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Abstract—In the ever evolving Internet threat landscape,
Distributed Denial-of-Service (DDoS) attacks remain a popular
means to invoke service disruption. DDoS attacks, however, have
evolved to become a tool of deceit, providing a smokescreen
or distraction while some other underlying attack takes place,
such as data exfiltration. Knowing the intent of a DDoS, and
detecting underlying attacks which may be present concurrently
with it, is a challenging problem. An entity whose network
is under a DDoS attack may not have the support personnel
to both actively fight a DDoS and try to mitigate underlying
attacks. Therefore, any system that can detect such underlying
attacks should do so only with a high degree of confidence.
Previous work utilizing flow aggregation techniques with multi-
class anomaly detection showed promise in both DDoS detection
and detecting underlying attacks ongoing during an active DDoS
attack. In this work, we head in the opposite direction, utilizing
flow segmentation and concurrent flow feature aggregation, with
the primary goal of greatly reduced detection times of both DDoS
and underlying attacks. Using the same multi-class anomaly
detection approach, we show greatly improved detection times
with promising detection performance.

Index Terms—DDoS, distributed denial-of-service, smoke-
screen, DDoS-as-a-smokescreen, DaaSS, anomaly detection, in-
trusion detection, concurrent flow, segmented flow, netflow, un-
derlying attack

I. INTRODUCTION

Throughout the Internet age, network intrusions have been
a concern, with detection strategies dating all the way
back to D.E. Denning’s general intrusion detection model
in 1987 [1]. Indeed, network intrusion detection was largely
an afterthought in the late 1980s, up until the Morris Inter-
net Worm nearly brought down the network in November
of 1988 [2]. Since then, network-based attacks have grown
considerably, fueled in part by a widespread adoption of the
Internet [3].

One common network attack has been prevalent: the Dis-
tributed Denial-of-Service (DDoS). This attack involves many
often hijacked computers to concurrently flood a target net-
work, with goals ranging from denying customer access to
providing cover for some other nefarious deed. This latter
goal, using a DDoS attack as a distraction or smokescreen
to obfuscate another attack, is called DDoS-as-a-Smokescreen
(DaaSS) [4], and often are leveraged for purposes of data
exfiltration or financial theft. DaaSS attacks can be espe-
cially challenging for information technology support (IT) to

mitigate as the obfuscated attack may not be noticeable at
first (or ever), but the DDoS itself presents problems that
need to be mitigated immediately. DaaSS attackers exploit this
need to mitigate DDoS attacks in the present, along with the
expectation of finite IT resources.

While DaaSS attacks have been discussed widely in industry
for at least a decade, they are only recently gaining traction
as an area of active research [4], [5]. DaaSS attacks require
intrusion detection methods to be able to reason about multiple
concurrent threats, and deduce the correct attack. Furthermore,
the concurrent attack being obfuscated is assumed to be
anomalous, requiring anomaly detection techniques which may
be prone to false positive detection or classification [6]. False
positive DaaSS classification is especially destructive in this
setting, as it could result in members of IT diverting from
DDoS mitigation to mitigation of a non-existent underlying
attack.

Our previous work in DaaSS detection utilized network flow
aggregation [4], which merged netflows to boost aggregate
attributes, enabling strong DDoS detection performance, but
with a tradeoff of long detection times and potentially less
sensitivity to benign behavior and/or the underlying anomalies
which comprise a DaaSS attack. In this work, we approach it
from the opposite direction, using flow segmentation with at-
tribute augmentation to enable shorter duration network flows
suitable for both DDoS detection and underlying anomaly
detection.

A key observation that provides motivation for this approach
is similarity that often exists between DDoS and some benign
traffic. For example, HTTP, request-based DDoS traffic may
be very similar to legitimate, benign HTTP traffic, when
looking at each request in isolation. However, the volume
of these requests will be much higher when the DDoS is
present. By leveraging this additional information in the form
of concurrent flow attributes, we hope to overcome the natural
information loss from segmenting netflows.

The primary goal of this work is to shorten DaaSS detection
times, while hopefully maintaining a high level of DaaSS
detection performance. More specifically, we aim to achieve
the following:
• Smaller duration flows with a robust attribute space uti-

lizing network flow concurrency, in a format suitable for



model learning and inference tasks specifically targeting
DaaSS classification.

• Lower DDoS and DaaSS detection times from an order
of minutes to an order of seconds.

• Maintain compatibility with existing learning and infer-
ence methods for DaaSS detection.

• Maintain classification performance with the aggregated
netflow baseline.

The rest of this paper is structured as follows. Section II
discusses relevant fundamentals and related work, including
the DDoS-as-a-smokescreen threat model. Section III intro-
duces our segmented netflow approach, discussing at depth
flow segmentation and concurrency feature augmentation. Sec-
tion IV discusses the learning and detection (classification)
approach we apply our segmented netflow data to. Section V
discusses our experiments, including the PCAPs from which
we generate our flow data, experimental methodology, results
and discussion.

II. PRELIMINARIES

In the following subsections we discuss two important
preliminaries for the rest of the paper: network flows, and
the DDoS-as-a-smokescreen (DaaSS) threat model.

A. Network Flows

Network data captures are typically represented as packets,
using formats such as PCAP. Raw packet data is rich in
information not only about individual packets, but timing in
relation to other packets. Unfortunately, raw packet captures
alone lack explicit structure that can be leveraged to gener-
alize the data into a model suitable for inference tasks. To
provide such structure, PCAP data can be parsed into network
flows (netflows, or simply flows), with each flow representing
a sequence of packets that are grouped by some criteria,
such as common source address/port, common destination
address/port, and protocol. Each flow comprises aggregate
attributes to characterize the flow, such as number of packets
in the flow, and total byte count of the flow. Netflow data can
be mapped directly to propositional learning tasks, with flows
corresponding to examples, and attributes as features, where
it is assumed that the feature cardinality is fixed and identical
for each flow.

Network flows can be parsed from packet data in a uni-
directional or bi-directional manner, with bi-directional flows
encompassing packet traffic from both source-to-destination
and destination-to-source [7]. On the one hand, uni-directional
flows induce an independence between the two directions of a
flow; on the other hand, bi-directional flows lose the direction-
specific aggregate attributes. In this work, we use bi-directional
flows with uni-directional attribute augmentation to preserve
some uni-directional flow information.

Many netflow standards exist that are widely used in indus-
try, such as Argus [8]. The Argus netflow standard comprises
a base set of attributes which serve as a foundation for many
extended-attribute netflow formats [4], [9], as well as for our
proposed segmented netflow format. Some popular network

intrusion datasets are generated from Argus, such as CTU-
13, a real-world botnet dataset utilizing bi-directional network
flows [7], [10].

Models trained from netflow data belong to a methodology
called anomaly detection, and can sometimes have issues dis-
criminating among many different traffic behavioral profiles.
For example, the aggregated netflow format exists primarily
for training models that can detect high volume DDoS traffic.
Unfortunately a trade-off with flow aggregation is additional
loss of information, possibly leading to a loss of sensitivity
of a model to detect (classify) other traffic behavior. This also
leads to increased detection times as all flows in the aggregate
must be completed (connection closed or time out) before they
can be used for classification [4]. Indeed, anomaly detection
methodologies in general have a hard time finding a footing in
industry due to potentially unacceptable false positive rates [6].

B. DDoS as a Smokescreen

While DDoS attacks have been a relatively common Internet
occurrence since the 1990s, DDoS as a Smokescreen emerged
about a decade ago, with the now infamous 2011 DaaSS attack
on the Sony PlayStation network, in which personal data from
77 million customers was exfiltrated [11].

The DaaSS threat model can be considered a constrained
version of the Coordinated Attack with Role Distribution
(CARD) threat model discussed by Samarji et al. [12]. The
key difference here is that the underlying anomaly must occur
concurrently with an active DDoS specifically, a characteriza-
tion which presents unique new ways to approach detection
tasks [4]. For example, because the presence of a DDoS is a
prerequisite for a DaaSS attack, we can constrain our detection
search space to encompass only those time periods in which a
DDoS is present. Furthermore, DDoS attacks themselves con-
strain nominal traffic behavioral patterns through the denial-
of-service they induce.

The DDoS should be noticeable to the point of invoking
a response from IT, afterall, it would not serve as a good
smokescreen if it did not do so. These DDoS attacks often
manifest in high-throughput flooding from many source hosts,
perhaps from botnets hired on contract [13].

III. SEGMENTED NETFLOW GENERATION

Netflows can span long periods of time, which naturally
lends to potentially long wait times for real-time inference
tasks. Conversely, segmented or short duration flows may not
encompass enough information to adequately classify different
traffic behavioral patterns. In the following subsections, we
propose a method to segment flows and augment the segments
with flow concurrency attributes, enabling classification of
segments directly before their respective flows are complete.

Our generation approach takes as input raw packet data
(PCAP), and outputs flow segments as a propositional flat-
file. Each row represents a segment as a comma delimited list
of attribute values. We next discuss in more depth how these
segments, and their attributes, are defined and generated from
PCAP data.
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Fig. 1. Effects of byte padding on a fixed length segmentation scheme. The
boxes represent flow segments, and the patterns inside represent packet byte
aggregate values. The sequence of segments denoted (A) illustrates a fixed
length sequence in which the patterns contained in each segment are similar.
The sequence denoted (B) shows what happens when a small amount of
byte padding is introduced, denoted by the dotted pattern. The packet byte
aggregate values change, and rather significantly for the second segment.
However, the sequence denoted (C) uses the gap interval, denoted by the
red box highlights. Notice that the segments are not fixed length, and have
segmented along regions where the flow had no traffic activity. Even with a
shift, the second segment onward would be unaffected.

A. Flow Segmentation

Segmentation follows along two criteria: gap interval and
maximum duration. Gap interval, which we denote as λg ,
is defined as the minimum amount of time in which a
netflow exhibits no traffic in both directions, and provides a
natural method of segmenting many real-world traffic patterns.
Maximum duration, which we denote as λd, provides an upper
bound to how long in time a flow is allowed to be. This upper
bound is used to force segmentation for continuous traffic
flows that otherwise would never be segmented according to
the gap interval, such as DDoS traffic.

Intuition behind using gap interval as a segmentation criteria
follows from the observation that many traffic patterns on
the internet are in the form of request/response, with gaps
(even small ones) appearing when either the client or server
is processing a request or response. A gap interval helps to
preserve general traffic patterns within a flow by assuming
that inter-gap traffic for a specific flow type will follow similar
patterns. Gap interval provides a principled way to preserve
such ‘sub-patterns’ within a flow, and should provide resilience
to shifts in these patterns in segments due to timing variation.
And example of how shifts can affect segment patterns is
illustrated in Figure 1.

The maximum duration criteria enforces a maximum inter-
val (in time) before segmentation must occur. The primary
use case is continuous traffic flows, such as DDoS or file
downloads. This criteria provides an upper bound on detection
times by enforcing a maximum segment length. Note that the
traffic sub-pattern shift problem discussed above largely does
not apply here, as continuous traffic itself is often bounded
by available bandwidth, and generally resembles a uniform
pattern.

Clearly, the value of the gap interval is important: too
small a gap may result in over-segmentation, too large and
segmentation may fall back to the maximum duration criteria.
Over-segmentation may lead to over-fitting when learning a
model, possibly resulting in poor classification performance.

B. Flow Concurrency

While flow segmentation should lead to faster inference
times, to enable potentially good inference, we need to make
up for the inherent information loss that segmentation brings.
To this end, we define additional attributes which relate flow
segments to other netflows. We say that a flow segment i
belonging to flow j, denoted sij is concurrent to a flow k,
denoted wk, where j 6= k, if sij and wk share a common
destination address, port and protocol, and if they overlap in
time. This time overlap is true if:

min[t∗e(wk), te(sij)]−max[ts(wk), ts(sij)] ≥ 0, (1)

where ts is a flow or segment start timestamp, te is a segment
end timestamp, and t∗e is the last known packet arrival for a
flow.

Equation 1 would be applied as the last packet arrives to
a segment. Unfortunately we may not know exactly which
packet is the last one, for example if packets simply stop
arriving before any segmentation criteria can be met, we will
not know if any additional packets may arrive. Therefore,
te(sij) for segment sij can only be known with certainty
by applying a packet timeout and retroactively calculating
concurrency when the timeout is reached, potentially causing
other problems with concurrent flows that have had packet
arrivals during the timeout period.

Therefore, our implementation to calculate concurrency
assumes that any arriving packet could be the last one of
a segment, and concurrency is calculated on a per-packet
basis as packets arrive. This may seem intractable from a
computational standpoint, but we can increase efficiency by
exploiting a key observation from this approach: each packet
that arrives is the current one, and packets cannot arrive at
the same time.1 In other words, when a packet arrives, we
know that there are no packets that have arrived after it. Thus,
for a given segment sij and any flow wk, j 6= k, we have
that t∗e(wk) < te(sij), and can eliminate te(sij) from the
computation. Similarly, we can eliminate ts(wk), as flow wk’s
start time no longer has influence on concurrency (we do not
record degree of concurrency, only if a concurrency exists).
Therefore, Equation 1 can be reduced to:

t∗e(wk) > ts(sij), (2)

in that if a flow wk’s end time is greater than segment sij’s
start time, wk is concurrent to sij .2

Keeping our feature space fixed, we generate aggregate
features that capture similar flow statistics as the standard
netflow aggregates. Representing the number of concurrent
flows is simply a summation, however, representations of total
packet count and total packet bytes among all concurrent
flows cannot be simple summations as, like above, we do not
know if any concurrent flow has completed or if other packets

1We assume packet capture is on a single interface, therefore enforcing
sequential packet arrival.

2Equation 2 is strictly greater than, due to a 1-packet segment having a
duration of 0 by definition, and thus as the only packet of the segment and
the last packet to have arrived, cannot be concurrent to any flow.



will from those flows will arrive in the future. Concurrent
summation aggregates give monotonically increasing values as
concurrent flows progress in time due to new packet arrivals
adding to their values. Thus, these aggregates correlate timing
information of concurrent flows which is not desirable. For
example, suppose two concurrent flows exhibit the same traffic
patterns, but one started before the other. The one that started
first will have aggregate values at least as high as the second,
due to possibly more packet arrivals.

To compensate for this, we define average aggregates for
concurrent total packet count and total packet bytes as:

favg =
∑

w∈Wc

∑
s∈w vs

|w|
, (3)

where Wc is the set of concurrent flows, vs is an attribute
value from a segment s used in the aggregate sum, and |w|
is the cardinality of segments in a given flow w. In this way,
we sum up average aggregate values from each concurrent
flow, which can be looked at as normalizing each flow by the
current number of segments that belong to each. Segments are
bounded by the max duration parameter λd, so any flow w that
is longer in duration than λd will have |w| > 1.

To summarize, we added a total of 11 new attributes to
the existing bi-directional Argus base to form our segmented
netflow format:
• Flow statistical attributes: uni-directional aggregates of

packet count and packet bytes, in both directions
• Concurrent flow attributes: bi-directional aggregates for

concurrent flow count, average packet count, and aver-
age packet bytes. Additional uni-directional aggregates
for concurrent average packet count and average packet
bytes, in both directions.

IV. LEARNING AND INFERENCE

The tasks of training a model and performing inference
(classification or detection) on that model is provided by a
method given in our previous work, called N1 clustering [4].
We treat this as an off-the-shelf solution in which segmented
flow data (Section III-A) is given as the dataset.

N1 clustering is an extension of k-prototypes unsupervised
hard clustering [14], enabling an unobserved (unknown) class
along with multiple observed (known) classes. k-prototypes is
itself an extension of k-means hard clustering, providing nu-
merical and categorical features among a fully observed space
of classes. N1 clustering can be considered a generalization
of one-class unsupervised hard clustering.

In our setting, we have three classes: nominal, DDoS,
and anomaly, in which the first two classes are observed.
It is expected that training datasets comprise unlabeled seg-
ments corresponding to the observed classes only, as observed
anomalies are not really anomalies. Observed classes are
represented in the model as clusters, while the unobserved
class can be visualized in a open world as encompassing all
space that is not occupied by any cluster. This implies that
the clusters are bounded, which is accomplished by setting an

X

X

(anomaly)

(red)

(blue)
r

r
centroid

centroid

Fig. 2. Visualization of Inference in N1 clustering. In this example we have
three classes: red, blue, and anomaly. Various points represent flow segments,
and their color their classification. Segments classified as anomaly reside
outside the two clusters, with cluster boundaries defined by their radius r.
The space external to all clusters is an open world.

explicit radius per cluster [4], [15]. More formally, this radius,
denoted as rj , is defined as:

rj = αr max
xi∈cj

d(xi, cj), (4)

in which cj is the cluster upon which radius rj is assigned, xi

is a datapoint (flow segment) assigned to cluster cj , and αr is
a tuneable hyperparameter to control classification sensitivity.
Distance metric d(xi, cj) represents the Euclidean distance
between datapoint xi ∈ cj and cluster cj’s centroid.

An example (segment) is classified according to the cluster
it is closest to, provided the example is within the cluster.
An example that is not within any cluster is classified as an
anomaly. More specifically, an example xi is classified as an
anomaly if ∀j d(xi, cj) > rj [4]. Figure 2 illustrates inference
in N1 clustering, using a three-class example in which classes
red and blue could represent DDoS and nominal, and with
class anomaly representing the underlying concurrent attack
in a DaaSS.

A. Post-Inference Classification

Our segmented netflows lead to datasets in which the
examples comprise flow segments. Because flow segments
are propositional examples, they follow the IID assumption,
potentially leading to flows being classified to multiple labels.

On the surface it may not seem to be a big deal, after
all, in an online setting we are using segment classification
directly. However, inconsistent segment classifications can
give us insights into the flows of which they belong. Using the
data exfiltration task presented in Section III-A, suppose that
a majority of segments from a common flow are misclassified
as DDoS, but a few are correctly classified as anomaly. The
‘anomaly’ segment classifications provide strong evidence that
the flow is indeed an underlying anomaly, while the DDoS
segment classifications give insights into the behavior of the
underlying anomaly; more specifically, that the obfuscated
attack is designed to resemble a DDoS. In this case, the netflow
classification inconsistency can be resolved to anomaly, with
additional information letting IT know the behavior of the
anomaly.

In Section V-B we discuss the rules by which we resolve
classification inconsistencies among segments that belong to
a common netflow.



Scenario λg
(seconds)

λd
(seconds) # segments # flows

Training 2 30 441847 -
2 50 441847 -

DDoS-1 2 30 109305 104858
2 50 109305 104858

DaaSS-1 2 30 118942 113616
2 50 118937 113616

DaaSS-2 2 30 122279 116494
2 50 122277 116494

TABLE I
THE DATASETS (SCENARIOS) USED IN OUR EXPERIMENTS. INFORMATION
MAPPING SEGMENTS TO THEIR FLOWS IS ONLY USED DURING INFERENCE

TIME, HENCE THIS INFORMATION WAS NOT SAVED FOR THE TRAINING
SCENARIOS.

V. EXPERIMENTS

In the following subsections we discuss our dataset used for
experimentation, the experimental methodology, and results
obtained.

A. Dataset

We use DDoS and DaaSS PCAPs from our previous work
to generate our segmented flow data [4]. Each training and test
PCAP was generated from the EMEWS framework [16], which
provides client-side autonomous network traffic generation.
Capturing human-client traffic on real-world networks may
lead to privacy concerns, whereas capturing traffic from human
volunteers on a network testbed may lead to scaling issues,
and also potential behavioral deviations simply due to the
volunteers ‘being watched’ [17]. To promote large scale net-
works in a lab setting while maintaining a real-world network
stack per network node, EMEWS was deployed on the CORE
network emulator [18], with a 312 node topology, containing
130 benign HTTPS clients, 31 benign SSH clients, and an 89
node botnet to carry out the DDoS attack.

The training set incorporates both benign and DDoS traffic,
but no underlying anomalies. DDoS test sets do not capture
any underlying anomalies, whereas DaaSS test sets do. The
DDoS behavior resembles an amplification attack [19], but
rather than using more traditional means such as DNS ex-
ploitation, here HTTPS is used, inducing many very small
but dense TCP flows. This type of DDoS behavior provides
a challenge, as flow segmentation is impractical. However,
the underlying anomalies captured resemble an insider data
exfiltration task, resulting in long, bursty flows which may be
suitable for segmentation.

The PCAP data was parsed to our segmented netflow format
using λg and λd values as given in Table I. As most flows are
DDoS, which are small in duration and usually not segmented
(according to the λg and λd values we used), the number of
segments that comprise a dataset is not that much greater than
the number of flows. When generating segmented flows, we
discarded the first 30 seconds of packets and any flows which
started within the last 30 seconds of the capture, due to outliers
captured from CORE network setup and tear-down.

B. Experimental Methodology

Experiments compare our approach to the aggregated net-
flow baseline in both detection times and performance metrics.
When discussing our results, we will refer to each dataset from
Table I as a scenario.

As the original N1 clustering algorithm was written in
Python2, we ported it to Python3, and additionally augmented
it with post inference classification resolution (Section IV-A).
When training, k-prototypes was configured for 10 runs, and
the best run (model) picked based on cost. For each run, N1
clustering initializes centroids using the method given in Cao
et al. [20] for categorical features, and sampling over normal
distributions derived from the training examples for numerical
features [4]. This learned model was then applied to all the
test sets in a batch, varying αr and recalculating cluster radii
between batch predictions.

One challenge in using clustering for a dataset with heavy
class imbalance, such as ours, is the potential for one class
to represent some or all learned clusters. In our setting,
sometimes the best learned model would comprise two clusters
with very little separation, both representing DDoS traffic. For
evaluation, N1 clustering uses a baseline dataset of representa-
tive examples to learn the appropriate cluster labels, and when
both learned clusters represent the same class, this step fails.
In such cases, trying to train a model again would usually
work.

We present our experimental results as a single classification
per netflow. This has the added benefit of providing a direct
comparison to the baseline format, which comprise aggregated
netflows. Our rules for resolving segment classification con-
flicts is straightforward: if any segment of a common flow
is classified as anomaly, classify the flow itself as anomaly.
Underlying anomalies during a DaaSS attack can be very
subtle, and any segment classified as such should be taken
seriously. At the same time, we hope to keep false positives
low, as they could divert IT resources away from the active
DDoS.

If no segments in a common netflow classify as anomaly,
then take a majority consensus among the segment classifi-
cations. For nominal or DDoS (resolved) classified flows, a
misclassification of the other is still considered a true negative,
as the flow was not misclassified as anomaly. In this case, IT
does not have to change their current mitigation strategy. For
a netflow that actually is an underlying anomaly, this would
be considered a false negative, which still would result in the
mitigation strategy of IT being unaffected, though not as ideal.

Detection times are defined as the duration from the start
of the first segment of a flow (either DDoS or underlying
anomaly) to a segment within that flow which correctly
provides the resolved classification. For DDoS detection times,
we use the first DDoS flow which provided the correct resolved
classification. For underlying anomalies, we present the de-
tection times for all flows in which the resolved classification
was correct. Our segmented netflow format does not capture
duration between segments, thus, we take the value of the gap



interval criteria, λg . This gives us an upper bound (or worst
case) on what the detection times could be. Because we are
comparing flow-based detection times, we do not consider the
time from the beginning of the scenario. Per-flow generation
and inference times are negligible and not included in the
duration calculation.

C. Results

Table II breaks down our results in terms of classification
performance, in which we achieve the same performance using
λd = 30 seconds and λd = 50 seconds, given λg = 2 seconds.
The number of segments which comprise our underlying
anomaly flows did decrease as λd increased, implying that the
underlying anomalies exhibited rather dense traffic patterns.
Indeed, some of the segments have a duration at or close to
the maximum duration, λd, implying that these segments were
segmented using the maximum duration criteria instead of gap
interval.

The choice of gap interval, λg = 2, was based on the obser-
vation that for the maximum duration criteria to be of value,
λg < λd, otherwise segmentation may always use maximum
duration for the criteria. Therefore, larger λg values would
lead to larger λd values, and based on our underlying anomaly
detection times (Table III) and traffic patterns, larger values
for λd would most likely increase these times. Furthermore,
larger values such as λg = 15 seconds resulted in learning
difficulties where N1 clustering could not learn a model with
distinct clusters, even after numerous attempts. A potential
solution is to change the cluster centroid initialization method
to one that provides better guidance, such as using labeled
data as a seed.

The best value for αr ended up matching the best value from
the aggregated netflow baseline. Even though we are using a
new flow format for input to N1 clustering, the best results still
are from an αr value which expands the learned radius of each
cluster by roughly 50%. This may suggest that good choices
for αr are dependent more on the captured traffic patterns
rather than the specific network flow format and attributes
provided.

For scenario DaaSS-1, flow segmentation helped to reduce
DaaSS detection times, by segmenting the often long flows
that comprised underlying anomalies. At αr = 1.5 seconds,
we were able to detect all underlying anomalies without false
positives, for all λg and λd values presented. Scenario DaaSS-
2 was more challenging, and difficult to correctly classify
underlying anomalies from benign traffic. While we could not
detect any underlying anomalies for this scenario, there were
no false positives detected that may lead IT astray.

As given in Table III, DDoS flow detecton times were
orders of magnitude smaller with segmented netflows. This is
expected, given that the primary purpose of flow aggregation
is for DDoS traffic classification, with our analogue being
concurrent flow attributes. Underlying anomaly detection times
were closer, though the segmented netflow approach still held
a sizable advantage for scenario DaaSS-1. Unfortunately we
were unable to classify any underlying anomalies for scenario

DaaSS-2 without lowering αr to such a value as to induce
false positives.

D. Discussion

Aggregated netflows are naturally strong with DDoS de-
tection through building up by summation the limited set of
attributes available, differentiating them to other flow types,
which enables a learning algorithm to learn a separation rather
easily. Segmented netflows are also strong in DDoS detection,
and can provide this detection much faster due to smaller
duration flows/segments to classify.

Concurrent flow attributes help greatly in maintaining DDoS
classification performance, and thanks to the specific behav-
ioral characteristics of the DDoS, we achieved these detection
times without needing to focus on λg or λd values. In fact, in
order for λd to have any effect on DDoS flows, it would need
to be set to < 2.0 seconds (depending on the scenario - see
Table III) for any segmentation to occur. λg doesn’t play a role
here, as it would need to be set so low as to induce near 1-
packet flows, rendering the dataset useless. What about UDP-
based dense DDoS traffic? In this case, there is no natural flow
structure, and segment length would be determined by λd. In
our setting, this would raise detection times for DDoS attacks
to at least λd. One way to avoid this issue would be to have
multiple λd parameters, one for TCP flows and one for UDP
flows.

1) Separation of Benign and DDoS Traffic: For every
scenario, a majority of the benign segments were classified
as DDoS. This is due to a majority of benign traffic cap-
tured being HTTPS flows, resembling the DDoS traffic. This
similarity presents a problem with classification during an
active DDoS. Note that before the DDoS begins, the number
of flows concurrent to benign HTTPS traffic will be much
much less, as the DDoS itself comprises many concurrent
flows. Therefore, it is reasonable to expect that concurrent
flow attribute values of benign segments before a DDoS would
closer match classification to the benign cluster, and limit the
number of misclassifications of benign traffic (we do not want
the system to give a false alert of a DDoS that is not actually
present). As explained in Section IV-A, misclassifications of
benign segments as DDoS during an active DDoS is okay as
it will not affect IT actions.

VI. LIMITATIONS AND FUTURE WORK

Our PCAP data only captured traffic during an active DDoS.
Using the same PCAPs as our prior work gave us a baseline
for comparison, but at the expense of being unable to observe
how our segmented netflow approach handles DDoS detection
before and after an active DDoS. We need to put our theory to
practice and capture PCAP network data from before, during,
and after an active DDoS.

We also need to augment our segmented flow generator
with additional output related to duration between segments
in a flow. This not only would help give us more precise
underlying anomaly detection times, but also may be useful
as an additional attribute to the segmented netflow format.



Scenario λg
(seconds)

λd
(seconds)

# DaaSS
flows

αr = 1.0 αr = 1.25 αr = 1.5
#FP Precision Recall #FP Precision Recall #FP Precision Recall

DaaSS-1 2 30 2 (27) 1 67% 100% 1 67% 100% 0 100% 100%
2 50 2 (22) 1 67% 100% 1 67% 100% 0 100% 100%

Aggregated (baseline) 3 1 75% 100% 0 100% 100% 0 100% 100%
DaaSS-2 2 30 7 (63) 0 - - 0 - - 0 - -

2 50 7 (61) 0 - - 0 - - 0 - -
Aggregated (baseline) 9 1 85.71% 66.67% 0 100% 66.67% 0 100% 66.67%

TABLE II
DAASS SCENARIOS (THOSE WHICH INCLUDED UNDERLYING ANOMALIES). OUR SEGMENTED NETFLOW APPROACH IS PRESENTED WITH THE BASELINE

AGGREGATED NETFLOW APPROACH. FOR # DAASS FLOWS, THE VALUES IN PARENTHESIS ARE THE TOTAL NUMBER OF SEGMENTS THAT BELONG TO
UNDERLYING ANOMALY FLOWS. NOTE THAT WE WERE UNABLE TO DETECT ANY UNDERLYING ANOMALIES IN SCENARIO DaaSS-2, AND THUS HAVE NO

PRECISION AND RECALL METRICS.

Scenario λg
(seconds)

λd
(seconds)

Detection (seconds)
DDoS Anomalies

DDoS-1 2 30 2.0 -
2 50 2.0 -

Aggregated (baseline) 179.6 -
DaaSS-1 2 30 1.7 73.3

43.3
2 50 1.7 78.5

58.3
Aggregated (baseline) 179.8 176.7

119.0
112.1

DaaSS-2 2 30 1.7 -
2 50 2.3 -

Aggregated (baseline) 178.5 105.1
83.4
72.3

178.1
65.9
33.9

TABLE III
DDOS AND UNDERLYING ANOMALY DETECTION TIMES, COMPARING OUR

SEGMENTED NETFLOW APPROACH TO THE AGGREGATED NETFLOW
BASELINE, WITH αr = 1.5. DDOS DETECTION TIMES ARE CALCULATED

USING THE FIRST DDOS FLOW THAT IS CORRECTLY CLASSIFIED AS A
DDOS. SCENARIO DDoS-1 DID NOT INCLUDE ANY UNDERLYING

ANOMALIES, WHEREAS FOR SCENARIO DaaSS-2, OUR SEGMENTED
NETFLOW APPROACH COULD NOT DETECT ANY UNDERLYING ANOMALIES.

The fixed structure of propositional datasets requires us
to resort to aggregates such as counts to represent variable
length features such as concurrent netflows. Network data
itself is naturally rich with these types of one-to-many or
many-to-many relationships, which unfortunately are difficult
to represent in a fixed-length vector format without resorting
to using aggregates, and the associated information loss that
comes thereof. Indeed, the Argus netflow standard makes the
IID assumption between flows, which is not only inaccurate
in real-world networks, but is also inadequate in a segmented
netflow setting for classification.

In addition to the information loss present with such ag-
gregates, we lose many relations within our naturally rich
relational data simply because we cannot represent them
within a fixed feature space. For example, while concurrent
flow counts provide some additional information to a segment,
we lose relationships among the specific concurrent flows,
which we cannot represent due to a variable feature space
in which these relational features induce. Such relationships

include specific traffic patterns present in concurrent netflows
which could be used to aid classification.

One elegant solution to this limitation, and a direction of
future work, is to use statistical relational methods for both
model learning and inference tasks. Relational methods utilize
datasets which contain grounded logic predicates, along with
modes that define structure among the predicates and constrain
the search space during model learning [21]. Of particular
interest are one-class classification (OCC) methods that could
be used for pairwise classification, generalizing OCC to the
use-case we require for DaaSS detection [22], [23].

VII. CONCLUSION

In this work we introduced a segmented netflow format
utilizing concurrent flow attributes, with the primary goal of
decreasing detection times of the two key components of a
DaaSS attack: DDoS and underlying anomalies. Our results
show promise, and by addressing some limitations of the work
(Section VI), we believe we can achieve at least as good
classification performance as the aggregated netflow baseline,
including the ability to detect underlying anomalies in harder
scenarios, such as DaaSS-2.
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