
UnLocIn: Unauthorized Location Inference on
Smartphones without Being Caught

Le Nguyen, Yuan Tian, Sungho Cho, Wookjong Kwak,
Sanjay Parab, Yuseung Kim, Patrick Tague and Joy Zhang

Carnegie Mellon University
Moffett Field, CA, US

firstname.lastname@sv.cmu.edu

Abstract—Location privacy has become one of the critical
issues in the smartphone era. Since users carry their phones
everywhere and all the time, leaking users’ location information
can have dangerous implications. In this paper, we leverage the
idea that Wi-Fi parameters not considered to be “sensitive” in
the Android platform can be exploited to learn users’ location.
Though the idea of using Wi-Fi information to breach location
privacy is not new, we extend the basic idea and show that
clever attackers can do so without being detected by current
malware detection techniques. To achieve this goal, we develop
the Unauthorized Location Inference attack (UnLocIn) that is
transparent to both the victim user and the malware detection
software, using the seemingly insensitive permission to access Wi-
Fi state. This permission is used by 51 of the top 100 free apps
on Google Play. We demonstrate that the UnLocIn attack allows
the attacker to infer the victim’s location with 50 meter accuracy
in 20% of cases and within a few hundred meters on average.
In addition, we discuss potential defenses against our proposed
UnLocIn attack.

I. INTRODUCTION

Location privacy has become one of the hottest topics in
the mobile era. Millions of apps are downloaded everyday, and
many of them collect sensitive location data of mobile users.
As shown in past research, modern smartphones are equipped
with a variety of sensors that can be used to infer a user’s
location. In addition to GPS and cell tower trilateration [20],
the embedded cameras [15] and microphones [7] can be
considered as sources of sensitive location information.

Websites such as PleaseRobMe.com have made users aware
of the dangers related to the potential misuse of location
information. This awareness has caused an increasing number
of users to pay more attention to the potential location privacy
risks of mobile applications. Therefore, on the popular Android
mobile platform, users are given control over their location
privacy settings through a permission system. At installation
time, a user can reject any application that requests suspicious
access to sensitive information. Moreover, a user can explicitly
deactivate location services such as GPS or install an applica-
tion to fake the user’s location.

Additionally, in order to protect users’ location privacy,
many researchers have proposed approaches for automatic
detection and prevention of location information leakage. Conti
et al. proposed a system to dynamically grant permissions
based on the context of users [9]. For example, users can
define location- and time-based constraints on the ability for
applications to access GPS location. Dynamic information flow

tracking is another widely used technique for detecting privacy
violations. TaintDroid [11] is one such program that can be
used for dynamic flow analysis in Android. It resides in the
lower level of the Android OS and tracks the flow of sensitive
data in third-party applications. TaintDroid will notify the user
in the event that sensitive data leakage is detected.

While information flow tracking tools such as TaintDroid
are a promising step toward providing user location privacy,
we claim that it is an incomplete solution. To demonstrate our
claim, we propose the Unauthorized Location Inference attack,
which we refer to as UnLocIn, to exfiltrate sensitive location
information without being detected by the user or leakage
detection tools. Our goals in developing the UnLocIn attack
rely on two primary capabilities: 1) to collect enough location
data to localize the user/device and 2) to bypass current
malware and data leakage detection methods. We developed
and tested our UnLocIn attack to show that the two conditions
are achievable on current Android devices. We achieve the first
goal by exploiting the “access Wi-Fi state” permission, which
is typically used to determine whether the phone is connected
to the Internet through a Wi-Fi connection. According to
our survey, 51 out of the 100 most popular free apps on
Google Play such as Pandora, Angry Birds, or Skype ask for
this permission. For our second goal, we analyze available
malware detection methods and propose a generalized implicit
information leak approach to bypass these methods. Given
the exfiltrated data, we propose two techniques for inferring
the user’s location by exploiting publicly available location
services. As part of our study, we perform various experiments
to evaluate the accuracy of our location inference technique.
Moreover, we discuss potential defenses against our proposed
UnLocIn attack.

The remainder of this paper is organized as follows. In
Section II, we detail the requirements for a successful attack
and describe our proposed UnLocIn attack model. In Sec-
tion III, we present methods for bypassing malware detectors.
In Sections IV and V, we describe and evaluate the accuracy of
location inference techniques for UnLocIn. Finally, we discuss
potential defense mechanisms in Section VI and conclude the
paper in Section VII.

II. UNLOCIN MODEL AND REQUIREMENTS

The goal of the proposed UnLocIn attack is to track a user’s
location “without being caught”. Thus, there are two primary
requirements to make the UnLocIn attack successful:

• Requirement 1: The malicious application running on
the victim’s device should be transparent to the user
and transparent to malware detection tools.

• Requirement 2: The malicious application should
collect and exfiltrate sufficient information to infer the
victim’s location.

Together, these requirements ensure that the victim is neither
directly aware of nor alerted by malware detection tools of the
data collection process that enables the attack success. Note
that we assume the malicious application is installed on the
victim’s device; this can be achieved by repackaging a popular
application or developing malware masked as a game, each of
which is out of the scope of this work.

In order to meet the two attack requirements, we design
the UnLocIn attack with two parts, as shown in Figure 1.
First, UnLocIn uses a malicious Android application installed
on the victim’s device to collect relevant data in background,
occasionally reporting the collected data. Second, UnLocIn
uses a server to collect and analyze the relevant data to infer the
victim’s location. As the UnLocIn application can be included
in any standard Android application, it does not require the
mobile device to be rooted.

Fig. 1: In the UnLocIn attack, malware on the victim’s device
reports the SSID or BSSID of available Wi-Fi access points
with timestapms to the attack server that performs location
inference.

Common tools used to infer a user’s location include
GPS positioning and cell tower trilateration. However, if
the UnLocIn malware tries to access these location sources
directly, the victim will be notified at installation time about
the required sensitive permission, as shown in Figure 2. In
addition, the Android system automatically notifies the victim
through an icon on the status bar during each request for
GPS location access, as shown in Figure 3. Clearly the use of
these location sources violates Requirement 1 for the UnLocIn
attack. Therefore, an alternative data collection technique is
required.

In order to meet Requirement 1 for the transparency of the
UnLocIn attack, we exploit the seemingly insensitive Android
permission to “access Wi-Fi state”. This permission is typically
used to check whether a user has a Wi-Fi connection and is
able to transfer data at a high rate or in large quantity. However,

Fig. 2: The user is notified at installation time that the
application requires location permissions.

Fig. 3: When GPS location is requested by an app, the Android
OS notifies the user using a notification icon on the status bar
(the icon on the left).

this permission also allows an application to obtain information
about neighboring Wi-Fi Access Points (APs). At installation
time, a victim will see only that the malicious application
requests the “access Wi-Fi state” and “Internet connection”
permissions. These permissions are common to most of the
apps that require an Internet connection.

Once the malicious application is run for the first time, it
periodically (e.g. every 5 minutes) scans for neighboring Wi-Fi
APs. As a result it stores a list of SSIDs (Service Set Iden-
tification), BSSIDs (Basic Service Set Identification), RSSIs
(Received Signal Strength Indication) with a corresponding
timestamp. The application will then upload the data to the
UnLocIn server, either through a periodic or opportunistic
upload.

As we will describe later in Section IV, the information
about surrounding Wi-Fi APs is sufficient for the location
inference aspects of the UnLocIn attack, thereby fulfilling Re-
quirement 1. In what follows, we will introduce our approach
for bypassing malware scanners to perform the UnLocIn attack
without being detected, thereby fulfilling Requirement 2.

III. BYPASS MECHANISM

In this section, we demonstrate how UnLocIn meets Re-
quirement 1 for transparency to both user observation and
malware detection. Our approach is based on an in-depth

investigation of both the Android permission system and
the currently available malware detection tools. First, we
only use non-sensitive permissions to bypass permission-based
detection approaches. Second, for malware scanners which
typically use dynamic flow analysis, we develop a technique
to thwart their detection capabilities. More specifically, we use
implicit information leakage and code obfuscation to avoid
being caught. According to our experiments, the design goal
is reached and our application successfully bypasses current
detection techniques.

To bypass permission analysis tools, we only require per-
mission to access Wi-Fi state, which is very commonly used.
If permission analysis tools try to label it as a sensitive per-
mission, many popular applications on the market will trigger
a false alarm. According to our experiment, these popular
permission-based analysis tools fail to detect our malicious
behavior.

To bypass malware scanners which typically use dynamic
flow analysis, we investigated various aspects of defenses
against application-based attacks [16], [18], [8] and automated
discovery of privacy leaks [21], [18], [10]. We found that track-
ing implicit leakage is a common limitation for dynamic flow
analysis. For instance, implicit leakage shown in Algorithm 1
will not be detected by dynamic flow analysis.

Algorithm 1 Implicit Information Leak

location = get gps location()
if location == 1 then

packet = 1
else if location == 2 then

packet = 2
else if location == 3 then

packet = 3
end if
send network(packet)

However, if we only naı̈vely implement the algorithm for
the implicit information leak, as shown in Algorithm 1, we
would need to enumerate all possible locations through the
if-else clauses. In our work, we design and implement a
generalized implicit leak algorithm shown in Algorithm 2.
In our approach, we break down the sensitive information
into characters and then perform the implicit assignment. For
example, to send the GPS latitude coordinate “-112.245”,
we break it down to “-”, “1”, “1”, “2”, “.”, “2”, “4”, “5”
and perform implicit assignment on the character level, thus
avoiding enumeration of a large number of possible values.

Algorithm 2 Generalized Implicit Information Leak

unicode hashmap = hashmap of unicode characters
bypassed data = empty string
for each character in sensitive information

find matching character in unicode hashmap
bypassed data = bypassed data +

character from unicode hashmap
return bypassed data

To evaluate our bypass approach of information flow anal-
ysis, we tested our app with TaintDroid [11], one of the most

representative dynamic analysis tools to date. We first installed
the UnLocIn Android application without any implicit routine
on TaintDroid with Google Nexus S and Android 4.1.1. As
soon as the application started, the TaintDroid system was able
to catch the sensitive information leak, as shown in Figures 4
and 5. We then installed a modified version of UnLocIn
using the implicit information leakage routines. The UnLocIn
application ran over a few days, collecting the device’s Wi-Fi
scans and sending them to a remote server. The TaintDroid
system was not able to detect any information leak during the
whole testing period.

Fig. 4: TaintDroid Notifications

Fig. 5: TaintDroid Notification Details

From the above results, we learn that our app can bypass
current analysis techniques by using limited permissions and
the implicit information leak technique. In the current research,
there has been a limited number of works addressing the im-
plicit information leak, though static analysis can theoretically
be used. Gilbert et al. proposed building a control dependencies
graph to identify implicit information leakage [13]. However,
this method runs into problems such as over-tainting, which re-
sults in the high rate of false positives [6]. Therefore, detection
and prevention of implicit information leaks remains an open
research problem, and our detection bypass mechanism allows
us to satisfy Requirement 1 for the success of the UnLocIn
attack.

IV. LOCATION INFERENCE

In this sections, we demonstrate how Requirement 2 can be
satisfied by inferring a victim’s location from Wi-Fi readings
alone. Though the idea of using Wi-Fi for localization is
not new, many approaches have been developed typically
for controlled environments, for example using pre-calibrated
systems in known environments to achieve high positioning
accuracy. However, in our scenario, the victim’s environment
is completely unknown. In the following, we describe two lo-
cation inference approaches based on BSSIDs and SSIDs col-
lected from the victim’s phone. Both proposed approaches use
publicly available information sources and no pre-calibration
is required.

A. BSSID-based Location Inference

1) Positioning based on Wi-Fi fingerprints: As described
in Section II, the malicious application running on a victim’s
phone collects BSSIDs of observed Wi-Fi APs and their corre-
sponding RSS values. It is broadly known that this information
can be used for inferring the device’s location.

In our attack, we need an access a Wi-Fi positioning
database in order to infer the victim’s location from the
collected BSSIDs and RSS values. Google [1], Skyhook [4],
Wigle [5] and other services have created a global Wi-
Fi signature database by bootstrapping the database through
war-driving [14]. Google and Skyhook allow developers to
use their position inference service through restricted SDKs.
Specifically on Android, the developer has an option to activate
the positioning capability and expect to receive location infor-
mation. The SDK will automatically request Wi-Fi information
from the phone and return estimated location as a result.
However, the SDK does not provide test functionality allowing
a developer to simply input BSSID and RSS values to return
a location, independent of a deployed app. Wigle exposes
more capabilities to the developer community, but, based on
our observations, Wigle has low geographical coverage and
is not up-to-date in may areas. We are aware that Google
and Skyhook provide their business partners a paid server-
side location inference service. After signing a binding contract
and paying a service fee, business partners get access to the
functionality, which would allow them to input a set of BSSIDs
and RSS values to get an inferred location. However, in an
location tracking scenario, the attacker will likely want to
remain anonymous, so these subscription services are not a
viable option.

In our work, we decided to exploit the Google services
for positioning purposes as their fingerprint database are well
maintained and offer a good geographical coverage. Our goal
is to implement a process where we can input BSSID and
RSS and receive an output in form of latitude and longitude.
We have achieved this by developing an location inference
technique based on an Wi-Fi spoofing approach [19]. We use
a Wi-Fi AP to broadcast the collected Wi-Fi fingerprints and
use a Android phone to obtain the victim’s location.

2) Tools: Figure 6 shows the attack tool set-up to infer a
victim’s location.

• Android phone with Internet connection: In our
experiment we used the APIs of the Android SDK

in order to infer the device’s location. By putting the
phone in airplane mode, we ensure that the phone
does not use GPS or cell towers for positioning.
However, in airplane mode, the Android phone allow
us to keep Wi-Fi capabilities on. Thus, the device was
able to receive the spoofed Wi-Fi beacon messages.
Additionally, through a Wi-Fi connection, the device
was connected to the Internet and was able to query
Google’s Wi-Fi fingerprinting database in order to
infer the device’s location.

• Device capable of broadcasting Wi-Fi beacons
messages: In our experiment we used an external Wi-
Fi access point in order to broadcast spoofed Wi-
Fi beacons messages. However, any wireless internal
card embedded in PCs or laptops can be used if they
are supported by file2air, which is described below.

• Faraday cage (optional): As we conducted our exper-
iment in an indoor environment, we used a Faraday
cage in order to shield Wi-Fi signals from neighboring
access points. Instead of building a Faraday cage the
attacker could also find an environment with far from
Wi-Fi access points.

• File2air [2]: We use file2air to send out spoofed Wi-Fi
beacon frames.

Fig. 6: We show our evaluation tools used for inferring the
victim’s location based on BSSIDs.

3) Location Inference: Figure 7 shows the process of loca-
tion inference based on BSSIDs. As described in Section II, the
malicious application running on the victim’s phone collects
the observed BSSIDs and sends them to the attacker. The
attacker in a different location can use this information to infer
the victim’s location.

First, the attacker uses a Wi-Fi AP to broadcast Wi-Fi bea-
con packages with spoofed BSSIDs. Then the attacker places
an Android phone in a vicinity to the Wi-Fi AP. An application
running on the phone utilizes Google’s positioning capability
and stores the estimated location. Since GPS and cell tower
sensors are deactivated in airplane mode, only Wi-Fi is used
for estimating the device location. By broadcasting spoofed
Wi-Fi beacons packets, the application queries Google’s Wi-
Fi fingerprint database and returns the location of the victim.

Fig. 7: We illustrate the process of inferring the victim’s
location through our replay approach.

B. SSID-based Location Inference

As mentioned above, in order to infer the victim’s location
from BSSIDs we assume that the utilized Wi-Fi fingerprint
database has a sufficient coverage and contains fingerprints
geographically close to victim’s location. However, we cannot
assume that these databases will cover all locations on the
globe. Therefore, in some cases, the BSSID-based approach
may not return a result. In what follows, we thus introduce an
approach which uses SSIDs (instead of BSSIDs) to infer the
victim’s location.

One of the key insights of our work is that the SSIDs of Wi-
Fi APs often contain sufficient information to leak a victim’s
location. Many of the public AP’s SSIDs contain names of
point of interests. Thus, even without training data, which is
required by traditional Wi-Fi positioning methods, an attacker
can infer a victim’s location with low cost processing.

1) Positioning with Cues: We find that SSIDs associated
with public or business places are good resources for lo-
cation inference. Tables I and II show examples collected
from a user’s device. SSIDs such as “GoogleWiFi” and
“GoogleWiFiSecure” are good examples. Since it is well
known that Google provides free wireless Internet service in
the city of Mountain View, CA [3], the attacker can narrow
down the search space.

Next, cues that the attacker can exploit are keywords such
as “public” or “guest”, as shown in Table I. “CHM Public”
or “MSFTGUEST” are candidates the attacker might be in-
terested in. MSFT is the NASDAQ stock quote of Microsoft
Corporation and its office is located right next to Computer
History Museum (CHM) in Mountain View, CA. In many
cases, as shown in Table II, SSIDs carry names of commercial
stores (e.g. “Sunnyvale Carwash”) and include geographical
information (e.g. “HolidayInnExpress/Santa Clara”).

In our work, we developed an approach to infer locations
from the collected SSIDs. First, we applied pre-processing
techniques such as eliminating SSID duplicates, replacing
special characters with spaces, separating concatenated words
and removing keywords such as “guest” and “public”. Then

Fig. 8: Google’s Wi-Fi coverage is illustrated.

Time SSID BSSID RSSI
14:28:11 MSFTWLAN . . . :23:c0 -85
14:28:11 MSFTWLAN . . . :a7:80 -86
14:28:11 MSFTGUEST . . . :23:c1 -86
14:28:11 MSFTGUEST . . . :a7:81 -87
.
14:28:47 GoogleWiFi . . . :85:c4 -76
14:28:47 GoogleWiFiSecure . . . :85:c4 -76
14:28:47 GoogleWiFi . . . :49:e8 -98
14:28:47 CHM Public . . . :a7:82 -86
14:28:52 GoogleWiFiSecure . . . :23:c0 -85
14:28:52 chmoffice . . . :a7:80 -86
14:28:52 GoogleWiFi . . . :23:c1 -86
14:28:52 GoogleWiFiSecure . . . :a7:81 -87
14:28:52 GoogleWiFi . . . :a7:82 -86
14:28:52 CHM Public . . . :23:c0 -85

TABLE I: Keywords such as “guest” or “public” provide
valuable search cues.

Time SSID BSSID RSSI
21:05:16 HolidayInn . . . :a7:82 -86

-Express/Santa Clara
21:05:16 Metro WiFi . . . :23:c0 -85
21:05:25 MobileOne . . . :23:c1 -86
21:05:25 HolidayInn . . . :a7:81 -87

-Express/Santa Clara
21:05:25 Metro WiFi . . . :85:c4 -76
21:05:25 Pinkberry . . . :85:c4 -76
21:05:31 Capri Motel 002 . . . :23:c0 -85
21:10:15 Sunnyvale Carwash . . . :23:c0 -87

TABLE II: SSID names can be informative to the location
inference process.

we query online business/place directories in order to find
the point of interests. Yelp and Foursquare are two publicly
available APIs used in our experiments. In case a place is
found based on pre-processed keywords, the APIs return a
latitude and longitude of the place. We use this information to
estimate the approximate location of a victim.

2) User Profiling with Timestamps and SSIDs: A combina-
tion of timestamps and SSIDs exposes additional sensitive in-
formation of a victim. For example, by considering timestamps
an attacker can reconstruct the victim’s moving trajectory and
the transportation means. Figure 9 shows a map with exposed
locations sorted by timestamps. Additionally, the map shows
the inferred traveled trajectory. Since a victim moved from
point A to point B in one minute, we can infer that a victim

drove a car (or was in a bus) on Bayshore Fwy.

Additionally, from the collected dataset we observed a
significant correlation between an occurrence of a certain SSID
and time of the day. Thus, by applying techniques proposed
by Nguyen et al. [17], an attacker can infer where a victim
works or where a victim typically goes for lunch. Additionally,
the victim’s future locations can be predicted based on the
collected dataset.

Fig. 9: Timestamps can assist in location tracking using SSIDs
alone.

V. EVALUATION

In order to evaluate the accuracy of the location inference
technique proposed for use in the UnLocIn attack, we deployed
our malicious application on a user’s phone to simulate the
attack. The phone was carried by a typical university student
for one week. The application ran in the background and
collected Wi-Fi readings and GPS locations (for ground truth in
evaluating accuracy) every 5 minutes on average. In total, data
from 1370 Wi-Fi scans was collected, containing 356 unique
SSIDs and 498 unique BSSIDs.

A. Evaluating BSSID-based Location Inference

From the collected dataset, we observed that the person is
in a stationary mode most of the time, i.e., the set of observed
Wi-Fi BSSIDs remain similar. Thus, from the dataset we first
identify all the unique sets of BSSIDs and infer the location
only for them. For example, if at two different times t1 and
t2, we observe the same set of BSSIDs, then we only need to
infer the location at one of the times.

Due to the limitations of the used Wi-Fi AP, we were able
to broadcast at most 4 concurrent Wi-Fi beacon frames. Thus,
each of the 1380 Wi-Fi scans in our dataset corresponds to at
most 4 BSSIDs. For each unprocessed set of BSSIDs, we thus
picked the 4 with the highest RSSI values, in order to keep the
most significant BSSIDs. From the original 1380 Wi-Fi scans,
we obtained 470 unique sets of at most 4 BSSIDs.

We used a Wi-Fi AP to broadcast each of these 470 unique
sets of BSSIDs. The application running on our Android device

recorded both the observed BSSIDs and the locations predicted
by the Android API. By putting the phone in the airplane mode
and activating only the Wi-Fi capability we ensured that the
phone used only Wi-Fi readings for the positioning purposes.

Through this process we were able to build a mapping
between the unique set of BSSIDs and the corresponding
location. We used this mapping to infer the location of the 1370
Wi-Fi scans. We were able to infer locations for 1136 of the
total 1370 Wi-Fi scans (83%). For the remaining 17% of Wi-Fi
scans the Android API did not returned any results. Through
the analysis, we found that the victim was at a location where
Google had not yet collected Wi-Fi fingerprints.

In order to evaluate the positioning accuracy, we collected
the GPS positions of the victim’s phone and used them as
the reference positions. The distance error is computed as a
distance between the position inferred through our approach
and the reference position. Figure 10 shows the cumulative
number of Wi-Fi scans having a distance error lower than a
certain value. As we observe from the figure, in more than one
third (513 of 1370) of the cases, we were able to predict the
location with a distance error less than 250 meters, and in 20%
of the cases (300 of 1370), the error was less than 50 meters.
The average distance error for the 1136 Wi-Fi scans was less
than 500 meters.

Fig. 10: We show the cumulative number of Wi-Fi scans having
a distance error less than a certain value. For one third (513
of 1370) of the Wi-Fi scans, the distance error was less than
250 meters, and in 20% of the cases (300 of 1370), the distance
error was less than 50 meters.

B. Evaluating SSID-based Location Inference

As shown in the previous section, we can successfully
infer the victim’s location based on the collected BSSIDs.
This is possible since Google’s Wi-Fi fingerprint database
contains entries close to the location of the victim. However,
as we observed, this fingerprint database does not have 100%
geographical coverage, as there are cases in which the BSSID-
based location inference ap proach does not return any results.
In such cases, we can instead use the collected SSIDs to infer
the victim’s location.

We applied pre-processing of SSIDs as described in Sec-
tion IV-B. Keywords obtained through pre-processing were
input into the Foursquare and Yelp APIs. As the results, 18
SSIDs out of 356 unique SSIDs were matched to a certain
location. Table III shows an example of one search result. We
manually inspected the results and observed that all 18 SSIDs
belong to known public places such as schools, universities,
city libraries, restaurants, or companies. This result indicates
that inferring a victim’s location using SSIDs is practical, given
that the set of SSIDs contains enough metadata such as the
name of the business or other places.

SSID Sunnyvale Carwash
GPS reference 37.353576, -122.013802
Foursquare 37.35323131084442, -122.013624
Yelp 37.3531021715992, -122.013816833496
distance(Foursquare) 41.4774487581538 meters
distance(Yelp) 52.7623597913769 meters

TABLE III: We illustrate an example search result using the
Foursquare and Yelp APIs.

Along with the location search using Foursquare and Yelp
APIs, we also analyzed the relative frequency of SSIDs to the
particular victim. Table IV shows the top 7 BSSIDs with the
number of Wi-Fi scans they appeared in. As we can see, the
SSID “2WIRE964” appeared 682 times, about 50% of all the
1370 scans. By correlating the appearance of this SSID with
the time of the day and the day of the week we were able
to infer that this SSID is broadcast by a Wi-Fi AP near the
victim’s home. By observing locations of informative SSIDs
that are accessed at similar times as “2WIRE964”, an attacker
can infer the approximate home location of the victim.

As the result of this experiment shows, SSIDs collected
from a victim’s device can leak a significant amount of sensi-
tive information. We believe that this data leak have dangerous
implications for a victim, similar to the risks publicized by
websites such as PleaseRobMe.com.

Rank SSID Count
1 2WIRE964 682
2 DGI 679
3 mccoy 671
4 DesiNetwork 581
5 bones 571
6 CMU 455
7 CMU-SECURE 468

TABLE IV: We illustrate SSID inference results from our
experiment.

VI. DEFENSE MECHANISM

To defend against the proposed UnLocIn attack, we de-
scribe two lightweight defense mechanisms based on fine-
grained permissions and permissions assisted by static analysis.

A. Fine-grained Permission System

In this paper, we have shown how to exploit the Android
permission system to infer users’ location. This is possible
through exploiting the seemingly insensitive permission “ac-
cess Wi-Fi state”. Through this permission, we were able to
scan for surrounding Wi-Fi APs and collect sensitive informa-
tion.

In order to address this issue, we propose the use of a
more fine-grained permission system. From our survey, 51 out
of 100 top apps on Google Play store use the permission
“access Wi-Fi state”. Most of these apps are bandwidth-
sensitive apps (such as music streaming Pandora app or video
calling Skype app). Thus, these apps use the “access Wi-Fi
state” permission to detect stable Wi-Fi connection in order
to optimize their data transfer. However, it is not clear how
would they benefit from getting information about neighboring
Wi-Fi APs. Therefore, we propose to extract the capability
of reading information about Wi-Fi APs from “access Wi-
Fi state” permission into a new “get information about Wi-Fi
APs” permission. This new permission should be considered
as sensitive as the permission for accessing coarse or fine-
grained location information. Furthermore, we can extend the
method to the whole permission system, i.e. dividing generic
permissions into sensitive and non-sensitive parts.

B. Permission Analysis Assisted by Static Analysis

The proposed fine-grained permission system works well
with existing permissions and resources. However, there may
be new attacks utilizing new resources to infer sensitive infor-
mation. This threat makes it necessary to apply a dynamically
updated permission system. In order to detect new attacks, we
can use feedback from static analysis tools to redefine the rules
about dangerous permissions.

Figure 11 shows how to use feedback from static analysis to
improve permission analysis. We maintain a dynamic sensitive
permission database and use static analysis to update the
database. If we identify malicious behavior from a permission
which was labeled as non-sensitive, we will add this permis-
sion into sensitive permission database and vice versa.

In the initialization stage, we will deploy permission
analysis, defining malicious sets of dangerous permissions to
build a sensitive permission database, such as “read contact
information” and “access internet” [12]. In the next step, we
extract permissions required by the app and analyze them
according to the sensitive permission database. As results from
permission analysis might run into false negative and false
positive to some extent, we propose an algorithm to update
sensitive permission database for better accuracy by applying
static analysis. For the case of false negatives, malicious
behaviors are discovered by static analysis from an app with
benign permission sets according to the permission analysis. In
such cases, we will add permission sets considered as benign
into the sensitive permission database. By this approach, we are
enabled to discover new emerging attacks. On the other hand,
if apps with some sensitive permission sets are actually benign
from result of static analysis, those permission sets might not
be used by real-world attackers very often. In such cases, there
is a good reason to remove it from the sensitive permission
database.

VII. CONCLUSION

We have demonstrated our design of the UnLocIn attack,
performing inference of users’ location using Wi-Fi state
information in Android devices while remaining transparent
to both user observation and malware detection tools. We
have shown that UnLocIn can bypass current detection tools

Fig. 11: We show how permission analysis can be assisted by
static analysis.

and achieve a reasonable location accuracy to successfully
track mobile users. In addition, we showed that both Wi-
Fi BSSIDs and SSIDs can expose sufficient information to
allow location inference using either APIs provided by location
service providers or by mining SSIDs for names or locations
that expose enough information on their own. Specifically,
UnLocIn can track users to an accuracy of a few hundred
meters, with the top 20% of cases achieving an accuracy of
less than 50 meters. Finally, we discussed potential defense
mechanisms against this type of attack using fine-grained
permissions or a static analysis-assisted permission system.

REFERENCES

[1] Android sdk. http://developer.android.com.
[2] File2air. http://www.willhackforsushi.com/File2air.html.
[3] Googlewifi coverage. http://wifi.google.com.
[4] Skyhook. http://www.skyhookwireless.com.
[5] Wigle. http://wigle.net.
[6] L. Cavallaro, P. Saxena, and R. Sekar. On the limits of information

flow techniques for malware analysis and containment. In Proceedings
of the 5th international conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, DIMVA ’08, pages 143–163,
Berlin, Heidelberg, 2008. Springer-Verlag.

[7] H.-T. Cheng, F.-T. Sun, S. Buthpitiya, and M. Griss. Sensorchestra:
Collaborative sensing for symbolic location recognition. In M. Gris
and G. Yang, editors, Mobile Computing, Applications, and Services,
volume 76 of Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, pages 195–
210. Springer Berlin Heidelberg, 2012.

[8] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint analysis
framework. In Proceedings of the 2007 international symposium on

Software testing and analysis, ISSTA ’07, pages 196–206, New York,
NY, USA, 2007. ACM.

[9] M. Conti, V. Nguyen, and B. Crispo. Crepe: Context-related policy
enforcement for android. Information Security, pages 331–345, 2011.

[10] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dynamic spyware
analysis. In 2007 USENIX Annual Technical Conference on Proceedings
of the USENIX Annual Technical Conference, ATC’07, pages 18:1–
18:14, Berkeley, CA, USA, 2007. USENIX Association.

[11] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
OSDI’10, pages 1–6, Berkeley, CA, USA, 2010. USENIX Association.

[12] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM conference
on Computer and communications security, CCS ’09, pages 235–245,
New York, NY, USA, 2009. ACM.

[13] P. Gilbert, B. Chun, L. Cox, and J. Jung. Vision: automated security
validation of mobile apps at app markets. In Proceedings of the second
international workshop on Mobile cloud computing and services, pages
21–26. ACM, 2011.

[14] M. Kim, J. J. Fielding, and D. Kotz. Risks of using ap locations
discovered through war driving. In Lecture Notes in Computer Science,
v 3968 LNCS, Pervasive Computing - 4th International Conference,
PERVASIVE 2006, Proceedings, pages 67–82. Springer-Verlag, 2006.

[15] A. Mulloni, D. Wagner, I. Barakonyi, and D. Schmalstieg. Indoor
positioning and navigation with camera phones. IEEE Pervasive
Computing, 8(2):22–31, Apr. 2009.

[16] J. Newsome. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. 2005.

[17] L. T. Nguyen, H.-T. Cheng, P. Wu, S. Buthpitiya, and Y. Zhang. Pnlum:
system for prediction of next location for users with mobility. In
Proceedings of mobile data challenge by Nokia workshop at the tenth
international conference on pervasive computing.

[18] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. Lift: A
low-overhead practical information flow tracking system for detecting
security attacks. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 39, pages 135–
148, Washington, DC, USA, 2006. IEEE Computer Society.

[19] N. O. Tippenhauer, K. B. Rasmussen, C. Pöpper, and S. Čapkun.
Attacks on public wlan-based positioning systems. In Proceedings of
the 7th international conference on Mobile systems, applications, and
services, MobiSys ’09, pages 29–40, New York, NY, USA, 2009. ACM.

[20] P. A. Zandbergen. Accuracy of iphone locations: A comparison of
assisted gps, wifi and cellular positioning. Transactions in GIS, 13:5–
25, 2009.

[21] Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. Privacy scope: A
precise information flow tracking system for finding application leaks.
Technical Report UCB/EECS-2009-145, EECS Department, University
of California, Berkeley, Oct 2009.

