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ABSTRACT
Activity recognition (AR) systems are typically built and
evaluated on a predefined set of activities. AR systems work
best if the test data contains and only contains these pre-
defined activities. In real world applications, AR systems
trained in this manner generate serious false positives, for
example if “smoking” is one of the activities in the train-
ing data but “lifting weights” is not. Due to the similarity of
two activities, an AR system may report a user smoking 100
times a day but he actually did a bicep workout 100 times. In
this work, we propose a new approach to train an AR system
leveraging the large quantity of unlabeled data which reflects
activities users perform in real life. The proposed mPUL
(Multi-class Positive and Unlabeled Learning) approach sig-
nificantly reduces the false positives. We argue that mPUL
is a much more effective training method for real-world AR
applications.
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INTRODUCTION
An activity recognition (AR) system is typically trained to
recognize a set of activities that are relevant to some applica-
tions. For example, a mobile application designed to monitor
a user’s life style for potential diabetes risk is interested to
know how often the user smokes, exercises, or performs var-
ious other activities. Researchers list 10 activities that are
relevant to diabetes including smoking, jogging, walking and
biking and collect training data that contain these 10 activi-
ties with labels. An AR system is trained from this labeled
data and then deployed in the mobile application to monitor
the user’s life style.
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Figure 1: Traditional AR systems perform poorly when en-
countering unknown activities (activities not seen in the train-
ing data) such as lifting weights.

The performance of an AR system is usually evaluated on a
held-out set measuring the accuracy of recognizing labeled
activities. While many AR systems report high accuracy in a
lab setting, they suffer in real-world applications. One of the
main problems is false positive. For example, smoking and
bicep workout are similar in arm motions and the AR system
is only trained to recognize smoking, the AR system detects
a user smoked 100 times in a day when the user actually went
to the gym and did a bicep workout 100 times (Figure 1).

The fundamental problem of false positive activity recogni-
tion is that the training setup assumes that the labeled activi-
ties are all possible activities the system will ever encounter.
Since the system does not have knowledge about any activ-
ities other than the ones observed in the training data, it is
prone to making false positive predictions, i.e., the system
will falsely predict bicep workout as smoking. We refer to
this training setup as the Closed-Word (CW) condition be-
cause it assumes the training data contains all possible activi-
ties the system will observe [10]. Obviously, CW assumption
is not realistic since there are large number of human activi-
ties [4] users perform; it is very expensive, if possible at all, to
label all activities in the training data. We refer to the applica-
tion of AR systems in realistic scenarios as the Open-World
(OW) condition, i.e., the training data contains only a subset
of activities an AR system will encounter after deployed.

The goal of this work is to build an AR system with lower
false positive rate in the OW condition. We propose an ap-
proach called Multi-class Positive and Unlabeled Learning
(mPUL), which leverages both labeled training data and addi-
tional unlabeled data collected in the OW. The unlabeled data



is collected from mobile devices users carry daily. Since we
do not require any annotation, such data is abundant and al-
most free of cost. Activities in the unlabeled data (e.g., bicep
workout) are referred to as unknown or unobserved activi-
ties if they are not those labeled in the training data (Figure 2).

We reframe the problem of reducing false positive as: how
to identify the unknown activities to avoid classifying them as
one of the known activities. The key challenge is to identify
unknown activities without having any labeled data for the
unknown activity classes.

The proposed mPUL approach is a multi-class extension of
Positive and Unlabeled Learning (PUL) [5]. PUL is tradition-
ally used to solve two-class classification problems, where
one class is known but the other is not; we have labeled data
only of the known activities, but not of the unknown activi-
ties. As the traditional PUL handles only two-class problems
with one known class, we extend this approach to M -class
problems with m (m < M) known classes to accommodate
the multi-class AR problem. We show that our proposed ap-
proach is highly effective, especially in cases with a small
number of known activities (m � M ). To the best of our
knowledge, this work is the first to explore the PUL learn-
ing paradigm in the AR domain, specifically to address the
challenges in the Open-World.

Our contributions are summarized as follow.

• Closed-World (CW) vs. Open-World (OW) Assump-
tions: We explicitly formulate the CW assumption, which
is implicitly made by the existing AR approaches. We re-
lax such assumption and show how OW better reflects the
real-world conditions. We then study how traditional AR
techniques perform under both CW and OW assumptions.

• mPUL: To address the challenges in OW, we propose
Multi-class Positive and Unlabeled Learning (mPUL),
which leverages the unlabeled data to effectively handle
activities unknown at the training time and thus reduces
false positives when deployed in the OW.

• Empirical study: We study the performance of mPUL in
both controlled and “in the wild” condition. We show that
mPUL is highly effective, especially in cases when only a
small number of activities are known at the training time.
Furthermore, we identify weaknesses of the proposed ap-
proach and discuss potential extensions to address them.

RELATED WORK
Chavarriaga et al. [3] use a thresholding approach to reject
predictions with a low confidence score to reduce false pos-
itives. In the OW condition, however, thresholding has the
potential of increasing false negatives [22].

Another way of dealing with unknown activities is to ask
users to label sensor data after the system is deployed. Ac-
tive learning has been used to reduce the required number of
user annotations by asking users to label only “informative”
instances [19, 14, 16]. Such approaches assume users are co-
operative and have time and cognitive bandwidth to annotate
activities in their daily routine.
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Figure 2: To improve the AR model, we propose leveraging
unlabeled data captured while the system is in use. This un-
labeled pool contains instances of both known and unknown
activities.

The problem of identifying unknown activities is to a certain
degree related to the one-class learning problem [9], where
the training data contains labeled instances of only a single
class. In the AR domain, the one-class problem has been used
to detect anomalies such as people falling on the floor in elder
care scenarios [25, 23]. In such cases, one can collect training
data of simulated falls. However, collecting training data for
all not-falling activities is not feasible.

The approach proposed in this work can be considered as a
multi-class, semi-supervised version of the one-class learning
approach. In AR research, many semi-supervised learning
techniques have been explored to take advantage of availabil-
ity of the large amount of unlabeled sensor reading. One of
the most commonly used technique in AR is self-training [19,
14]. In self-training, a small pool of labeled data is used to
train an initial classifier. This classifier is then used to recog-
nize the unlabeled instances. Instances with high confidence
are then moved into the labeled pool, and the classifier is re-
trained iteratively until no more instances are added. Besides
self-training, techniques such as co-training [6, 19, 14] and
graph-based label propagation [18] have been proposed to
utilize the multiple sensing modalities and the temporal na-
ture of unlabeled signal data. Further work [1, 7] suggests
adapting AR systems by considering the similarity between
training data and unlabeled data collected when the system is
used. All the semi-supervised studied so far implicitly make
the CW assumption, where unlabeled instances are assumed
to belong to one of the known activities.

To a certain degree, our work is related to the work aiming
at recognizing activities for which little or no training data
is available (attribute-based learning [15, 4]). The authors
assume that an activity (such as cycling) can be described
through a set of attributes (e.g., translation motion, cyclic
motion and intense motion). Since driving can be also de-
scribed by the translation motion attribute, one can use the
training data labeled with driving to learn a model, which can
recognize cycling even though no training data for cycling is
available. This approach requires knowledge about the unob-
served activities and how they can be described by the set of
predefined attributes.



The key difference between our proposed approach and the
work mentioned above are: 1) we leverage unlabeled data to
identify unknown activities (in contrast to the traditional AR
systems, one-class learning and active learning approaches);
2) we assume that unlabeled data can belong to known or
unknown activities (in contrast with the traditional semi-
supervised learning approaches); and 3) we do not assume
any knowledge about the unknown activities (in contrast to
attribute-based learning).

Although the proposed approach is applicable to any type of
sensor data and features extraction method, we demonstrate
its effectiveness in an AR system using wearable sensors.

LEARNING ACTIVITIES IN THE OPEN-WORLD
The goal of this work is to address challenges of AR used in a
real-world environment. In the following, we first define the
Closed-World assumption implicitly made by the existing AR
work and propose a relaxed Open-World formulation to better
describe the real-world conditions. We show the weaknesses
of the traditional AR models applied in the Open-World and
propose mPUL (Multi-class Positive and Unlabeled Learn-
ing) to address these weaknesses.

Closed-World (CW) and Open-World (OW)
In this work, the terms CW and OW characterize the com-
pleteness of the available information. In CW, we assume
that in the training phase we observe the whole world and
therefore have all the needed information. On the other hand,
in OW we assume that in the training phase we can observe
only a small part of the world. In the following, we formally
define the terms CW and OW and explain their implications
on an AR system.

To train an AR model we use a dataset (x, y), where x is an
instance (e.g., a feature vector) and y is a class label. We
denote AO as the set of activity classes observed/known in
the training dataset (y ∈ AO):

AO = {a1, a2, · · · , am}. (1)

We denote A as the universe of all possible activities with
AO ⊆ A, i.e., A contains all possible activities the AR sys-
tem will encounter in the wild. The activity classes observed
only in the wild, but not in the training data is referred to as
unobserved/unknown classes AO:

AO = A−AO. (2)

We formulate the CW and OW problems as

AO = A in CW (3)
AO $ A in OW. (4)

This directly implies that AO = ∅ in CW, whereas AO 6= ∅
in OW.These unobserved classes will have significant impli-
cations for the performance of an AR system.

In the following, we illustrate the implications through the
scenario presented earlier. Our goal is to build a AR model
for recognizing smoking, eating and playing tennis. The uni-
verse of all possible activities contains three mentioned activ-
ities and also the weight-lifting activity. Figure 3a shows the
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Figure 3: In Open-World, some activity classes (such as lift-
ing weights) are not observed in the labeled training dataset.
Thus, using supervised learning methods, the learned clas-
sification boundary is less accurate compared to the Closed-
World case, where all activity classes are observed.

training dataset in an ideal case, where for each class in the
activity universe we have sufficient labeled instances to learn
a correct decision boundary.

Under the CW assumption, each class has at least one labeled
instance (including the lifting weight class as shown in Fig-
ure 3b). In OW, some classes do not have any labeled in-
stances (as shown in Figure 3c). Given that all activity classes
are observed in CW, the learned decision boundary for the
smoking activity is very similar to the boundary learned in
the ideal case. On the other hand, in OW the negative training
instances are not representative of the negative feature space.
Thus, relying on them to learn a classification boundary will
result in an inaccurate AR model.

Learning with Unlabeled Data
Since learning with unlabeled data is essential for the pro-
posed approach, we first discuss the different assumptions
about the unlabeled instances.

CW: Many existing AR works assume that unlabeled in-
stances have to belong to one of the classes AO observed in
the training dataset [6, 19, 14]. Thus, semi-supervised tech-
niques such as self-training can iteratively propagate labels to
the unlabeled instances. This assumption corresponds to the
CW assumption, since the unlabeled data cannot belong to
any other classes besides AO.

Semi-OW: Other AR systems treat instances not labeled by
the user as a separate (null) class [17, 20, 3]. In other
words, the unlabeled instances belong to one of the unob-
served classes AO. This scenario assumes that the user inten-
tionally left an instance unlabeled to indicate that the instance



does not belong to any of the activities of interest. AR mod-
els making this assumption would perform poorly if instances
are left unlabeled for other reasons (e.g., the user forgot to la-
bel some of the known activities). This assumption can be
considered as semi-OW, since it accepts that not all activity
classes may have been observed at training time. However, it
forces unlabeled instances to unobserved classes AO.

OW: In this work, we assume that an unlabeled instance can
belong to any of the possible activity classes A. This fully
supports the OW condition, since we assume that at the train-
ing time the unlabeled instances can belong to any of the ob-
served AO or unobserved classes AO.

mPUL: Multi-class Positive and Unlabeled Learning
We next describe the proposed mPUL approach in detail.
First we explain the concept of the binary PUL and then de-
scribe how mPUL generalizes PUL to multi-class AR.

PUL (Positive and Unlabeled Learning) is a semi-supervised
learning approach used to solve two-class (positive and nega-
tive) classification problems, where the training data contains
labeled instances of only the positive class, but no negative
instances are available. Such problems occur in many real-
world applications such as in information retrieval, where
the goal is to build a system for retrieving documents with a
user’s topic of interest (e.g., politics) [24, 11]. In such scenar-
ios, one can easily obtain positive instances by asking the user
to provide a few documents of interest. However, it is chal-
lenging and labor-some to collect a representative (unbiased)
set of negative instances. For example, while a user might la-
bel a few sport-related documents as negative instances, they
likely do not represent the whole negative document space. It
is known that using a non-representative set of instances leads
to significant degradation of prediction results [12].

To address this problem, PUL uses only the positive instances
with the unlabeled data (easily obtainable from the Internet)
to build the binary classification model. The key assumption
is that the unlabeled pool contains both positive and negative
instances. More importantly, it is assumed that the negative
instances in the unlabeled pool form a representative set of
negative instances. PUL is therefore used to identify which
instance in the unlabeled pool is positive and which ones are
negative. This can be done by initially assuming that all unla-
beled instances are negative [11]. Based on this assumption,
an initial classifier is trained and then used to predict the la-
bels of instances in the unlabeled pool. These new predictions
are used to re-label the training dataset. This iterative pro-
cess of training and relabeling is repeated until convergence
is achieved (similar to self-training [19]).

In this work, we build mPUL on top of a PUL formulation,
which solves the above problem directly (instead of itera-
tively) [5]. Similar to the iterative approach, we first assume
that all unlabeled instances are negative and build a classifier
g based on this assumption. Obviously, this classifier is bi-
ased towards a small set of labeled positive instances in the
training data. Thus, by scaling the probabilistic output of g
by the constant c, one can obtain the true conditional proba-

bility p(y = 1|x). In the following, we formally describe this
approach in detail.

Let x be an instance and y ∈ {−1, 1} its negative or posi-
tive activity label. Additionally, s ∈ {0, 1} indicates whether
the instance label is known. Thus, each instance is repre-
sented as (x, s, y)-tuple. For example, (x1, 1, 1) represents a
positive instance, while (x2, 0, ?) represents an unlabeled in-
stance. Note that s = 1 implies y = 1, since in the training
dataset we know the labels of only the positive instances.

Our goal is to learn the function f(x) = p(y = 1|x) from
the training dataset. In case s = 1 for all instances x, we can
learn f(x) directly from the labeled dataset (x, y). However,
in our scenario, many of instances have unknown labels (s =
0). In such cases, it has been shown that f(x) can be learned
in a non-traditional way using the following equation [5]:

f(x) = g(x)/c (5)
g(x) = p(s = 1|x) (6)

Note that g(x) is a classifier itself, estimating the probability
that the label of x is known. This classifier is learned from the
dataset (x, s). c is a constant independent of x, estimated us-
ing a holdout validation set [5]. This problem formulation can
be interpreted in the following way. 1) Since we cannot learn
f(x) directly from (x, y), we learn this function indirectly
from (x, s). 2) Since s = 1 implies y = 1 (all instances with
known labels are positive), (x, s) corresponds to the dataset,
which assumes that all unlabeled instances are negative. 3)
g(x) learns a conditional probability of p(y = 1|x) under the
assumption that all unlabeled instances are negative. 4) g(x)
is biased towards a small set of labeled positive instances in
the training data. Thus, by scaling g(x) by the constant c, one
can obtain the true conditional probability p(y = 1|x).
For the above equations to hold, it is assumed that the in-
stances with known labels (s = 1) are selected randomly
from the set of all actually positive instances,

p(s = 1|x, y = 1) = p(s = 1|y = 1). (7)

This assumption can be explained through the following ex-
ample: suppose the user smoked 10 times but only labeled
five smoking instances. Our assumption states that the deci-
sion of which activity instance to label does not depend on
how the activity was performed. As a counter-example, if the
user smokes using both hands, but she only labels instances
when the cigarette is in her left hand, this assumption does
not hold. Hence, we assume she labels smoking activities in-
dependent of how she holds the cigarette.

In this work, we assume the latter case, i.e., the obtained
activity labels are independent of how the activity was per-
formed. The validity of the assumption, however, often de-
pends on the strategy for obtaining the activity labels. For
example, if the user is asked to input the activity label into
a mobile device while the activity is performed then the an-
notation process will directly impact how the activity is per-
formed. On the other hand, if the user can label activities after
they are performed, the fact that an activity is labeled (or not)
is dependent on the user’s memory, but not on how the activ-
ity was performed. This observation brings up an interesting



question of how activity annotation strategies impact AR per-
formance, which will be further explored in our future work.

mPUL: In this work, we extend binary PUL to solve the
multi-class AR problem. The proposed extension involves
three key parts: 1) 1-vs-other decomposition, 2) extension
from positive unlabeled (P-U) to positive, negative and unla-
beled (P-NU) and 3) implicit detection of unknown activities.
We describe each of these parts in detail.

The first part of the extension involves decomposing the m-
class AR problem into m binary-class problems using the 1-
vs-others strategy [21], i.e., one binary classifier for each ac-
tivity class. Using this strategy, there are two main questions:
1) Training: How to train each binary classifier. 2) Prediction:
How to fuse predictions of m binary classifiers.

Training: In a traditional supervised setting, a binary classi-
fier is trained using positive and negative instances. For ex-
ample, to build a classifier to recognize smoking, we need
instances of smoking and non-smoking activities. Given
the scenario presented in introduction (Figure 2), the non-
smoking activities are traditionally represented by the eating
and playing tennis activities. Obviously, these two activities
are not representative of all non-smoking activities (since it
does not include instances of drinking and lifting weights).
As illustrated in Figure 3c, training a model using an non-
representative set of negative instances will lead to learning
an incorrect decision boundary.

To find a representative set of negative instances, we propose
to use both Labeled and Unlabeled data, instead of relying
only on the labeled instances. The pool of labeled instances
can be divided into the Positive and the Negative pool. We
propose to merge the Negative pool with the pool of Unla-
beled instances and further refer to this merged pool as the
NU (Negative+Unlabeled) pool. Figure 4a shows the in-
stances of the NU as gray circles. Note that each NU in-
stance belongs to either the positive (smoking) or to the neg-
ative (not-smoking) class. More importantly, the set of neg-
ative instances in NU forms a representative set of negative
instances, i.e., this set contains instances of all negative (not-
smoking) classes (including the “unknown” drinking and lift-
ing weights activities).

Since labels of many instances in NU are not known, we use
PUL to identify which of these instances belong to the posi-
tive and negative classes. The identified positive and negative
instances are then used to find the unbiased decision bound-
ary. Note that in contrast to traditional PUL, which uses only
the positive and unlabeled instances (P-U), mPUL uses all
available positive, negative and unlabeled instances (P-NU).

The outcome of the mPUL training process is a set of m
classifiers, each estimating a conditional probability fi(x) =
p(yi = 1|x) for an activity ai (i ∈ {1, . . . ,m}).
Prediction: At prediction time, given a new unseen instance
x, we use all m binary classifiers to compute the conditional
probabilities fi(x) = p(yi = 1|x). We then select the class
y∗ with highest conditional probability p∗ = maxi fi(x).
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Figure 4: Thresholding moves the initial decision boundary
in the direction of reliable positive instances. This results in
a higher precision at the cost of lower recall.

As the third part of the extension, we propose to output y∗ as
a prediction only if p∗ > 0.5, otherwise the unknown class is
predicted:

ymPUL =

{
y∗ if p∗ > 0.5
unknown else (8)

Thus, instead of blindly trusting the most confident classifier,
we also require that this classifier would make a positive pre-
diction in the binary case. The unknown class is predicted if
none of the binary classifiers believe that the unseen instance
x belongs to their class.

mPUL vs. Thresholding
The proposed approach has some similarities to the thresh-
olding approach, since both approaches aim at improving the
performance of an AR system by reducing the number of false
positives and thereby increasing the precision. Thresholding
is a wrapper built on top of a base classifier, which can output
a confidence score for its prediction. Thresholding decides
whether to reject the prediction based on this score, i.e., pre-
dictions with confidence scores lower than a threshold τ are
rejected and thus assigned to the “unknown class”. This is de-
sirable in scenarios when precision is highly important, i.e.,
cost of false positives is significantly higher than the cost of
false negatives. Clearly the thresholding imposes a trade-off
between precision and recall, i.e., with a higher threshold, we
expect to achieve a higher precision at the cost of reducing
recall [22].

The key difference between the thresholding approach and
the mPUL is illustrated in Figure 4. mPUL uses a represen-
tative set of negative instances to learn the decision bound-
ary. On the other hand, thresholding uses a traditional super-
vised classifiers as the base classifier to learn the initial de-
cision boundary. As explained above, in OW the supervised
classifier is prone to learning from non-representative set of
instances, resulting in an incorrect decision boundary to be-
gin with. By increasing τ , the thresholding approach moves
the initial decision boundary in a direction orthogonal to the
boundary. Thus, with a high τ , the wrapper algorithm accepts
only highly confident predictions, in fact increasing precision.
However, it also causes a significant reduction of recall, since
many actually positive instances are not correctly detected.



EVALUATION
The goal of this work is to address the challenges in the OW
condition, where the training dataset contains only a subset of
activities appearing in the wild. To evaluate the proposed ap-
proach, we conduct experiments on two public datasets, both
containing a large amount of activities. This allows us to eval-
uate use cases where the training data contains only a small
set of activities of interest. We first study the performance of
the proposed approach under various OW conditions with re-
spect to the number of observed/unobserved classes and the
number of labeled/unlabeled instances. We then further study
how the proposed approach performs in real-world conditions
while dealing with additional challenges such as imbalanced
activity distribution.

Evaluating AR in OW
Dataset: For the evaluation of the first set of experiments we
use a public Daily and Sport activity dataset [2], which con-
tains 19 different activities performed by 8 users. The ac-
tivities include basic locomotion activities (sitting, standing,
walking, etc.) and more specialized exercise activities (exer-
cising on a stepper, cycling on an exercise bike, rowing, play-
ing basketball, etc.). This dataset is suitable for evaluating
scenarios where we want to recognize specialized activities
such as playing basketball, but we do often not have labeled
instances from all other activities. Data was collected from
five sensors placed on different parts of each user’s body.
To consider a more realistic scenario, we use data of only
two sensors, one attached to the right arm (typical of a smart
watch) and one attached to the left leg (typical of a mobile
device in a pocket).

Feature extraction: For each user and each activity, 60 five-
second segments of sensor readings were collected. From
each five-second segment we extract one instance (i.e., fea-
ture vector) composed of statistical features including mean,
standard deviation, minimum, maximum, energy and corre-
lation between sensor axes of individual sensors [10]. Thus,
we have 1140 instances (= 19 classes× 60 instances) for each
user, totaling 9120 instances. Each instance is annotated with
a user id and an activity class label.

Classifiers: In the following, we compare the results of
mPUL with traditional supervised, semi-supervised and
threshold-based classifiers. For mPUL, we use Logistic Re-
gression as the base classifier to learn the conditional proba-
bility p(yi = 1|x).
For the supervised classification, we evaluated a range of
classifiers including Naive Bayes, k-NN, Decision Tree, Lo-
gistic Regression and SVM. Since SVM with a linear kernel
achieved the best results, we show the results only of this clas-
sifier.

For semi-supervised learning, we use self-training (ST) with
Logistic Regression as the base classifier. In each self-
training iteration, we move all unlabeled instances with pre-
diction confidence higher than t to the labeled pool and retrain
the model; we empirically set t = 0.9.

Since both SVM and ST do not have the capability of predict-
ing an unknown class, we additionally evaluate self-training

with thresholding (further referred to as STT). STT takes the
predictions of ST and predicts an unknown class, whenever
the ST confidence lower than τ , which is estimated using a
holdout dataset through a cross-validation process [22].

Evaluation strategy: We evaluate the performance of AR
systems using both a personalized and a universal AR
model [13]. Since we observe similar trends from the results
of both models, we report the results of only personalized AR
model noting that similar observations are made about the re-
sults of the universal model.

In the personalized model, we train a classifier for each user
based on a subset of that user’s individual data and then test
the model on the remaining user data. This simulates the sce-
nario of a user labeling a few of her activities for building
an activity recognition model. This model is further used for
recognizing her own activities. We randomly split the 60 in-
stances for each class into 30 candidate training instances and
30 test instances. Since the selection of training data involves
randomness, we report average results over 10 runs.

Evaluation metric: As the evaluation metric, we use the
macro-F1 score, computed as the F1 score for each activity
class, averaged across classes. In the second part of this sec-
tion, we will discuss in more detail why macro-F1 score is
more informative than measures such as accuracy, commonly
used in AR research [10].

F1 score with respect to an activity of interest ai is calculated
as the harmonic mean of precision and recall:

F1 =
2 · precision · recall
precision+ recall

precision =
TP

TP + FP

recall =
TP

TP + FN
.

TP, FP and FN denote true positive, false positive and false
negative counts. In this work, our goal is to avoid false posi-
tives caused by the unknown classes. This directly translates
into achieving high precision for any OW condition. Due to
the precision-recall trade-off [22], in the following experi-
ments we evaluate the system’s performance using all three
measures - F1, precision and recall.

Amount of Labeled Training Data
In the first experiment, we consider the case of observing only
a small number of activity classes in the training data. This
corresponds to a scenario of building an AR system for rec-
ognizing a small set of activities of interest with only a small
number of labeled instances.

To evaluate this scenario we first introduce two key parame-
ters: the number of observed activity classes m and the num-
ber of labeled instances per class l (as shown in Figure 5).
Both relate to the properties of the training dataset (and do
not impact the test dataset). Let’s consider a training set de-
scribed by a (m, l)-tuple. To create such as a training set, we
randomly select m activities from the Daily and Sport activ-
ity dataset. For each selected activity, we randomly select l
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ary. Thus, by increasing the threshold the wrapper algo-
rithm accepts only highly confident predictions, which
results in an increase of precision. However, the thresh-
olding also causes a reduction of recall, since many ac-
tually positive instances are not correctly detected. On
the other, hand PUL treats all non-positive instances
as unlabeled data. It then learns a model, which can
separate the positive and the negative instances in the
unlabeled pool, which are then used to learn the final
classification model.PUL$x$Thresholding$
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Figure 6: Thresholding moves the initial decision
boundary in the direction of reliable positive instances.
This results in a higher precision for the cost of lower
recall.

5. EVALUATION
In this work, we study the behavior of di↵erent learn-

ing paradigms under the Closed-World (CW), Open-
World (OW) and One-Class (OC) assumption. We are
especially interested in understanding how the following
parameters impact the recognition performance:

• Amount of labeled instances (Section 5.1 and 5.2)

• Amount of observed/unobserved classes (Section 5.3)

• Amount of unlabeled instances (Section 5.4)

|AO|
l
|AU |
u
Figure 7 shows the first two key parameters evalu-

ated in this work: |AO| and l. Both relate to the prop-
erties of the training dataset (and do not impact the
test dataset). Let’s assume the number of all possible
activities is N and we want to build a model for pre-
dicting the activity class 1 (as shown in the Figure 7).
|AO| denotes the number of activity classes observed in
the training data. |AO| can take on values in range of
[1, N ], where

• |AO| = N corresponds to the CW

• |AO| 2 [1, N � 1] corresponds to the OW

• |AO| = 1 corresponds to the OC (a special case of
OW)
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Figure 7: Two key evaluation parameters: number of
labeled instances per class annnotated as l and the num-
ber of observed classes annotated as |AO|.

The second parameter l represents the number of la-
beled training instances per class. For simplification, we
assume that every class has the same amount of labeled
instances. Further we define L as the total number of
labeled instances used for training. E.g., if we can ob-
serve N classes in the training dataset, then L = N ⇥ l.

In the following, we will evaluate di↵erent combina-
tions of |AO| and l:

• In Section 5.1, we first describe the evaluation method-
ology and discuss the results of baseline condition
with |AO| = N and l set to the maximum amount
of available data in each class.

• In Section 5.2 we consider the CW scenario by
keeping |AO| = N and study the learning pro-
cess with a varying amount of labeled instances
per class l.

• In Section 5.3 we consider the OW scenario by
varying both |AO| 2 [2, N � 1] and l.

• In Section 5.4 we consider the OC scenario by fix-
ing |AO| = 1 and define additional two parameters
to study the impact of the unlabeled data.

5.1 Evaluation Methodology and Baseline
For the evaluation we use a public Daily and Sport

activity dataset [2], which contains 19 di↵erent activi-
ties performed by 8 users. The activities include basic
locomotion activities (such as sitting, standing, walking
etc.) and more specialized exercise activities (such as
exercising on a stepper, cycling on an exercise bike, row-
ing, playing basketball, etc.). This dataset is suitable
for evaluating scenarios, where we want to recognize
specialized activities such as playing basketball, how-
ever, we do often not have labeled instances from all
other activities.

8

EVALUATION
To evaluate the proposed approach, we conduct two sets of
experiments, one in a controlled setting and the second in a
natural everyday life setting. The goal in the first set of ex-
periments to understand the basic behavior of the proposed
approach in terms of the observed/unobserved classes and the
number of labeled/unlabeled instances. In the second set of
experiments we further study how the proposed approach per-
forms in real-world conditions while dealing with additional
challenges such imbalanceness of activity distribution.

Recognizing Activities in Controlled Setting
Dataset: For the evaluation of this first set of experiments
we use a public Daily and Sport activity dataset [2], which
contains 19 different activities performed by eight users. The
activities include basic locomotion activities (sitting, stand-
ing, walking, etc.) and more specialized exercise activities
(exercising on a stepper, cycling on an exercise bike, rowing,
playing basketball, etc.). Data was collected from five sensors
placed on different parts of each user’s body. To consider a
more realistic scenario, we use data of only two sensors, one
attached to the right arm (typical of a smart watch) and one
attached to the left leg (typical of a mobile device in a pocket).
In the following, we describe the evaluation methodology in
detail.

Feature extraction: For each user and each activity, 60 5-
second segments sensor readings were collected. From each
5-second segment we extract one feature vector composed of
statistical features including mean, standard deviation, mini-
mum, maximum, energy and correlation between sensor axes
of individual sensors [12]. For each user we have 1140 (= 19
⇥ 60) feature vectors and in total 9120 feature vectors (= 8 ⇥
19 ⇥ 60). Each feature vector is annotated with a user id and
an activity class label. Feature vectors are further referred to
as instances.

Classifiers: In the following, we compare the results of
mPUL with traditional supervised and semi-supervised clas-
sifiers. For mPUL, we use Logistic Regression as the base
classifier to learn the conditional probability p(yi = 1|x).
For the supervised classification, we evaluated a range of
classifiers including Naı̈ve Bayes, k-NN, Decision Tree, Lo-
gistic Regression and SVM. Since SVM with a linear ker-
nel achieved the best results, we will show the results only
of this classifier. For the semi-supervised learning, we use
self-training (ST) with Logistic Regression as the base clas-
sifier. In each self training iteration, we move all unlabeled
instances with prediction confidence higher than t to the la-
beled pool and retrain the model. t was empirically set to
0.7.

Evaluation metric: As the evaluation metric, we use the
macro-F1 score, i.e., we compute F1 score for each activ-
ity class and average the scores across all activity classes. F1

score is the harmonic mean of precision and recall:

F1 =
2 · precision · recall

precision + recall
(11)

precision =
TP

TP + FP
(12)

recall =
TP

TP + FN
. (13)

TP, FP and FN denote true positive, false positive and false
negative counts. In the second part of this section, we will
discuss in more detail why macro-F1 score is more informa-
tive than measures such as accuracy, which commonly used
in the current AR research [12].

Evaluation strategy: We evaluated the performance of the
propose approach using both a personalized and universal AR
model [16]. Since we observe similar trends from the results
of both models, we report the results of only personalized
AR model noting that similar observations are made about
the results of the universal model.

In the personalized model, we train a classifier for each user
based on a subset of that user’s individual data and then test
the model on the remaining user data. This simulates the sce-
nario of a user labeling a few of her activities for building
an activity recognition model. This model is further used for
recognizing her own recognition. Specifically, for each user
we have a dataset with 1140 instances (= 19 classes ⇥ 60
instances). Each class contains 60 instances, which are ran-
domly split into 30 candidate training instances and 30 test
instances.

In the following we conduct experiments to answer the fol-
lowing questions:

• How well does AR systems perform when only a small
number of activities are observed in the training data?

• Does the amount of labeled training data per activity im-
pact the recognition results?

• How does the varying number of observed activity classes
impact the recognition performance?

Number of Labeled Instance per Class
In the first experiment, we consider the case of observing only
a small number of activity classes in the training data. This
corresponds to a scenario of building an AR system for recog-
nizing a small set of activities of interest. For such purpose, it
is not practical to ask a user to provide labels for all activities
she performs in everyday life. However, it is reasonable to
ask her to label a few instances of the activities of interest.

Let’s consider a training set of m observed activities of inter-
est. To create such as a experiment, we randomly select m
activities from the Daily and Sport activity dataset. For each
activity of interest, we randomly select l number

m

Thus, the training dataset contains labeled instances of m ac-
tivities.

First we set the number of observed classes m = 8.

Figure 5: Two key evaluation parameters: the number of ob-
served classes annotated as m and the number of labeled in-
stances per class annotated as l. M indicates the total number
of activities in the universe.

instances belonging to this activity class. Labels of all not-
selected training instances are discarded, i.e., these instances
become unlabeled. The obtained training data is then used
to train a classification model, which is then used to predict
labels of the test instances. Note that the test instances of the
unknown activities should be ideally predicted as a separate
“unknown class”.

Figure 6 shows the results for m = 5, while varying the num-
ber of instances per class l. As expected, with the increasing
amount of labeled data, mPUL improves its prediction perfor-
mance. However, this is not the case with SVM and ST. This
is mainly caused by these classifiers not being able to detect
the unknown activities. Since we can observe only five activ-
ities in the training data, the remaining 14 activities remain
unobserved. Thus, instances of all these 14 activities should
be predicted as the unknown class. However, since both SVM
and ST make a CW assumption, they will try to label these in-
stances as one of the five observed activities resulting in high
number of false positives.

One would expect that the threshold-based approach STT
would perform significantly better than SVM and ST, since
it theoretically has the capability of detecting unknown ac-
tivities. However, as discussed in the previous section (Fig-
ure 4b), learning from a non-representative set of instances
will lead to learning an biased decision boundary. Thus, us-
ing a threshold-based classifier provides only an insignificant
improvement.

Amount of Known Classes
In the following, we fix the number of labeled instance l = 15
and analyze the behavior of mPUL under different number of
observed classes m. As shown in Figure 7, mPUL performs
well for all values of m, while the other classifiers perform
poorly when only a few activity classes are observed. As dis-
cussed in the previous subsection, this is mainly caused by
many unobserved activities being predicted as one of the ob-
served activities.

Obviously, mPUL achieves the highest improvement in cases
of small m. On the other hand, for m = 19, mPUL per-
forms worse than the other classifiers. Note that m = 19 cor-
responds to the Closed-World condition, where we assume
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Figure 6: The training data contains instances of only five
activity classes (m = 5). Thus, SVM, ST and STT do not
improve their performance even when more labeled data is
available. On the other hand, since mPUL does not rely on
observing all activity classes, it performance improves with
the increasing amount of labeled data.
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Figure 7: mPUL significantly outperforms other classifiers
when only a small number of activity classes are observed in
the training data (m � M). However, the other classifiers
performs better if we can assume that we can collect labeled
training data of all activities a user performs in her everyday
life (m =M ).

that the training data contains instances of all possible activ-
ity classes. Thus, if we can assume that we can obtain labeled
data from all possible activities user perform in everyday life,
the traditional supervised and semi-supervised techniques are
preferable. However, in scenarios where the goal is to rec-
ognize a set of activities of interest (especially when this set
is small), mPUL significantly outperforms the traditional AR
models.

Avoiding False Positives
To better understand the performance of the classifiers, Fig-
ure 7 further shows the precision and recall of STT and mPUL
for the previous experiment (SVM and ST exhibits a similar
trend and therefore is omitted from the following discussion).
For mPUL, both precision and recall remain at a similar level
for any number of observed activity classes. For STT, recall
remains the same, while the precision suffers with decreasing
m. This is caused by the increase of false positives when only
a few classes are observed in the training dataset.
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Figure 8: When a STT model is trained using only a small
number of classes, the model will make many false positive
predictions, resulting in low precision.

The above observation is more obvious when we study the
misclassifications for individual activities. Suppose we are
interested in recognizing when a user is exercising on a step-
per [2]. To train a model, we ask the user to collect data for
a few stepping sessions and additionally a few not-stepping
sessions while performing activities such as sitting, standing,
walking and running, totaling m = 5 activities. Additionally,
we passively collect a large amount of unlabeled data while
the user carries the sensing device during her everyday life,
with no additional activity labels.

Table 1a shows the confusion matrix of STT model trained on
the above-described dataset. For simplification, we merged
classes other than stepping into “not-stepping” class. From
the results we can observe that STT falsely classifies many
not-stepping instances as stepping, resulting in high number
of false positives. Table 2 shows the number of these false
positives in each class. From the results, we observe that
the false positives are mainly caused by the instances from
classes not observed in the training dataset such as playing
basketball, ascending stairs, etc.

Table 1b shows the results for the mPUL model. From the
results we can observe that mPUL significantly reduces the
false positives, while introducing some false negative predic-
tions (classifying some stepping instances as non-stepping).
These false negatives are caused by instances lying close the
decision boundary and are by mPUL conservatively predicted
as an unknown activity.

Evaluating AR with Imbalanced Activity Distribution
In the following, we evaluate mPUL on a dataset collected in
a real-world scenario and study how mPUL deals with the ad-
ditional challenge of imbalanced activity distribution. For this
evaluation we use the TU Darmstadt dataset [8], which con-
tains data from one user collected for a duration of seven days
performing 33 different activities. The sensor data were col-
lected from two sensors, one placed in the user’s hip pocket
and the other on the right wrist. We use the feature extraction
method presented in the previous subsection using a sliding
window of 10 seconds and 50% overlap. Activities in this
scenario are highly imbalanced. As shown in Figure 9, the

Predicted
Stepping Not Stepping

Actual Stepping 240 0
Not Stepping 205 4115

(a) STT

Predicted
Stepping Not Stepping

Actual Stepping 233 7
Not Stepping 0 4316

(b) PUL

Table 1: Confusion matrices for predicting the stepping (ex-
ercising on a stepper) activity. mPUL significantly reduces
the number of false positives.

Not-Stepping Number of FP
playing basketball 52
ascending stairs 35
rowing 34
exercising on a cross trainer 27
descending stairs 9
moving around in an elevator 7
walking on a treadmill 5
jumping 2

Table 2: Number of False Positives (FP): Number of not-
stepping activity instances, which were predicted by STT as
stepping.
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Figure 9: The TU Darmstadt dataset is highly imbalanced;
the dataset is dominated by one frequent activity.

user was sitting at their desk (activity number 14) 73% of the
time.

For the evaluation, we extend the traditional leave-one-day-
out cross validation in the following manner (as illustrated in
Figure 10). In each iteration, we use six days of data for train-
ing and one day for testing. In the training dataset, we use
labels collected during one day, while keeping the remaining
five days unlabeled.

The imbalanced activity distribution motivates us to use
macro-F1 score as the evaluation metric instead of accuracy,
which has been commonly used in existing AR work [8, 10].
Using the above leave-one-day-out cross validation method,
SVM achieves an accuracy of 0.74 but a macro-F1 score of
only 0.17. The high accuracy might lead one to believe that
the AR model is performing well. However, when looking
at the classifier’s performance for each activity class individ-
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Figure 10: In each cross validation iteration, we use one
day of labeled data and five days of unlabeled data to train
a model, which is then evaluated on the remaining one day.

ually as shown in Figure 11, we can observe that the model
performs well only on the small set of more frequent activi-
ties, while performing poorly on the others. Due to this fact,
the macro-F1 is low.

In imbalanced problems, accuracy typically evaluates the
strength of the classifier with respect to the frequent classes,
whereas macro-F1 score weighs all classes equally. Since we
are interested in the overall performance of the AR system
(including its performance of recognizing infrequent activi-
ties), macro-F1 is more informative evaluation metric.

The TU Darmstadt dataset consists of labeled data of 33 ac-
tivities. Collecting such training data is very labor-some and
in many scenarios not necessary as one might be interested in
only recognizing a small subset of activities of interest. In the
following, we study the case when only a subset of activities
is actually annotated.

We first sort the activities based on their count of occurrences.
We select m activities with highest number of occurrences
and discard labels of all other activities (thus making them
unlabeled). Thus, the training data contains labeled instances
ofm activities from one day, unlabeled data of unselected ac-
tivities from the same day and additional unlabeled data from
the other five days. We train STT and mPUL classifiers from
this training dataset and test them on the dataset of the re-
maining one day. Figure 12 shows the difference in macro-F1
between mPUL and STT. For small m, mPUL achieved over
0.2 macro-F1 score improvement, while for large m, mPUL
achieves a comparable or even worse performance than STT.
These results are directly correlated with the number of in-
stances belonging to the unknown class in the test data. For
m = 3, only the three most frequent activities are observed
and therefore, instances of the remaining 30 activities should
be predicted as an unknown class. Instances of these 30 re-
maining activities represent approximately 25% of the test
dataset. Due to the high number of instances belonging to the
unknown class, mPUL significantly outperforms STT, since
it can better detect unknown activities. On the other hand,
once more activities are observed in the training data (high
m), the number of instances belonging to the unknown class
decreases and the advantage of mPUL becomes negligible.
Furthermore, since mPUL is designed to operate under the
assumption that there are activities of unknown classes, it
will conservatively assign uncertain instances to the unknown
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Figure 11: Through the F1 score we observe that a traditional
classifier is optimized towards achieving good performance
on more frequently occurring activities.
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Figure 12: When only a small number of activities are ob-
served, a large amount instances belong to unknown classes
(e.g., form = 3, 25% of test instances belong to the unknown
class). In such cases, mPUL is by 0.2 macro F1-score better
than STT, since it can effectively detect instances of these un-
known classes.
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Figure 13: STT outperforms mPUL on the most frequent ac-
tivity number 14, while mPUL achieves a comparable or bet-
ter result on the remaining activity classes, especially on de-
tecting the unknown class (represented as 0).

class. This behavior can, however, degrade the performance
of the AR system for high m.

Figure 13 shows the F1 score of each individual activity for
m = 7 (0 represents the unknown class). First we observe
that mPUL performs worse than the STT for the most fre-
quent activity number 14, while achieving a comparable or
better result on all the other activities. This can be explained
by the fact the traditional classifiers (including STT) are op-
timized towards increasing accuracy, i.e. increasing the per-
formance for the most frequent activities.

Since activity 14 appears 73% of the time in our dataset, hav-
ing labeled training data of this activity class will help the
system avoid making misclassifications. However, consider
the case, when the activity 14 is not among the activities of
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Figure 14: By not observing the frequent activity number 14
in the training dataset, we observe a significant degradation
of STT. On the other hand, the performance of mPUL re-
mains approximately the same, since it can better detect the
unknown class and therefore avoid making false positive pre-
diction on the known classes.

interest. Thus, the training dataset does not have any labeled
instances of this class. Figure 14 shows the F1 score for a
similar configuration as above, except excluding the activity
14 from the training dataset. As we can observe the F1 scores
of mPUL remained approximately the same. However, STT
performance is significantly degraded. The reason is that the
system does not have any information about the activity 14.
Ideally, the system should assign instances of activity 14 to
the unknown class. However, STT performs poorly at detect-
ing instances of the unknown classes. Thus, most of these
instances will be incorrect assigned to one of the known ac-
tivities. This results in a large number of false positives espe-
cially due to the high number of occurrences of activity 14.

DISCUSSION
When to use or not use mPUL: mPUL is suitable for scenar-
ios where we want to recognize a small set of activities of
interest and have labeled data only for these activities. mPUL
achieves a significant improvement over the traditional ap-
proaches especially in cases when the activities of interest are
infrequent. In such cases, there are a large number of in-
stances of unknown activities, which are prone to be falsely
predicted as the activities of interest. On the other hand,
mPUL does not bring any improvement in cases when we
can collect labeled data of all activities a user performs in her
everyday life.

Collecting unlabeled data: In this work, we assume that the
training data contains unlabeled instances of most activity
classes. One of the ways for obtaining such unlabeled dataset
is to build an AR model from the initial training dataset and
deploy it in the real world. Once the system is in use, we can
collect additional unlabeled data while the user carries the
sensing device in her everyday life. Even though collecting
unlabeled sensor readings does not require any human label-
ing effort, one still needs to consider the cost with respect
to the energy consumption of the sensing device. This can
be minimized by collecting the sensor readings only when
the AR system is used to recognize activities. In such cases,
the system needs to capture sensor readings to make the pre-
diction. Instead of discarding these sensor readings after the
prediction, we keep them for future update of the AR system.

Computational complexity: Training a mPUL model involves
training m binary classifiers and estimating the scaling con-
stant c. The computational complexity mainly depends on the
efficiency of training and prediction of the base classifiers.
However, the training and prediction complexity of mPUL
is comparable to models such as Multi-class SVM, which
also uses the one-vs-other strategy. The main difference is
that mPUL uses the additional unlabeled data for training. In
the case that the unlabeled pool is large, additional questions
arise such as: how much unlabeled data is sufficient and can
we identify and sub-select relevant unlabeled instances for
training to reduce the computation overhead? In future work,
we will conduct additional experiments to address these open
questions.

Recognizing infrequent activities: As shown in this work, rec-
ognizing infrequent activities is a challenging task. First,
the existing classifiers are optimized towards increasing ac-
curacy, thus, improving the recognition performance on fre-
quent activities. Secondly, we typically do not have a lot of
labeled training data for infrequent activities. mPUL can help
to a certain degree to improve an AR performance by avoid-
ing false positives (i.e., avoid predicting unknown activities
as one of activities of interest). However, further research
is needed to combine mPUL with learning paradigms such
as attribute-based learning [15] to overcome the challenges
associated with learning from a small number of training in-
stances.

Active Learning with mPUL: The proposed mPUL uses unla-
beled data to recognize whether an incoming instance belongs
to a known or an unknown activity. This capability can be ex-
tended by integrating active learning to ask the user to provide
labels for the unknown activities. This is significantly differ-
ent from the existing active learning work, which mainly uses
the unlabeled data for finding uncertain instances lying close
the decision boundary of the known activity classes. In the
future work, we will explore the integration of mPUL with
active learning to accelerate the discovery and learning of un-
known activity classes.

CONCLUSION
In this work, we show that traditional AR systems achieve
poor performance in many Open-World scenarios. Errors
are mainly caused when handling instances from classes for
which no labeled training data is available. Our proposed
mPUL approach addresses this issue by assuming that the
training data contains unlabeled data of these unobserved
classes. By leveraging the unlabeled instances using mPUL,
we showed that we can improve the performance by signifi-
cantly reducing the number of false positive predictions cause
by unknown classes.
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