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Abstract

Securing the wireless medium is essential to provide the ubiquitous wireless
services that we desire. Many studies have explored adaptive attackers and
defenders but few have explored the interaction when both players adapt. In
this work, we explore the design of an adaptive defender and attacker using
an observe-and-adapt strategy. We simulate these algorithms and explore the
interaction of adaptive players in two different jamming games. We show that
when only one player adapts they improve their performance but when both
players adapt the outcome is often reflective of biases in the game.
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1. Introduction

We depend on wireless communication systems in many aspects of our daily
life. The wireless medium is completely open to anyone within a broadcast
range, allowing for any system to broadcast on the wireless ether. The open
nature of the wireless medium opens its users to a wide variety of attacks from
malicious users. Examples of wireless attacks include spoofing legitimate users,
denying service to legitimate nodes, or eavesdropping [1]. These attacks can
focus on a whole network of nodes or on a single link in the network.

A lot of work has been done in the field of wireless denial-of-service (DoS)
attacks [2, 3]. Examples of (DoS) attacks include interfering with the MAC
protocol, interfering with the physical layer transmission, or interfering with
higher layer protocols. Many interesting studies have looked at how DoS attacks
can be made more damaging to a legitimate system. For example, optimal
attack design [4], adaptive attack design [5, 6], and targeted attack designs
[7] have all been studied. Optimal attack design [4] suggests balancing attack
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impact with not being detected using game theory. Adaptive attack designs
[5, 6] use information observed from the system to balance the impact and cost
of an attack. Targeted attack design [7] looks to attack only selected nodes in a
reactive manner. The understanding of advanced attacks is important to allow
for design of secure and robust communication systems.

The ability of a defender to mitigate DOS attacks has also been explored. An
early example of this is spread spectrum techniques at the PHY layer [1], which
use shared secrets to adapt frequency usage and mitigate jamming. The shared
secret concept was further explored in SPREAD [8] which uses a synchronized
hopping technique over the whole communication stack to allow for increased
resilience. Improvements to spread spectrum have also been explored at the local
link by considering secure key distribution [9] and anti-jamming filtering [10, 11].
Researchers have also proposed protocol redesigns at the PHY and MAC layer
with jamming attack resilience in mind, for example tuning rate adaptation,
carrier sensing thresholds [12], frame masking, and packet fragmentation [13].
These works look to modify or optimize common protocols to mitigate the effects
of jamming without modifying hardware. Optimal defense and attack strategies
have also been studied using game theory [14, 15].

How an adaptive attacker and defender interact has many interesting impli-
cations. If we can provide bounds on adaptation needs and randomness to foil a
set of attackers this increases our ability to guarantee communication resiliency.
In this work, we introduce a framework that characterizes the effect of adapta-
tion on secure communication systems. Our framework allows for players to be
fixed, adaptive, transient, or random. We assume that when a player is adaptive
their goal is to maximize the impact on the network’s performance while mini-
mizing their energy usage. We also assume that the adaptation is done by using
observations. The adaptive player is not omniscient, knowing the system and
their opponents algorithms, but rather has to observe-and-adapt on the fly. The
minimal energy assumption is made because of the increased prevalence of bat-
tery powered devices like wireless sensor nodes and mobile phones. An example
of why the attacker’s energy constraint is interesting is the implications of using
a mobile phone as an attacker. We make the following contributions towards the
goal of understanding the interactions between attacking and defending players.

e We introduce a framework to analyze the interaction of an adaptive at-
tacker and defender.

e We design algorithms that use an observe-and-adapt strategy to increase
a player’s performance.

e We design two games to test our algorithms and explore the interactions
of an adaptive attacker and defender.

e We test the interaction of an adaptive attacker and defender and explore
the outcome of the two-player adaptive game.

The remainder of this article is organized as follows. In Section 2, we intro-
duce our model and systems. In Sections 3 and 4 we introduce our adaptation
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Figure 1: In this figure, we show our system including an attacker and defender which both
use an observe and adapt parameters.

strategies for the one-player and two-player games respectively. We introduce
two jamming games and show simulation results for our algorithms in Section 5.
Lastly, we discuss the recent literature on adaptive and optimal security in Sec-
tion 6 and conclude our paper in Section 7.

2. Model

In this work, we explore a system with a pair of legitimate nodes that commu-
nicate over a wireless medium and a malicious node that attempts to interrupt
the communication between them. Since the legitimate nodes attempt to com-
municate while averting an attack, we collectively refer to them as the defender.
Likewise, we refer to the malicious node as the attacker. Collectively, We refer
to the attacker and defender as the players.

We consider the case where both the defender and attacker are energy-
constrained. Due to the energy constraints, both players attempt to maximize
their performance while minimizing their energy usage, effectively presenting
each player with a multi-objective optimization problem. An energy-constrained
player is easily motivated by many use cases including wireless sensor networks,
ad hoc networking, smartphones, vehicular networking, and wireless infrastruc-
ture.

We propose an on-line observe-and-adapt model for both players. In this
model, players use observations about their performance and their opponent’s
actions to infer the utility of their actions and to assist in making future de-
cisions. The inferred performance information is then used to adapt the player’s
parameters, attempting to find better parameters. We show a high level overview
of our system in Figure 1. This figure shows an attacker who eavesdrops to in-
fer how well it performs and uses these observations to optimize its attack.
Likewise, the defender observes its performance and the attack and uses these
observations to optimize its protocol. As cognitive radio [16] and similar obser-
vation based communication protocols advanced this type of observe-and-adapt
strategy becomes very feasible.



In the remainder of this section, we introduce assumptions about the players
and their abilities Since digital communication systems are packet based in
nature, we assume that the players both choose protocols and parameters in
discrete time.

2.1. Players

Defender - The defender aims to maintain availability and dependability
of communication with minimal energy usage. We assume that the defender
only attempts to optimize one layer of the communication stack, though our
work can be extended to coordinated multilayer optimization. To do this the
defender defines the set of all protocols that they are equipped for at the layer to
be optimized as S. The use of a robust set of protocols for a defender is easily
justified given the number of radios on a modern smartphone, showing that
many devices have a plethora of protocols available. For the k** time period a
defender chooses a protocol S (’j € S. Since most protocols have a set of tunable
parameters, a defender also chooses a vector QS’; as the parameters corresponding
to a protocol S 5. For instance, if a defender is attempting to optimize its physical
layer protocol, it could define its possible strategies as direct sequence spread
spectrum and frequency hopping spread spectrum, § = {DSSS, FHSS}. If at
time k the defender select S%¥ = FHSS, then the parameter vector d)]j comprises
the number of channels N& and hopping time 5, yielding

ok = number of channels\ Ng (1)
= hopping time BRA

Attacker - We also consider an attacker with many radios and define the set
of possible attacks as 7 which includes the option not to attack 7y. At any given
time k an attacker chooses to mount an attack S¥ € 7. Since most attacks have
tunable parameters, we define a parameter vector ¢¥ associated with S¥.

Energy Consideration - Since both players are energy-constrained, they are
interested in the cost of a given protocol and parameter vector. We suppose
that the energy used by the defender for a given time period k is a function
of the protocol Sy and parameters ¢%. Thus we define the defender’s energy
consumption for a time period as EX¥ = Hy(Sk, ¢k). Likewise, we define the
attacker’s energy consumption as E¥ = H,(Sk, ¢").

Interaction - We desire to understand the interaction of the attacker and
defender. One way to do this is to define a dependability parameter and use
this as a measure of the attacker’s effect on the system and the defender’s
resilience to an attack. The dependability of the defending system is a function
of both players’ protocols and parameter vectors, so we define our dependability
parameter over the time period k as v* = G(S(’j, ¢>§, Sk k). We assume that
the attacker desires to minimize v and the defender aims to maximize v.

Since the players are interested in controlling system dependability with
minimal energy usage, we define utility functions for the attacker and defender
as u® and uk, respectively. We use a normalized weighted average method [17]



to combine the effect of the dependability parameter and energy usage for both
players. We define the attacker’s utility for time period k as

EF vk
k a
= ol 1= va |l l— 2
ua wE7 ( Ea,max) + w ’ < Uma:c) ( )

and the defender’s utility function as

Ek vk
’U/S = wE,d (1 — d ) + wv7dv 5 (3)

where Wg ¢, Wy,q, WE.4, Wy,d > 0 are weighting values satisfying wg o + wy,q =1
and wg q + Wy,q = 1.

The goal of the players thus becomes to optimize their respective utility func-
tions. The utility functions are designed so that both players aim to maximize
their utility. In the next section, we define inference and adaptation techniques
that players use to optimize their utility functions.

2.2. Learning and Adaptation

The general process for learning and adapting is the same for either player
so we discuss this process from one players perspective. The learning algorithms
we consider in this work assume a finite number of options for both protocols
and parameters. This is a natural assumption, since a node only has so many ra-
dios and digital parameters. We can assume, without loss of generality, that the
protocol is uniquely determined by the parameters ¢*. This assumption allows
us to design our approach considering the parameters alone. Therefore, we sim-
plify our model to use dependability v* = G((ﬁ’j, @") and energy consumption
By = Ho(S5, ¢4) = Ha(dy) and Ej = Ha(Sj, ¢5) = Ha(¢})-

2.2.1. Learning

Our model allows for players to make observations about their effect on the
system as well as the previous plays their opponents have made. The players
in our system observe their utility with respect to their parameters and their
opponent’s parameters. Each player then uses these observations to develop an
estimate for the corresponding utility function. We denote the estimated utility
function for the attacker as @*(¢q, ¢q)-

The history of the player’s opponent’s parameter choice is estimated as a
weighting vector based on what the player’s opponent has done in the past.
The attacker’s estimated weighting vector over the defender’s parameter space
®, is denoted as V~Vd(‘I>d) )

For ease of illustration, we refer to the collective information about utility of
parameters and the estimated probability of an opponent choosing a parameter
as their knowledge. Thus, the more knowledge a player has the more likely
they are to be able to optimize their parameters. However, if their opponent
changes parameters, their previous knowledge can be detrimental and lead to
sub-optimal parameter choices. We illustrate the learning process of a attacker
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Figure 2: In this figure, we illustrate an adaptive attacker who makes observations and adapts
its parameters. The attacker uses knowledge from previous observations to optimize its per-
formance. However, when the defender changes parameters this knowledge can be detrimental
and cause the attacker to make sub-optimal parameter options.

in Figure 2. The attacker finds an good protocol at the beginning, but when the
defender changes protocols it must forget some history and relearn a knew strat-
egy. We look at simulations of an adaptive attacker and defender interacting in
Section 5.

2.2.2. Adaptation

As mentioned previously, this work considers adaptation of parameters and
assumes that protocols are chosen a priori. Using the information gained from
learning, the players choose parameters in such a way as to give a high proba-
bility of achieving a high utility. Each player may choose what are estimated as
sub-optimal strategies at times to test how the system has changed.

One important aspect affecting how this observation and adaptation occurs
is the relation of the adaptation rate of the two players. We define a fized player
as one who does not change parameters. We define a transient player as one who
adapts at a rate much slower than its opponent; for example if the attacker is
transient it adapts much slower than the defender. We define an adaptive player
as one who adapts parameters at the same rate or faster than the opponent.

3. One Adaptive Player Formulation

In this section, we introduce two observe-and-adapt algorithms for an adap-
tive player interacting with a fixed or transient player. For ease of discussion
and notation, we assume that the attacker is adaptive and the defender is fixed.
This derivation is easily reversed for an adaptive defender and fixed attacker.
Thus, we present how an attacker makes observations about its utility and uses
these observations to adapt its attack parameters to minimize its utility func-
tion. We present two algorithms for how this could be done which we call
weighted observation and universal approximation. The weighted observation
algorithm uses observations of empirical performance to construct a weighting
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algorithm 1: One-Player Weighted Observation Algorithm

vector which estimates the relative utility of different parameter choices. This
vector is then used to weight a random sample of parameter values. The second
algorithm uses universal neural network approximation [18] to estimate the util-
ity function and optimize their strategy from a small set of observations. For
both of these algorithms, we present techniques to also make them viable for
the transient case.

3.1. Weighted Observation

We first introduce the weighted observation algorithm for one-player adap-
tation. This algorithm uses a weighted record of past observations and random
sampling to select a parameter set that has, on average, a higher utility than
a random parameter set. We first, define the estimated utility from a given
parameter ¢! as @,(¢?). We then use this to construct a vector of all the
estimated utilities as

o ()

5 U (¢7)
(@)= " (4)

ACHY)
We use the estimated utility function to derive a weighting function such that
W, (@ e ) 5

a a % M et (D VI

(®0) [ (5)

where k is a selectivity parameter, so larger x gives the more preference is given
to larger estimated utility values. We use the weighting function to preferentially
sample from the possible parameters ®,,.

We propose using observations about the system’s performance to optimize
W, (®,) in a real-time manner. To do this, the attacker uses the observed
utility u2®* (k) obtained from the random sample ¢* obtained with the weighting
function W, (®,) to update its estimated utility vector as

Ui (@a)  Aia(Pa) + 5UZb5(k)- (6)

In this algorithm the constant 8 > 0 is used as a weighting factor to avoid a high
variance utility from forcing a rapid change in the probability distribution. The
constant A > 0 is used as a forgetting factor to avoid past history from causing
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algorithm 2: Universal approximator training

bad results in the transient case. The attacker then uses the new estimated
utility to recalculate W, (®,) which it uses for random sampling in the next
round. We initialize the estimated utility to the ones vector i, (®,) = 1. We
summarize this equation in Algorithm 1 and evaluate it in Section 5.

3.2. Universal Approzimation

We next introduce the universal approximator algorithm using neural net-
work [18]. Neural networks, inspired by neurological biology, feeds an input into
many activator functions which are set to one if the input is over a threshold and
set to negative one otherwise. The outputs of the activator functions are then
multiplied by weights and summed. Suppose we desire to approximate a func-
tion y = f(z) over some range using a neural network with randomly selected
activator function thresholds. To do this we randomly sample over y = f(x)
and use these values to train the weights for our neural network. Once the
neural network has been trained, the output corresponding to any input in the
range is estimated by putting the input into the neural network and observing
its output.

Applying the universal neural networks approach to this work, we randomly
select a small set of random parameters. We use these parameters to perturb
the system, and the corresponding utilities are measured. We then use the
parameter inputs and utility outputs to train a universal neural network ap-
proximator. The approximation of the systems performance is used to find the
minimal utility function.

To implement this, we uniformly randomly choose a parameter set for j time
steps. Thus we end up with a vector of parameter vectors ®7 = [¢L, ¢2, ..., d7]

a)VPar
and a vector of observations uSPs = [u2%(1),u%%*(2),...,us**(j)]. To train
the neural network with this data, we select two sets of m random variables
b = [b1,b2,.... 0] and v = [v1,v9, ..., V], Where v; € {VUmin, Vmaz} and b; €

{bmin, bmaz}, Vi = 1,2,...,m. We then define the output of our function as

ia(¢a) = Y Bio(vigpa + b:) (7)

i=1
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algorithm 3: Two-Player Weighted Observation Algorithm

Where

-1 if z <0.

We train the 8 values by setting them one by one using the algorithm 2. We
then use these values to approximate for any given ¢, using (7). This allows us
to choose ¢* which is the solution to the problem

U(Z):{ 1 ifz>0 (8)

q[) = arg;nax ua(¢)' (9)

To account for the case where the defender is transient, we use a random reset
function. When the reset function is triggered we use a random strategies for j
time steps and use the j observations to re-train the neural network. We could
trigger the reset periodically or when the observed utility function is sufficiently
under the estimated utility.

4. Two Adaptive Player Formulation

In this section, we discuss the formulation of an observe-and-adapt strategy
for the case where both players are adaptive or random. This is accomplished
using a weighted observation algorithm similar to that used in the fixed and
transient cases discussed previously. Similar to the one-player weighted obser-
vation algorithm, we discuss this from the role of the attacker only, and the
results of the interaction of the two is analyzed in the Section 5.

We design an attacker that considers its utility with respect to the defender’s
and attacker’s parameters. Thus we define the estimated utility function as

T ( (211,05%) T ( é,qﬁ;) A %,qﬁ%)
- ﬂ,a( a’¢d) aa( u’¢d) ﬂa( av¢d)
BB = | cre : (10)
S oam 1N (2 o am gk
'Lta( a 7¢d) Ua( a 7¢d) ua( a 7d)d)
This function allows for an attacker to estimate how well it does for any combi-
nation of attacker and defender parameter vector. However, the attacker does



not know before a round what the defender’s strategy will be. Hence, we define
a matrix to give relative weights to the likelihood a defender chooses particular
parameters. This weighting vector depends only on the defenders parameters
so we define it as B

Wa(¢,)

- Wa(#3)

Wa(®a) = (11)

Wa(oh)
Using G, (P,, ®4) and Wd(@d) we define the attacker’s weighting function

as _

- eﬁﬁa(‘bcu@d)wd(@d)
e (Bas®a)W 4 (Dyg)||

where ||| is the Eucledian norm and & is the selectivity factor as used previously,
that is tuned to balance learning versus maximizing utility.

We again propose using observations about the system performance and
defender’s parameter choice to update the attacker’s utility estimate function.
We define the update equation as

ﬁa( Z’¢§) <_>‘ﬁa( §7¢§)+ﬂugbs(k)’ (13)

where [ is a weighting factor to avoid a high variance utility and A is a forgetting
factor as described previously.

We propose using observations about the defender’s choice in parameters to
update the matrix Wy(®4). We do this in two steps, the first increases the
weight of whatever parameters the defender last played by a constant o such
that

W (®a) (12)

W) + o+ Wa(e). (14)
The attacker then updates all the values in the matrix using a scaling factor
i < 1 which decreases all the values. Thus our second update operation is

Wa(B) — uWa(®y). (15)

To start the algorithm we choose to use an initialization to U, (P, Py) < 1
and Wy (®,) « 1. This algorithm is summarized in Algorithm 3 and evaluated
in Section 5.

4.1. Cross-Layer Design

Our initial presentation allows for the freedom to choose the utility as any
measurable device characteristic or combination of measurable characteristics.
This allows for intuitive design across layers since utility is not confined to one
layer.

Likewise, the use of a model with generic parameters that map to utility
allow for selection of parameters and strategies from many places in the stack.
The main caveat here is that the set of parameters selected must be able to be
searched. One of the main difficulties of using this type of approach over many
layers with a numerous parameter is the search space becomes intractable.

10



5. Simulation

We design and simulate two multi-round games as a proof-of-concept for
using observe-and-adapt algorithms for adaptive security. The first game simu-
lates a generic jamming game where both players choose their power level and
the outcome of the game is based on a generic utility mapping with noise. The
second game focuses on a jamming scenario simulating 802.11b in which both
players control their power levels. The utility in this game is a mix of the PER
rate from a simulation of the jamming scenario and the players power usage.

We explore multiple two-player scenarios including an adaptive player and
fixed player, an adaptive player and transient player, an adaptive player and
random player, and two adaptive players. We assume that the adaptive player
is always rational and aims to maximize its utility by increasing its impact while
minimizing its power usage.

In both of these games the players select the strategy a priori. An adaptive
player aims to adapt one parameter, power level over a time, to maximize its
utility. We define p, as the attacker’s power and py as the defender’s power. For
both games the players choose power levels from a discrete subset of choices.

A fixed player randomly chooses its power level prior to playing the game.
A transient player chooses a new power level at random every 600 rounds. A
random player selects a new power level randomly every round. An adaptive
player uses the strategies described in Section 3 and 4.

5.1. Generic Jamming Game

The generic jamming game is setup using a cost matrix that is designed to
emulate possible costs of jamming. The game is not zero sum, but rather our
utility map for the attacker is defined as

uq(Pa, Pd) = Uy + up (16)

where u, is the utility from system degradation and ug is the utility from the
energy expenditure. This leads us to

00 0 o0 0000 0O 0 0 0
13 -1 -1 040 0 1 -1 -1 -1
UaPaPa) = | 5 9 9 9| =0 4 4 ofT|-2 -2 —2 _9
301 1 1 0 4 4 4 3 -3 -3 -3

(17)
The function for u, is 4 units whenever the jammer successfully jams the chan-
nel. The utility for ug is minus one unit for every power level the jammer
uses.

We likewise define the defenders utility matrix as

-1 6 4 1
1 -1 4 1

ud(pa7pd) = 1 -1 =2 1 (18)
1 -1 -2 -3

11
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Figure 3: In 3(a) we show the mean deviation from 20 plays of 500 rounds of the fixed game
and in 3(b) we show the mean deviation from 20 plays of 10000 rounds of the transient game.
We show results for an attacker using weighted observation, universal approximators, and a
random strategy. The choice of the selectivity constant k is varied along the x-axis.

This equation is similar but awards utility when the attacker is off and the
jammer is on.

For the weighted observation algorithm we set A = .9, 8 = .1, a = 1,
and p = .9. For the universal approximator algorithm we select vy, = —.2,
Umaz = -2y bmin = —2, bmaz = 2, the number of nodes m = 1000, and the
number of samples j = 12. For the near static universal approximator, we reset
every 300 rounds.

5.1.1. Results

Fized - For the fixed defender we show results from an attacker using the
weighted observation and universal approximation algorithm. One statistic that
we use to analyze the algorithms performance is the deviation from maximum
efficiency. We define deviation from maximum efficiency as the difference be-
tween the observed utility and the expectation of the utility of the optimal
strategy. An ideal attacker would expect their deviation from maximum to be
the variance caused from noise in the game. We define the mean deviation from
maximum as the mean of the deviation from maximum for all rounds of a game.
The mean deviation from an ideal attacker would be zero. In Figure 3(a) we
show the mean of the mean deviation from 20 games of 500 rounds for each
algorithm for various x values. We show that an attacker using a random strat-
egy achieves a mean deviation of -1.5. We also show when an attacker uses the

12



weighted observation algorithm it achieves a mean deviation over -.2 and using
the universal approximator the mean deviation is over -.1. The importance of
the significance value k is highlighted in this figure. As expected the higher x
value increases selectivity, choosing the optimal value more and limiting explo-
ration of the search space.

We show runs of our algorithms in Figure 4 for the fixed game. In Figure 4(a)
we show the results for the random attacker, the high variation in the deviation
from maximum in this plot confirms the sub-optimality of a random strategy.
In Figure 4(c), we show the results for the weighted observation algorithm with
k = 10, which after a short time obtains ideal results. Lastly, in Figure 4(e) we
show the results for the universal approximator algorithm, which after the 12
round perturbation obtains ideal results.

Transient - For the transient defender we again consider an attacker using
a random algorithm, a weighted observation algorithm ,and a universal approx-
imator algorithm. The transient defender chooses a strategy randomly every
600 rounds. The attacker using the universal approximator algorithm randomly
samples 12 data points every 300 rounds and uses these values to re-train its
neural network. In Figure 3(a) we show the mean of the mean deviation from 20
games of 10000 rounds for each algorithm for various x values. The figure shows
that the attacker using the universal approximator algorithm again achieves a
mean deviation of over -.2, which is much better than the -1.5 from the random
algorithm. The attacker using The weighted observer algorithm shows varied
results, though always better than random. The higher the selectivity value, k
the worse the system performs, which is to be expected. This result is the oppo-
site of the fixed-case, where high selectivity is beneficial. This is easy to explain
by considering the selectivity discourages trying new values and adapting the
system when the transient system changes.

We show runs of the attacker using adaptive algorithms against a transient
defender in Figure 4. In Figure 4(f) we show a run of an attacker using the
universal approximator algorithm. The algorithm continually performs near
ideally with few exceptions. The one discrepancy at around 4500 rounds is likely
caused by a bad selection of random variables for the v}s and b}s in the neural
network. The results for an attacker using the weighted observer algorithm are
shown in Figure 4(d). These results are less consistent, but on average better
than random.

Adaptive - In Figure 5, we show the results of our weighted approximation
algorithm for 3 cases and various x values. We again use the mean utility of 20
games with 10000 rounds. The three cases we use are two adaptive players, two
random players, and a random player and an adaptive player. The results when
only the defender adapts shows the defender’s utility improve and the attacker’s
utility remains unchanged. When only the attacker adapts the attacker’s utility
improves and the defender’s utility improves. This is likely due to the attacker’s
adaptation causing the attacker to choose power levels that are, on average,
better for the attacker. The attacker does not see the same gain because the
expectation of his random strategy is zero for any power level choice of the
defender.

13
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Figure 4: In this figure, we show the attacker’s deviation from maximum for a fixed defender
and transient defender using the generic jamming game. We show the performance of a
random attacker, an attacker using the weighted observation algorithm and an attacker using
the universal approximator algorithm.
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Figure 5: In this figure, we show the average utility of two players playing the generic jamming
game. We look at the performance of three two-player games: two random players, a random
player and an adaptive player, and two adaptive players. The legend in the graph is read as:
(Defender strategy)/(Attacker strategy).
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The results for both players adapting is also interesting. If both players use
a selectivity of k = 4 the attacker has a slight gain, the defender has a loss of
almost one. The defender consistently has worse performance when both players
adapt. Given this information the use of adaptation by the individual players
can be decided on the fly. For example, a defender who is getting performance
worse than random could choose to use a random strategy after a number of
adaptive trials.

5.2. 802.11b Jamming Game

Our second sample system uses the IEEE 802.11b model [19] distributed with
the Matlab Simulink Communications Blockset. We add a periodic jammer into
this model, a PER measurement system, and control for the jammer’s power
and transmitter’s power which we use for p, and pg respectively. The 802.11b
jamming power game is very similar to the one discussed above, except in the
802.11b domain. The defender and attacker can choose power levels in the range
of 0 and 10. With 100 rounds of the game for each combination of parameters
we can summarize this with a mean of

1 0 0 0 0 0 0 0O 0 0O
1 0 0 0 0 0 0 0O 0 0 0
1 073 0 0 0 0 0 0O 0 0 0
1 095 029 0 0 0 0 0 0 0 O
1 091 069 0 0 0 0 0 0 0 0
uper(Pa,pa) =11 094 073 024 0 0 0 0 0 00
1 098 092 0.73 028 0 0 0O 0 0 O
1 098 093 0.76 0.29 025 0 0O 0 0 0
1 098 090 0.68 0.68 0.23 0 0O 0 0 O
1 098 094 092 0.72 041 024 0 0 0 O
1 098 0.88 0.91 0.68 0.66 023 026 0 0 0
(19)
and standard deviation of
0 o0 0 0 0 0 0 0 0 0 0
0 o0 0 0 0 0 0 0 0 0 0
0 028 O 0 0 0 0 0O 0 00
0 0.11 024 0 0 0 0 0 0 0 0
0 0.17 030 O 0 0 0 0 0 0 0
opEr(Pa,pa) =0 0.13 027 025 O 0 0 0O 0 0 0
0 0 016 030 024 0 0 0 0 0 0
0 0 013 025 024 025 0 0 0 0 O
0 0 018 027 027 025 0 0 0 00
0 O 013 0.15 030 032 025 0 O O O
0 0 019 0.17 030 027 024 024 0 0 O

(20)
Utility Functions - In this game the dependability metric is defined as v =
1—PER. The energy for the defender is calculated as Efj = pfl and Eg maqz = 100.
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Figure 6: In this figure, we show an adaptive attacker’s gain in utility over a random strategy
for a fixed and transient 802.11b jamming game. We consider the use of both universal
approximators and weighted observations.

The energy for the defender is calculated as Efj = pfl and Ej mee = 100. The
weights for the utility functions are set as wg g = wg,q = .4 and Wy g = Wy,q =
.6. Using (2) and (3) the utility for the attacker becomes

2
k Pq
= .6PER + 4 - — 21
Ya 6 ( 100) (21)

and the utility for the defender is

2

uk = 6(1 - PER) + 4 ( - f’(;)) . (22)

5.2.1. Results

Fized and Transient - We again test the weighted observation algorithm and
universal approximator algorithm for the fixed and transient game, the results
are shown in Figure 6. When the attacker adapts it clearly out-performs a
random attacker. The weighted observation method, with a sufficiently high &
value, performs as well as the universal approximator. It is interesting to note in
this game that the higher selectivity constant always increases the performance
of the system. This is different then the generic case and also make an important
distinction that the selection of k depends on the utility function.

Adaptive - In Figure 7 we show the results for the interaction of adaptive
and random players. We again average 20 games with 10000 rounds each. This
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Figure 7: In this figure we show the results for the 802.11b jamming game for adaptive players.
The legend is read as (Defender’s strategy)/(Attacker’s strategy).

result is interesting for the attacker because it only make a large gain in it’s
performance when it adapts and the defender does not. In any other case, the
attacker performs near the baseline case of both player being random. The
defender on the other hand makes a gain in either case when it adapts. When
it does not adapt and the attacker does it looses utility.

In Figure 8, we show some intuition about the importance of selectivity in the
802.11b jamming game. In this figure, we show the effect of varying selectivity
values, k, for the case of an adaptive player opposing a random player as well
as two adaptive players competing. We can see that when the selectivity value
is one, we get near random behavior in any case. When the value increases to
10, we see higher selection and when it is 100, we see clear favorite strategies.
It is interesting to note that the strategies favored in the x = 10 and x = 100
cases are not the same.

6. Related Works

In this section, we highlight similar work in the areas of adaptive security
consider recent developments of secure communications as well game theoretic
jamming analysis. For a detailed look at the historic development of the wider
field of jamming see Pelechrinis et al. [2].

One adaptive strategy to mitigate jamming was proposed by Liu et al. [8],
who suggest the SPREAD hopping scheme to make a system robust to cross
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Figure 8: In this figure, we show the effect of the x constant on the systems performance. This
lends explanation to the effect of this as a selectivity constant, and shows why varying causes
differences in performance. Particularly in the case of transient and adaptive opponents, the
ability to unlearn is much more difficult with high x values but they give the advantage of
decreased testing of sub-optimal results.
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layer denial of service attacks. This work suggests that a set of protocols at
each layer of the stack are chosen and then synchronized nodes switch between
protocols using a pseudo-random pattern. In our work, we provide a framework
for escaping jamming attacks that is complimentary to this approach. A set
of pseudo-random protocols could be chosen and then the observe-and-adapt
approach could find optimal parameter values or determine when a less costly
protocol could be chosen.

There has also been work in using current protocols or modified versions of
current protocols to mitigate jamming threats. Wood et al. [13], have suggested
a set of MAC layer modifications which mitigate jamming attacks in the 802.15.4
domain. Likewise, Pelechrinis et al. [12], have suggested tuning rate adaptation
and carrier sensing threshold in 802.11 to achieve resiliency against jammers.
We build on this line of working, showing that adaptation and appropriate
tuning of parameters increases the robustness of a system and provide a general
framework for studying this problem.

Designs for adaptive jamming attacks have been considered at both the MAC
and PHY layer. Richa et al. [6], propose using an adaptive attacker that aims at
the MAC layer. This paper uses feedback from previous rounds and can use all
this history to optimize their current attack decision. DeBruhl et al. [5], have
suggested an adaptive periodic jamming attack that uses observed information
from the system to optimize its duty cycle and power parameters. Our current
work is a more general framework which can be extended to use both MAC
layer attack optimization and PHY layer attack optimization, building on both
previous works.

Research in offline optimization of a jamming attack is also an open field. Li
et al. [4], have shown the design of an optimal jammer which tries to maximize
impact without being detected. This work presents a design based on the jam-
ming probability, transmission range and network access probability which can
provide for optimal solutions to when to jam. We again work in the spirit of
this paper and attempt to optimize our attack to have maximum impact while
minimizing cost, and extend it by considering how such an attacker would work
against an defender which is also trying to adapt. Our paper approaches this
differently in assuming that adaptation is online and has to use information
from the system.

There has also been wide consideration of using a game-theoretic solution to
optimize problems in the jamming and anti-jamming domain [14, 15, 20, 21, 22].
Thamilarasu and Sridhar [15], have shown optimal attack and detection design
for a jamming game. The optimal detection balances a cross layer detection
strategy and energy usage. Pelechrinis et al. [14], use a game-theoretic frame-
work to analyze frequency hopping and show the effect of orthogonal channels
on its effectiveness. Zhu et al. [20] consider an attacker that balances compro-
mising security via eavesdropping and availability via jamming. Firouzbakht et
al. [21] consider a system where the attacker can choose various power levels
to transmit at and the defender can choose various coding rates. These works
all consider perfect knowledge of the system to derive a rational strategy in
real time. Our work looks to compliment these previous works by exploring
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an online adaptive system that does not assume perfect knowledge nor a priori
optimization. For a survey of the wider use of game theory in this field see
Manshaei et al. [23].

It is also useful to consider the cognitive radio domain when exploring adap-
tation in communication. This domain is both beneficial to support the use
of artificial intelligence approaches [16] as well as to provide direct exploration
of robust adaptive communications. Brown et al. provide a summary of the
new attacks that are opened up do to the unique nature of cognitive radio [24].
Wang et al. [25] propose using cognitive radio to work around jammed spectrum
regions. This work assumes that attacker stays in a region after a sensing pe-
riod, in practice attackers have no incentive to be this cooperative. Our work is
complimented by advances in CRN learning and adaptation techniques as they
increase the options a defender has to avoid jamming.

7. Conclusion

In this work, we consider the interaction of adaptive defenders and attackers.
To do this we provide a framework that allows for both an attacker and defender
to observe the system and adapt their strategy based on observations. We show
that in the case of an adaptive player competing against a static or random
opponent that they are able to improve their impact or decrease their cost. In
the case that both players adapt we show that their utility is very suggestive of
the bias in the game that they are playing. In the future this framework can be
expanded to include more adaptive strategies to allow deeper exploration of the
field. The framework can also be analyzed using formal methods to determine
what type of guarantees and properties can be derived. This could include a
game theoretic analysis as well as a more robust simulation based analysis.
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