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ABSTRACT
Mobile devices have become people’s indispensable compan-
ion, since they allow each individual to be constantly con-
nected with the outside world. In order to keep connected,
the devices periodically send out data, which reveal some in-
formation about the device owner. Data sent by these devices
can be captured by any external observer. Since the observer
can observe only the wireless data, the actual person using the
device is unknown. In this work, we propose IdentityLink, an
approach leveraging the captured wireless data and computer
vision to infer the user-device links, i.e., inferring which de-
vice is carried by which user. Knowing the user-device links
opens up new opportunities for applications such as identify-
ing unauthorized personnel in enterprises or finding criminals
by law enforcement. By conducting experiments in a realistic
scenario, we demonstrate how IdentityLink can be effectively
applied to real practice.
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INTRODUCTION
Mobile devices have become an indispensable companion for
our everyday lives. People use them to check email, chat
with friends and play games. Many applications running on
mobile devices generate traffic even when the device user
does not interact with the devices [23]. Applications such
as Gmail, Facebook or Skype periodically send and receive
background data to synchronize with the cloud. Even the op-
erating system itself generates traffic without user initiation
(e.g., to proactively find available Wi-Fi access points).

Owing to the shared nature of the wireless medium, data sent
over the air can be captured by any observer. Even though the
content of data packets can be encrypted, many approaches
have been developed to infer users’ personal information such
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as applications running on the mobile device [6], visited web-
sites [17] or even social links between device owners [5, 3].

In this work, we propose IdentityLink, an approach lever-
aging the captured wireless data and computer vision to in-
fer user-device links, i.e., inferring which device belongs to
which person. The proposed approach identifies user-device
links based on users’ activities, which can be observed both
visually through a camera and wirelessly through a RF (Ra-
dio Frequency) signal receiver. Suppose a person carrying a
phone walks away from an observer as shown in Figure 1.
The observer’s camera can detect the increasing distance be-
tween the user and the observer, and a wireless receiver can
detect the decreasing received signal strength (RSS) of wire-
less signal from the user’s device. Thus, in an environment
with multiple users and devices, IdentityLink analyzes the vi-
sual and RF-signal patterns to infer user-device pairs.
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Figure 1: When a person walks away from the recorder, the
camera observes an increased distance, and the RF receiver
observes a decreased RSS.

Knowing which device belongs to which user opens up new
opportunities for applications such as identifying unautho-
rized personnel in enterprises or tracking criminals by law en-
forcement. In the aforementioned scenarios, a person’s visual
identity (captured through a camera) and a device’s network
identity (captured through a RF receiver) can be combined
to infer additional information about a person or a group of
interest (e.g., finding people who are socially connected, but
come to a certain place at different time of a day).

In such applications, it is essential to enable the linking capa-
bility without user’s intervention or even recognition. There-
fore, the proposed approach infers links by only passively ob-
serving people and devices, i.e., we can neither put any addi-
tional sensors on people, nor install or modify any application

1



on their devices. We show the feasibility of IdentityLink by
using a single passive observer, which is equipped with video
recording and Wi-Fi monitoring capabilities. These capabili-
ties are available even in a single smartphone, allowing easy
deployment in an arbitrary environment. Our approach can
leverage any available surveillance and Wi-Fi infrastructure.

The goal of this work is to understand how visual and RF sig-
nals can be used to infer links between people and devices
and what factors influence the linking performance. We sum-
marize the key contributions of this work as follows:

1. User-Device Linking: We formalize the user-device link-
ing problem and propose IdentityLink using cameras and
RF signals to infer links without user participation.

2. Prediction Models: We propose two prediction models
for IdentifyLink to match visual and RF patterns using a
matching likelihood score. We further show that the two
predictors combine to improve overall linking accuracy.

3. Evaluation in Real-World Settings: We evaluate the ac-
curacy and limitations of IdentityLink through real-world
experimentation. We analyze how factors such as the num-
ber of users or amount of RF traffic affect linking accuracy.

USER-DEVICE LINKING
In this section, we define the problem of user-device linking.
We then discuss its usefulness in the real world and related
solutions for this problem.

Linking Users and Devices
As shown in Figure 2, a person can be identified by a visual
identity (e.g., a face captured through a camera) or a device
identity (e.g., MAC address captured by a RF receiver). The
goal in this work is to infer links between the identities be-
longing to the same person, i.e., inferring which device iden-
tity belongs to which visual identity.

In the following, we assume that there is a one-to-one map-
ping between a person and a visual identity, i.e., a face we
can uniquely identify a person, while a device identity may
map to zero or more people. We thus refer to the visual-
device identity linking problem as user-device linking prob-
lem. Moreover, we will sometimes use “person” while refer-
ring to his or her visual identity.

Applications
To motivate the value of user-device linking, we describe sev-
eral applications which can greatly benefit from our approach.

Re-identification: One of the challenges of the vision-based
tracking systems is the re-identification problem [7, 25]. The
goal of re-identification is to detect whether visual identities
appearing on multiple video feeds belong to the same per-
son (e.g., is the person A appearing at 12pm on Monday the
same as person B appearing at 1pm on Friday?). Typically,
vision-based features such as a face, body shapes or clothing
are used to re-identify a person [7]. However, these features
are often occluded (e.g., by sunglasses or a cap) or modi-
fied (e.g., a person growing a beard), making re-identification
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Figure 2: IdentityLink links visual and device identities be-
long to a person, respectively represented by a visual object
vi captured through a camera and by a MAC address macj
captured through an RF receiver.

challenging. Instead of relying only on the identifiers ex-
tracted through computer vision, we can use the unique iden-
tifiers of the mobile device carried by the user such as the
device MAC address (as shown in Figure 3). First, we use
IdentityLink to infer the device identities of the human sub-
jects visible on the camera. A matching device identity is
a good indicator that the two visual identities belong to the
same person.
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Figure 3: Face of a person can be covered (e.g., through sun-
glasses) making re-identification challenging. We can use
IdentityLink to infer the device identities of the visual sub-
jects and used the inferred identities to identify whether the
visual subjects belong to the same person.

Context-aware applications: Camera-based systems can be
used to infer a user’s context information such as mood,
whether the user is alone or with family, what the user is
looking at in a store, etc. Using IdentityLink, this contextual
information can be delivered to the mobile device of the user.
Context-aware applications such as product search, promo-
tions discovery or restaurant recommendations can leverage
such contextual information to deliver more accurate results.

Enterprise security: Enterprise networks are often well-
protected from the outside but are relatively vulnerable to
unauthorized access by insiders [10]. While existing tech-
niques can identify which device is used for unauthorized ac-
cess, IdentityLink can further identify the person operating
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the device, instead of blaming the device owner. Moreover,
in cases of device theft, IdentityLink can be used to identify
the visual identity of the person who stole the device.

Law enforcement: Modern public safety systems use widely
deployed surveillance cameras to detect criminal activities
such as vandalism and theft. However, criminals often cover
their faces to avoid identification. Mobile devices carried by
the criminals may expose a significant amount of informa-
tion about them such as their affiliation (e.g., school, work
place), places they frequently visit (e.g., restaurants, hotels),
and their social relationships [18, 5]. IdentityLink can be used
to identify the device carried by a criminal and provide law
enforcement agents with this additional information.

Related Work
By using multiple sensors one can combine the advantages
of each sensing modality. Vision-based sensing has many
advantages, since it allows passively tracking users’ fine-
grained location, activities and interactions in the environ-
ment [14, 19, 4]. Due to the challenges with re-identification
of human subjects across video feeds, Schulz et al. [22] pro-
posed using infrared ID-batches worn by users and deploy-
ment of infrared receivers in the environment. The identity
of visual subjects is inferred by tracking a person in a certain
region both visually and through the infrared sensing.

Since deployment of additional infrastructure is not practi-
cal, Teixeira et al. [24, 25] proposed using the accelerometer
and magnetometer sensors on the phone for re-identification.
They correlate the user’s movements captured through both a
camera and mobile sensors to identify the user-device links.
This approach assumes that the user has installed an applica-
tion on the mobile device to report the sensor readings.

In this work, we relax the mentioned assumptions by op-
portunistically leveraging wireless signals sent out from the
user’s mobile devices to link the users with their devices.
Thus, our approach can address the re-identification problem
without having users carry any special hardware or requir-
ing them to install an application on their mobile devices. In
so doing, our approach significantly reduces the user’s effort
(e.g., a user can use the context-aware search without instal-
lation of any additional application). Additionally, our ap-
proach can be applied to application scenarios where one can-
not assume cooperativeness of the mobile device users (e.g.,
the mentioned law enforcement use cases).

IDENTITYLINK
In this section, we formally define the concept of user-device
linking and then give an overview of the IdentityLink system,
including the details of each system component.

User-Device Linking Problem
The user-device linking problem is based on the visual
identities v1, · · · , vn and device identities (MAC addresses)
mac1, · · · ,macm observed by the camera and RF receiver.

We let P (vi) and P (macj) denote the person associated with
the visual and device identities. If P (vi) = P (macj), then
vi and macj belong to the same person.

Let S(vi,macj) be a score function, which computes a like-
lihood of vi and macj belonging to the same person. We
frame the user-device association problem as follows: given
a visual identity vi, we want to find a device identity mac∗ so
that P (vi) = P (mac∗). This corresponds to finding mac∗,
which has the highest score for a given vi:

mac∗ = argmax
macj

S(vi,macj). (1)

Therefore, for each vi we go through eachmacj and compute
a score. Then we choose macj with the highest score and
assign it to vi, as illustrated in Figure 4.

The above problem statement assumes that each vi is asso-
ciated with exactly one macj . However, there are situations
when vi is not associated with any device identity (i.e., the
person does not carry a phone). To address this case, we can
use a thresholding approach, i.e., we assign amac∗ to vi only
if S(vi,mac∗) is greater than a certain threshold. We thus
eliminate situations of linking a visual and a device identity
which are not likely to belong to the same person.

Moreover, there are cases when vi is associated with more
than one device identity (i.e., the person carries more than
one phone). To address this case, we can leverage existing
techniques for detecting co-moving devices [3]. We first link
the device mac∗ with the highest score for vi, then link all
devices co-moving with mac∗ to vi as well.

The key to solving the user-device linking problem is finding
an appropriate score function to compute how likely vi and
macj belong to the same person. In the following section,
we propose two score functions to infer the user-device links.

mac1	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  mac2	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  mac3	
  	
  

v1 	
  	
  	
  	
  	
  	
   	
   	
   	
  v2 	
  	
  	
  	
  	
   	
  	
  	
  	
  	
   	
   	
  v3	
  	
  

S	
  =	
  0.6	
  

Figure 4: Given a visual identity, we compute a score for each
device identity and select the one with the highest score.

System Overview
Figure 5 depicts the overview of the proposed system, and
Figure 6 shows how the two different signal sources (video
and RF) are processed in each stage. The system starts by
recording a video and capturing wireless data. The recorded
video is then processed to infer the movement trajectory of
each person. In parallel, the recorder captures wireless data
packets and converts them into RSS timeseries. User trajecto-
ries and RSS timeseries are then input into a predictor, mak-
ing sure to keep the video and RF timestamps synchronized.
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In this work, we propose two predictors: a motion-based and
a distance-based predictor. Each predictor is composed of
two stages: feature extraction and score computation. In the
first stage a predictor transforms the input into visual features
and RF features. For example, the motion-based predictor
extracts the motion information from each trajectory by in-
ferring when a person moved and when he or she was sta-
tionary. Thus, the visual feature corresponds to the binary
timeseries where 0 indicates no movement and 1 indicates
non-trivial movement. Similarly, the predictor infers the RF
motion features from the RSS timeseries. In the second stage,
the predictor computes a score for each pair of visual and
RF features, yielding a score matrix. The score matrices of
both predictors are passed into the link inference component,
which determines the user-device links.
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Figure 5: The system components of IdentityLink: two signal
sources (video and RF) are processed to infer links between
people and devices.
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Figure 6: Video and RF signals are processed at each state of
IdentityLink.

Video Recording and Processing
Video is recorded using a stationary camera. The goal of the
video processing component is to infer the location of hu-
man objects detected on the video feed. Video processing is

divided into three steps: human segmentation, tracking and
trajectory inference as shown in the Figure 7.
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Figure 7: The three steps of video processing include human
segmentation, tracking and trajectory inference.

In the first step, we identify human objects (shown as a green
solid rectangle) in each video frame. We use the approach
of Kruppa et al. [15] to detect human objects based on upper
body shapes such as head and shoulders. This approach even
detects partially hidden people or those not facing the camera.

In the second step, we identify human objects, which appear
on multiple frames and belong to the same person. For sim-
plicity, we use an appearance model introduced by Bird et
al. [2], which assigns human objects with the same clothing
color to the same visual identity. For example, whenever we
see a person in pink shirt, we assume that is the same per-
son and assign the human object to the visual identity v1.
More robust techniques have been developed to identify hu-
man identities such as using human face or body shapes [12].
Due to the complexity of the implementation we decided to
integrate their functionality in future work, as the specific
computer vision techniques are not key to our contributions.

In the last video processing stage, we infer the human subject
trajectories. Many advanced techniques have been developed
to infer a 3D trajectory from image sequences captured from
an ordinary camera [20, 21, 16]. For simplicity, we lever-
age an output of the 3D camera (Kinect) to estimate people’s
trajectories [27], expecting that advanced 3D trajectory infer-
ence techniques would yield similar results.

As mentioned, our approach would benefit from more sophis-
ticated and robust computer vision algorithms [12]. However,
our main focus is the proposed user-device linking approach.
Therefore, the mentioned computer vision improvements are
out of the scope and will be explored in the future work.

RF Induction, Recording and Processing
Any Wi-Fi device, such as an AP, laptop or smartphone, can
capture Wi-Fi traffic sent over the air. In this work, we show
the feasibility of IdentityLink using a Nexus One smartphone
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as an RF receiver. We configure the device to capture all Wi-
Fi packets [8]. Using tcpdump [11], we record the time of
arrival, sender MAC address and the RSS value for each cap-
tured packet. By grouping data packets from the same sender,
we obtain one RSS timeseries per sender.

It is necessary to capture a sufficient amount of RSS sam-
ples (around 10 samples per second) in order to infer user-
device links. However, it is not guaranteed that the tracked
devices will always generate this amount of wireless data.
Thus we highlight two traffic induction techniques to increase
the amount of data generated by the tracked device.

The first technique assumes that the tracked devices are con-
nected to a certain Wi-Fi network and the recorder has access
to this network (e.g., enterprise Wi-Fi network). First, we ob-
tain the MAC and IP address of surrounding devices by sim-
ple eavesdropping or by broadcasting ICMP Echo Request
(ping) messages [1] and listening for replies, each providing
useful measurement data for our inference problem. Depend-
ing on how much information is available for certain device
IP addresses, we can send more or fewer requests to specific
addresses as needed. Empirically, we were able to persuade
user devices to provide useful measurements at a rate of over
50 samples per second using this technique.

The second approach extends on the first to include cases
where a target device is either not connected to any network
or connected to a network the recorder cannot gain access to.
In this case, the recorder can take a more aggressive approach
by forcing the target devices to connect to its own network,
relying on an approach known as a Karma attack [26]. Wi-Fi
client software is configured to actively search for previously
used APs, using control messages known as probe requests
containing the SSIDs of preferred APs. After passively ob-
serving probe requests from target devices, the recorder can
advertise a fake AP copying one of the target’s SSIDs. As
long as the fake AP transmits with a strong signal, the tar-
get devices would automatically connect to the fake AP, even
if the SSID is the same as another nearby AP. Once the tar-
get device is connected, we can use the previously described
method. Note that this method may be prohibited by law in
certain circumstances. We do not discuss further details on
the related regulations in various situations.

Motion-based Predictor
We first introduce a simple scenario to illustrate the motion-
based predictor. Figure 8 shows the Scenario L-R (Left-
Right) with three people carrying mobile devices, two (P2

and P3) stationary and one (P1) walking from left to right,
pausing for a few seconds, then walking back to the left.

For clarity in the following, we rearrange the subscripts so vi
and maci are the visual and device identities of person Pi.
For an easier understanding, we use the same color and style
to plot timeseries belonging to the same person.

The motion-based predictor is built on the idea of detecting
users’ movements from the video and the RSS stream. Con-
sider the moving person in the Scenario L-R. At any given
time, if the person moves, the movement can be detected by
observing the changes in location from the video. At the same

P2	
  

P3	
  

P1	
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Figure 8: Scenario L-R: Trajectory of three people, two sta-
tionary. One walks in front from left to right, pauses for a few
seconds, then walks back to the left.

time, the RF receiver will observe a significant RSS fluctua-
tion from the mobile device carried by the moving person.
This fluctuation is caused by the device changing its location
and angle with respect to the receiver [3, 13]. Since the video
reveals when the person started and stopped moving, we try to
find a device with RSS fluctuating at the corresponding time
period which we refer to as the motion period.

The prediction process consists of 1) feature extraction and
2) similarity computation. Feature extraction is further dev-
ided into two parts: 1a) motion observed in the video and 1b)
motion inferred from the RSS streams. The feature extraction
outputs are visual and RF features, which are then input into
the similarity computation component to compute a score for
each visual-RF feature pair.

Motion Detection from User Trajectories
To detect whether a user is moving or not, the system uses
trajectories inferred by a video processing component. First,
the system computes a user’s speed st at time t as

st = ‖(xt−1, yt−1)− (xt, yt)‖2 (2)

where ‖ · ‖2 is Euclidean distance, x and y are coordinates of
the video object measured in meters and t is time in seconds.

Figure 9a shows trajectories of each visual identity vi ex-
tracted by the video processing component. The trajectories
are used to compute speed shown in Figure 9b. A user is mov-
ing if the speed crosses a certain threshold. Figure 9c shows
the detected motion using an empirical threshold of 0.5.

From the figure, we observe that the motion period of v1 starts
at around the 4th second; the person moves for 6 seconds,
pauses for a while and then moves for another 6 seconds. We
also observe false positive of the motion detection for v2 and
v3, which are in reality stationary. This is caused by the noise
and inaccuracies of video processing.

Motion Detection from RSS Stream
We frame motion detection from the observed RSS stream
as a machine learning problem, specifically as a binary clas-
sification problem, where we try to predict one of the two
classes, “moving” or “not-moving”. To train the model, we
use common statistical features for motion classification [9]
such as RSS variance, minimum, maximum, range (i.e., max-
imum - mininmum) and coefficient of variation extracted
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(a) Users’ trajectories are estimated from the video feed.

(b) Speed is inferred from users’ trajectories.

(c) The visual motion feature is inferred by thresholding the user’s speed.

Figure 9: The speed and motion features are extracted from
user trajectories. Due to the noise in video processing, v2 and
v3 are estimated to be moving from time to time, even through
they are stationary.

from a 2 second sliding window. Moreover, we extract fre-
quency domain features by computing the spectral density of
the signal and then averaging over bands of interest [9].

Figure 10a shows the RSS timeseries collected for each of
the three devices. Figure 10b shows the RSS variance feature
computed using a sliding window with a size of 2 seconds.
Variance of mac1 increases as the person starts moving and
decreases when the person pauses. This observation is con-
sistent with findings from the previous work, indicating the
RSS fluctuation caused by the human motion [13].

The output of the prediction is shown in Figure 10c, where
1 indicates that a motion was detected for a certain device at
a given time. Similar to the visual case, we observe that the
motion period of devicemac1 starts at around the 4th second;
the device moved for approximately 6 seconds, paused and
then moved for another 6 seconds.

False positives and false negatives of the prediction shown in
the figure are caused by the fact that when the person moves,
the wireless properties of the environment are changed. This
causes RSS fluctuation not only for the moving person’s de-
vice, but also for devices nearby. In the Scenario L-R, P1

crosses the line-of-sight (LOS) between P3 and the recorder
twice. Whenever P1 crosses the LOS, we observe an in-
crease of RSS variance for the device mac3 (shown in Fig-
ure 10b). This increase can be falsely interpreted as motion,
even though the device is stationary at all times.

(a) RSS measurements are observed from the three devices.

(b) RSS Variance is computed using a sliding window with a size of 2 s.

(c) RF motion features are inferred by using the machine learning model.

Figure 10: We compute various features such as variance
from the raw RSS values and use these features to infer device
motion.

Score Computation
To infer links, we compute a score for each pair of visual and
RF motion features using the score function

SM (vi,macj) =
1

T

T∑
t=0

FM,v(vi)t · FM,m(maci)t, (3)

where FM,v(vi) and FM,m(macj) are visual and RF-based
motion features. The score reflects the time-averaged inner
product of the timeseries, capturing the correlation between
motion features. Table 1 shows the score matrix for the Sce-
nario L-R. For each visual identity vi we compute a score for
each device identity macj . From the matrix we can observe
that the pair (mac1, v1) has a high score since their motion
feature timeseries have a high amount of overlap.

v1 v2 v3
mac1 0.51 0.06 0.04
mac2 0.00 0.00 0.00
mac3 0.12 0.00 0.05

Table 1: Pairwise similarity of the motion indicators is used
for user-device linking.

Distance-based Predictor
The distance-based predictor is based on the inverse relation-
ship between distance and RSS illustrated in Figure 1. Intu-
itively, motion toward and away from the recorder will result
in respective increase or decrease of observed RSS on aver-
age. In the case where one person walks in random directions,
Figure 11 shows the inverse proportionality of the distance
measure compared to the observed RSS. From this figure, we
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Figure 11: When a person walks toward or away from the
recorder, the estimated distance and observed RSS vary ac-
cordingly.

observe measurements consistent with the expected inverse
relationship between distance and RSS. We leverage this in-
verse proportionality to define a window-based score function
corresponding to the covariance

S′(vi,macj)k =
1

T

k+w∑
t=k

(FD,v(vi)t − FD,v(vi))

· (FD,m(macj)t − FD,m(macj))

(4)

where FD,v(vi) and FD,m(macj) are the distance and square
root of RSS values over time and FD,v(vi) and FD,m(macj)
are their mean values. The size w of a sliding window is
empirically set to 2 seconds. The final score is computed by
summing all the negative covariance values over the sliding
windows and then negating the sum to obtain a positive score

SD(vi,macj) = −
∑
k

min(S′(vi,macj)k, 0). (5)

Note that instead of summing over all the values, we sum up
only the negative covariance values (and ignore the positive
values). We have empirically observed that the negative co-
variance values are good indicators that the RSS stream and
the distance stream belong to the same person moving to-
wards/away from recorder. However, the positive values are
typically caused by the fluctuations of the RSS.

User-Device Link Inference
The link inference component uses the output score matrices
of the motion- and distance-based predictors to infer user-
device links. Each column of the matrix corresponds to a
score vector of one visual identity vi, and the entries in this
vector are similarity scores with each device identity macj .
Link inference makes a joint prediction using both matrices.

Given the motion-based score matrix SM and distance-based
score matrix SD, we create a combined score matrix S
through normalization and linear combination. Each column
Si
M and Si

D of the matrices SM and SD is corresponding to
visual identity vi, is normalized to have unit sum, and the
normalized columns are combined as

Si = αSi
M + (1− α)Si

D (6)

where 0 ≤ α ≤ 1 is a weighting factor between the pre-
dictors. We discuss a strategy for selection of α later in the
evaluation section. Table 2 provides an example of predictor
combination for a visual identity v1.

S1
M S1

D S1

mac1 0.37 0.51 0.44
mac2 0.39 0.21 0.30
mac3 0.24 0.28 0.26

Table 2: S1 is obtained by combining the motion-based score
vector S1

M and distance-based score vector S1
D with α = 0.5.

The device identitymac∗ with the highest score is then linked
with the visual identity vi:

mac∗ = argmax
macj

Si,macj , (7)

where Si,macj is the value at column vi and row macj of the
combined score matrix S.

From Table 2, we observe that the predictors individually
come to different conclusions. Motion-based predictor would
link v1 with mac2, whereas the distance-based predictor
would link it to mac1. In combining the scores, we can con-
sider the confidence of the individual predictors.

EVALUATION
Linking performance depends on many factors such as the
number of users, motion patterns, and the amount of RF sig-
nals observed. In the following, we conduct experiments to
analyze how these factors influence the linking accuracy.

We conduct two sets of experiments: small-scale controlled
experiments and larger scale experiments with random move-
ments. In the controlled experiments, we analyze the linking
performance when users perform elementary movement pat-
terns. This provides an understanding of the strengths and
weaknesses of our approach under different conditions. In
the second set of experiments, we show how IdentityLink per-
forms in a real-world scenario, with unscripted movements.

Figure 12 shows the layout of the evaluation environment,
which is comprised of an 11.5 x 5 meter room and a 1.7 meter
wide hallway. The field of view of the camera covers an area
of around 5 x 5 meters. This corresponds to a real-world use
case in which the camera can capture the motion only in an
limited area, whereas the RF receiver can capture the signals
from all devices in range, including those not in direct line-
of-sight (e.g., in the hallway).

Our experiments involve 10 subjects, each carrying a mobile
device in a pocket and initially sitting in one of the 10 chairs
in the room. In the following scenarios, a subset of users is
asked to stand up and perform different motion patterns. We
then evaluate the linking accuracy for the moving subjects.

Experiments with Elementary Motion Patterns
We first consider scenarios with only two or three moving
subjects. These subjects are asked to perform elementary
movement patterns, which are building blocks for more com-
plex movement patterns in real-world use cases. Our results
show which movement patterns provide sufficient informa-
tion to perform user-device linking. We evaluate the linking
performance of each predictor individually to understand its
strengths and weaknesses.
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Figure 12: Layout of the test environment.

Motion-based Prediction
The motion-based predictor performs linking based on the
motion periods observed visually and through RF sensing.
Intuitively, when motion periods of visual and device iden-
tities match (both identities moved between time t1 and t2),
the two identities likely belong to the same person. However,
with multiple moving subjects, the linking process becomes
more challenging since motion periods of multiple subjects
and devices can be time-overlapping. In the following, we
analyze basic scenarios of multiple subjects moving with a
certain degree of time-overlap.

Figure 13 shows four scenarios of users moving in front of the
recorder at different time periods. Scenario 1A describes the
case when subjects move at different times (e.g., one person
leave, then another enters later). Scenario 1B shows a partial
overlap of the motion periods. Scenario 1C shows a complete
time-overlap (e.g., two people walking side-by-side). Finally,
scenario 1D shows three subjects with at least two moving at
any time.

1A	
   1B	
  

1C	
   1D	
  

Figure 13: Four scenarios of users moving at different times.
The bar indicates the motion period of each person.

We collect video and RF signal data for the scenarios in Fig-
ure 13 from the 10 devices, repeating each scenario 50 times.

For each moving visual identity detected in a video, we infer
its device identity using Equation (7). For example, we detect
two moving visual identities in each video of scenario 1A,
noting the remaining people are stationary or out of view, and

infer a total of 100 links. The linking accuracy corresponds
to the percentage of correctly inferred links out of the total at-
tempts. Since the RF receiver can always observe 10 devices,
each a candidate match to the visual identity, the expected
linking accuracy of a random guess is 10%.

1A 1B 1C 1D
Motion-based 95% 95% 52% 87%

Table 3: Linking accuracy of the motion-based predictor. The
predictor achieves high accuracy if the motion period of one
user is distinguishable from that of others.

The linking accuracy of the motion-based predictor is shown
in Table 3. The predictor achieves high accuracy for scenarios
1A and 1B, since the motion periods for the two subjects are
distinguishable, i.e., there are times when only one person
moves. These time periods are key for correct inference.

In scenario 1C, the two subjects are moving at exactly the
same time. Therefore, the motion-based predictor has insuf-
ficient information to differentiate. In such cases, a moving
subject will be linked with a moving device, but since there
are two moving devices with similar patterns, the system will
randomly choose one. Note, however, that the motion-based
predictor chooses randomly from a pool of only two moving
devices, eliminating the stationary devices as candidates.

The results for scenario 1D show that the motion-based pre-
dictor performs well even when two people move simultane-
ously at any time. The key requirement for the predictor is
that the motion period of one person has to be differentiable
from others, providing sufficient evidence for the correct link-
ing. However, we also notice a decrease in linking accuracy
in 1D as compared to 1B. These two scenarios are similar
with the only difference of having one additional moving sub-
ject in 1D. This additional moving subject causes additional
RSS fluctuations in the environment, increasing false posi-
tives and thus decreasing linking accuracy. We later evaluate
how a greater number of moving subjects impacts the linking
accuracy.

Distance-based Prediction
As shown in the previous experiment, the motion-based pre-
dictor poorly handles cases with indistinguishable motion. In
the following, we present multiple scenarios with simultane-
ously moving users and analyze how the distance-based pre-
dictors can handle such cases.

The effectiveness of the distance-based predictor depends
highly on the motion trajectory of a user. Figure 14 shows
four scenarios with two users moving simultaneously in dif-
ferent trajectories. In scenario 2A the users walk in oppo-
site directions toward or away from the recorder, whereas in
2B the users walk in the same direction. In 2C one of the
users moves horizontally with respect to the recorder, keeping
roughly the same distance to the recorder. The scenario 2D
is a more complicated trajectory, essentially two combined
instances of 2C.

The linking accuracy of all four scenarios is shown in Table 3.
Since in each scenario both subjects move simultaneously (as
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Figure 14: Four scenarios of two users moving simultane-
ously in different trajectory shapes.

in scenario 1C), the motion-based predictor has insufficient
information for the correct inference, thus achieving an aver-
age accuracy of 50%.

The distance-based predictor performs well in scenarios
where users’ distance profiles are distinct, such as in sce-
nario 2A. However, if both users have similar RSS patterns
such as in 2B, the distance-based predictor will not have suffi-
cient information to differentiate between them. Thus, neither
the motion- nor distance-based predictors can distinguish be-
tween the two users in this case, resulting in a random match-
ing between the two devices.

In scenario 2C, the accuracy is different for the two subjects.
The predictor performs well for the person P2, who moves
towards the recorder, but person P1 often cannot be distin-
guished from the remaining stationary subjects. Scenario 2D,
however, leveraged distance information for both subjects to
infer links with reasonable accuracy.

2A 2B 2C 2D
Motion-based 48% 52% 51% 50%

Distance-based 81% 48% P1:17%, P2:84% 75%

Table 4: Linking accuracy of the distance-based predictor.

We observed that the accuracy of the distance-based predictor
depends highly on the users’ motion patterns. The predictor
can correctly link a person to a device if the person walks
toward or away from the recorder for at least part of the mo-
tion period. However, if the person walks around the recorder
keeping a near-constant distance, the predictor will not have
sufficient information. Hence, the placement of the recorder
is important for practical consideration (e.g., above a door
where people enter and exit). Optimal recorder placement is
beyond our scope of work and will not be discussed further.

We observe scenarios in which multiple users cannot be dis-
tinguished using IdentityLink, including when two users walk
side by side. However, any unique movements (e.g., two
users walk side by side, then one turns) provide subtle dif-
ferences for IdentityLink to make the correct decision.

Experiments with Random Motion Patterns
Our second set of experiments focuses on how strengths and
weaknesses of linking elementary movements combine in

real-world scenarios. In the following, we analyze the per-
formance of IdentityLink under real-world conditions with a
variable number of users moving randomly.

We again use the room shown in Figure 12 with 10 subjects
carrying devices and initially sitting in chairs in the room.
We ask five of the subjects to remain seated while five move
around the room and hallway. Our primary instruction to
users was to occasionally exit the room and re-enter through
the door on the right. We refer to the interval between enter-
ing and exiting the room as a user’s session. Within a ses-
sion, which had no specified duration, subjects could sit on
chairs, get food from the table, socialize with others, or wan-
der around the room. We asked each subject to participate in
25 sessions, waiting a random amount of time in the hallway
between each session.

In the collected dataset, we observe high variance of session
duration ranging from 5 seconds (subject enters, takes food
from the table, then exits) up to 2 minutes (subject enters,
sits on a chair and socializes with other subjects). The av-
erage session duration was approximately 23 seconds. Users
are not always visible to the camera during sessions, due to
incomplete coverage and possible occlusion.

We first consider the case where visual identities are not ex-
plicitly linked across sessions, i.e., each person creates 25 in-
dependent sessions. With five moving subjects, the data rep-
resents 125 user sessions with at most 10 people in the room
at any time. In this case, we infer links using only the motion-
and distance-based predictors within sessions. Table 5 shows
the results of this prediction, noting a 10% baseline with 10
people in the room.

Motion-based Distance-based
Accuracy 53.9% 47.6%

Table 5: We highlight the accuracy achieved when using only
the motion-based or distance-based predictor.

Figure 15 shows the accuracy achieved when combining the
results of both predictors using Equations (6) and (7). Setting
α = 0 corresponds to using only the distance-based predictor,
whereas α = 1 corresponds to using only the motion-based
predictor. We achieve the best results when setting α = 0.8,
which we employ in the following experiments.

Figure 15: We illustrate the accuracy achieved by combin-
ing the motion-based and distance-based predictors through a
linear combination of their scores.

Number of Moving Subjects
We next study how the number of moving subjects influences
the linking accuracy. We previously considered five station-
ary and five moving subjects. In the following experiment,
we reduce the number of moving subjects and recompute the
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linking accuracy. For five stationary devices and a variable
number of moving devices, the linking accuracy is shown in
Figure 16.

Even though the movement of one person results in RSS fluc-
tuations in all the devices in the vicinity, the motion-based
predictor achieves 99% linking accuracy. On the other hand,
the distance-based predictor achieves a lower accuracy, since
its performance highly depends on the motion pattern. Since
in some sessions a test subject walks through the area visible
on camera while keeping a constant distance to the recorder,
the distance-based predictor does not always have sufficient
information for the linking.

Figure 16: The linking accuracy decreases with increasing
number of moving subjects.

We observe that linking accuracy decreases with the number
of moving subjects, as expected. Moreover, we empirically
observed that varying the number of stationary subjects has
no impact on the linking accuracy, i.e., IdentityLink achieved
the same accuracy when removing all 5 stationary subjects
from the dataset. Thus, the linking accuracy depends only on
the number of devices carried by moving subjects, indepen-
dent of the number of stationary mobile phones, laptops or
desktops in the environment.

Observing One Subject in Multiple Sessions
We next consider the case where visual identities are linked
across sessions, i.e., the same person is observed repeatedly
over time. This corresponds to a real-world scenario of cap-
turing the same person using multiple recorders across rooms
or using one recorder across multiple sessions. Figure 17
shows the accuracy achieved when we link visual identities
across sessions. Repeated observation of the same person sig-
nificantly increases the linking accuracy, e.g., achieving ac-
curacy of 85% from three sessions.Moreover, in a real-world
scenario, it is likely that different devices would be present in
different sessions, where as our results correspond to the same
10 devices across sessions. Hence, higher accuracy would
be expected by eliminating devices that do not appear in all
datasets containing the person of interest.

Figure 17: The linking accuracy increases significantly when
the same person is observed multiple times.

Sufficiency of Wireless Data
To infer user-device links we assume that the tracked devices
generate sufficient RF signal data over time. In this work, we
described two techniques to induce additional network traf-
fic. In what follows, we analyze how the RF data rate affects
linking accuracy.

In our base experiment, each device to generated approxi-
mately 50 packets per second. To study the effect of less traf-
fic, we downsample the measurements and re-compute the
linking accuracy for different data rates. From the results
shown in Figure 18, we observe that data rates in excess of
about 10 packets per second are sufficient to achieve similar
performance. However, with fewer than 3 packets per sec-
ond, the linking accuracy decreases significantly. Based on
this observation, the recorder can scale how aggressively it
must induce traffic to maintain the desired accuracy.

Figure 18: The linking accuracy is similar for anything more
than 10 packets per second. Fewer than 3 packets per second
appears insufficient for linking.

CONCLUSIONS AND FUTURE WORK
In this work, we proposed IdentityLink to link users to mobile
devices using video and RF signal data with no explicit partic-
ipation or app installation required by the observed users. We
studied the feasibility and the accuracy of our IdentityLink
approach in structured and randomized user scenarios with
a variety of system parameters, showing IdentityLink can
achieive high accuracy with repeated user observations even
with partial camera coverage. Through our experiments, we
demonstrated the feasibility of IdentityLink with up to 10
users, primarily limited by the need for more robust computer
vision techniques beyond the scope of this work. IdentityLink
relies on relative changes of the visual and RF signals caused
by user mobility. Therefore, user-device links can be inferred
for moving subjects. However, we have empirically observed
that movement of one person affects signals from nearby de-
vices. Future work will explore how IdentityLink could ex-
ploit this dependence to additionally link stationary users.
Moreover, explicit location information could be integrated
as a third component of IdentityLink to further increase ac-
curacy. IdentityLink succeeds by leveraging distinguishable
movement patterns of tracked subjects. In some cases, how-
ever, movement patterns of multiple people are indistinguish-
able, e.g., people moving as a group. In such cases, Iden-
tityLink is limited to inferring links between groups of peo-
ple and groups of devices. Moreover, the placement of the
recorder in a room plays an important role, so future work
could further investigate optimal recorder placement.
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