammed region. We propose doing this with the linear boundary
defined by

b= S,z(a,d) — kll(a,d), (22)

where & is a scaling parameter, II(a, d) is the estimated packet
delivery ratio with jamming power a and duty cycle d, and
Srz(a, d) is the estimated received signal strength defined as

Sm(a, d) = Sth(dtr) —|— adF(dtT), (23)

where F'(-) computes the fading coefficient at the given
transmitter-to-receiver and jammer-to-receiver distances dy,
and d;,, respectively.

Once we define a boundary b splitting the RSS v. PDR
plane into a jammed and not jammed region, we propose using
a sigmoid function [18] with the boundary defined by b to
determine the probability of being in jammed region which
triggers detection. This function is defined as

Pir(a,d) = (14707 (24)

which takes values on the interval [0, 1] with higher values
indicating greater probability of detection.



