
A Coding-Theoretic Approach for Efficient Message
Verification Over Insecure Channels

∗

David Slater∗, Patrick Tague∗, Radha Poovendran∗, Brian J. Matt†
∗Network Security Lab (NSL), Dept. of Electrical Engineering

University of Washington, Seattle, WA, USA
†Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA

{dmslater, tague, rp3}@u.washington.edu, brian.matt@jhuapl.edu

ABSTRACT

We address the problem of allowing authorized users, who
have yet to establish a secret key, to securely and efficiently
exchange key establishment messages over an insecure chan-
nel in the presence of jamming and message insertion at-
tacks. This problem was first introduced by Strasser, Pöp-
per, Čapkun, and Čagalj in their recent work, leaving joint
consideration of security and efficiency as an open problem.
In this paper, we present three approaches based on coding
theory which reduce the overall time required to verify the
packets and reconstruct the original message in the pres-
ence of jamming and malicious insertion. We first present
the Hashcluster scheme which reduces the total overhead
included in the short packets. We next present the Merkle-
leaf scheme which uses erasure coding to reduce the average
number of packet receptions required to reconstruct the mes-
sage. We then present the Witnesscode scheme which uses
one-way accumulators to individually verify packets and re-
duce redundancy. We demonstrate through analysis and
simulation that our candidate protocols can significantly de-
crease the amount of time required for key establishment in
comparison to existing approaches without degrading the
guaranteed level of security.

∗This work is supported in part by the following
grants: ARO MURI, W911NF-07-1-0287; ARO PECASE,
W911NF-05-1-0491; and ARL CTA, DAAD19-01-2-001.
This document was prepared through collaborative partic-
ipation in the Communications and Networks Consortium
sponsored by the U. S. Army Research Laboratory under the
Collaborative Technology Alliance Program, DAAD19-01-2-
0011. The U. S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstand-
ing any copyright notation thereon. The views and conclu-
sions contained in this document are those of the author
and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research
Laboratory or the U. S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’09, March 16–18, 2009, Zurich, Switzerland.
Copyright 2009 ACM 978-1-60558-460-7/09/03 ...$5.00.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
security ; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—wireless communication;
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms

Algorithms, Performance, Reliability, Security

Keywords

Insecure channels, message verification, jamming, insertion
attacks

1. INTRODUCTION
Wireless network communications are critically vulnerable

to denial-of-service (DoS) attacks [1]. Due to the broadcast
nature of the wireless channel, an adversary can transmit
signals to interfere with those of authorized users, thus jam-
ming valid communication. With a variety of methods to
choose from (constant, reactive, pulse, etc.) [27], exten-
sive research has shown that mounting jamming attacks is
straightforward and resource efficient [1, 25]. Additionally,
an adversary can utilize cross-layer information to perform
more devastating jamming attacks by targeting specific lay-
ers (MAC, link, network) [8, 12]. Alternatively, an adversary
can maliciously insert packets into the wireless channel, of-
ten referred to as a pollution attack [4, 11], causing erroneous
message reception and reducing throughput.

In response to jamming, numerous mitigating protocols
have been proposed, such as spread spectrum and beam-
forming. The latter method uses specialized hardware (di-
rected antennas) and the geometric distinction of senders to
distinguish between jamming and valid signals [13]. Direct-
sequence spread spectrum (DSSS) and frequency hopping
spread spectrum (FHSS) [18, 20] take advantage of prior
shared secrets between the sender and receiver to minimize
adversarial interference, forcing the adversary to send in-
terfering signals randomly. The reliance on shared secret
information for jamming mitigation requires security asso-
ciations to be formed between the communicating parties
before the adversary’s arrival or through a secure channel.
In ad-hoc networks, where adversaries may be present prior
to deployment, topology and node associations are highly
dynamic, and specialized hardware may not be available,
these mitigation techniques are not suitable.

In order to mitigate the effects of pollution attacks, the
receiver must be able to verify the source of individual mes-
sages. However, the exchange of lengthy messages, such
as those including public-key signatures, is critically vul-
nerable to reactive jamming attacks in which the adversary
starts jamming once a packet transmission is overheard [26].
Hence, there is a direct conflict between mitigation of pol-
lution attacks and resilience to reactive jamming. Without
cryptographic methods to verify the packets’ origins, such
as Merkle trees [24] and distillation codes [10], the receiver
cannot distinguish between valid and maliciously inserted
packets. This results in an exponential number of computa-
tions to find the subset of valid fragments. Furthermore, the
inability to verify packet origins invalidates receiver feedback
channels. With these added difficulties, it becomes impossi-
ble to perform a typical key exchange.

In the seminal work of Strasser, Pöpper, Čapkun, and
Čagalj [23], the circular dependence between secure key ex-
change and DoS mitigation was first noted. They proposed
a communication protocol called Uncoordinated Frequency
Hopping (UFH), where the communicating parties listen
and send on randomly selected orthogonal channels, caus-
ing random jamming to be the optimal adversarial response.
Here, a message is broken into fragments, which are repeat-
edly sent across random channels. They demonstrate that
even if the adversary can jam a large fraction of channels,
the communicating parties are still able to achieve a band-
width inversely proportional to the probability of successful
jamming. In addition to the UFH communication model,
the authors proposed a secure fragment verification scheme,
henceforth referred to as SPCC. In this scheme, packets are
logically connected forming a hash chain, where each packet
includes the hash of the next packet, and the final packet in-
cludes a hash of the first message fragment. This allows ver-
ification of individual packets, lowering the computational
complexity from exponential to linear, and ensuring that a
valid chain must originate from a single source.

We address the same problem of key establishment from
a performance standpoint, with the intent of improving the
communication efficiency of fragment verification while main-
taining the security of the scheme. We employ the same
framework, using the UFH protocol for our communication
model and the SPCC scheme as a performance benchmark.
We propose three candidate schemes for improved efficiency,
with tradeoffs based on various metrics. Specifically, we are
interested in the communication time, sender complexity,
and receiver complexity both in the presence and absence of
an adversary. We then present an analytical basis for our
results, and illustrate their tradeoffs through a simulation
study.

The remainder of the paper is organized as follows. In
Section 2, we revisit the UFH protocol and SPCC scheme,
and present our communication and adversarial models. We
review prerequisite material in Section 3. In Section 4, we
present candidate protocols. Then in Section 5, we analyze
the efficiency of proposed protocols and compare to previous
work. We conclude in Section 6.

2. COMMUNICATION & ADVERSARY

MODELS
As we are utilizing the same communication framework as

given in the seminal work [23], we will review the particulars

Table 1: A summary of notation used.

Symbol Definition

c number of orthogonal communication channels

p probability of successful jamming

m message length (bits)

l packet payload (bits)

s fragment verification security strength (bits)

k number of message fragments

V number of sender’s (valid) packet receptions

Z number of total packet receptions

t normalized time, average packet reception time

h(·) hash function

Hk kth harmonic number, Hk =
k

X

i=1

1

i

(a, b) erasure code mapping a data to b coded packets

q probability of sending a header packet (Merkle)

w witness (distillation codes)

of the UFH protocol, revisit the SPCC scheme, and state our
additional assumptions. The notation used throughout this
work is summarized in Table 1.

2.1 Communication Model: UFH
We make the following assumptions, as in [23]. We con-

sider a sender and a receiver attempting to communicate
with each other using a set of c orthogonal channels. We as-
sume that each user has the ability to transmit on one set of
channels and listen on a different set of channels, assuming
the time required to switch between channels is negligible.
For this work we consider the case where the size of each
set is one. The communicating parties have no shared se-
crets before key establishment, nor do they have knowledge
of each other’s public keys, but they do have certificates
from a trusted authority, allowing them to authenticate key
establishment messages from valid parties.

Messages of m bits originating at the sender are broken
into k fragments and placed in k packets of size l bits, each
labeled with a fragment number to reduce complexity of
message reconstruction. We assume that l is sufficiently
small to provide immunity to reactive jamming and that
the adversary cannot intelligently modify packet contents
by jamming precise bits. In UFH, the sender continually
cycles through the k packets, sending them on randomly se-
lected channels. Meanwhile, the receiver listens on random
channels for long periods of time, where we assume that the
probability of switching channels during a packet reception
is zero. To compensate for lost packets, the sender contin-
ues re-sending all fragments until the entire response mes-
sage can be decoded. Instead of sending acknowledgments
(ACKs) or requests (REQs) for individual fragments, as they
would be indistinguishable from those sent by the adversary
over the un-authenticated channel, the receiver sends an au-
thenticated ACK implicitly through the key establishment
response. This is done using the same UFH technique once
the initial message has been received, reconstructed, and au-
thenticated. The logical connection between the sender and
receiver in this exchange of key establishment messages is
illustrated in Figure 1. An example of the key establish-

����������� 	
������
 �����

����������� ����� �"!$#%��&��(')�*�+�+�-,��

�����.����� ���$� ��!�#/��&��$0��*��1(23&��+�

454 4687 6*96*9 : 76-9 : ;63<68;

6 7 6 96 9 : 76 9 : ;6 <6 ; 454 4

Figure 1: The logical exchange of key establishment

messages between the sender and receiver requires

only two message exchanges. However, each mes-

sage is disassembled into a collection of k fragments

fi of small enough size to provide resilience to reac-

tive jamming attacks.

ment message is the authenticated Diffie-Hellman protocol
discussed in [23] in which each of the sender and the receiver
includes its identity and public key, a signature of the public
key, a timestamp, a contribution to the shared key, and a
signature of the shared key contribution.

The adversary has the ability to constantly jam up to a
fraction p of the c channels, which if randomized effectively
jams each packet with probability p. We assume p < 1,
as communication is impossible if p = 1, as in the case of
constant, wideband jamming. Alternatively, the adversary
can insert a large number of malicious packets into commu-
nication channels. We assume that the cost of adversarial
insertion of a packet is greater than the cost of jamming a
packet. As a consequence, we assume that the adversary
prefers to solely jam whenever the receiver is computation-
ally capable of detecting and eliminating packet insertion.

From the adversary’s perspective, communication via UFH
is identical to key-based frequency hopping. This reduces
the adversary’s best response to random jamming, which for
p < 1 always allows a positive throughput. Specifically, the
probability of correctly receiving a message is then (1−p)/c.
We assume that the number of channels c is sufficiently large
such that the probability of collisions between the sender’s
transmissions and receiver’s replies is negligible. Finally, we
assume that (1 − p)/c is sufficiently small, such that the
probability of receiving multiple packets on the same cycle
of k packets is negligible, and thus each packet reception is
independent of the others.

2.2 SPCC Scheme, Revisited
The SPCC scheme is presented in [23], where a hash chain

is used to verify packets originated from the same source. By
including the (length s) hash of each packet in the preced-
ing packet, the adversary is prevented from inserting mali-
cious packets in the chain after valid packets, greatly sim-
plifying the verification complexity. Additionally, the final
packet contains a hash of the first message, disabling the ad-
versary’s ability to insert malicious header packets. Thus,
through this circular method, the entire chain can be verified
as originating from the same source.

In this scheme, the message of length m is broken into k
fragments based on the packet size l, given by k = dm/(l −
s)e (assuming l > s). Thus, packets consist of a fragment of
length (l − s) and a hash of length s. Since the message is
fragmented among all packets in the chain, the reception of
all fragments is necessary for verification.

The maximum verification computation for this scheme
occurs at the receiver, and is equal to Z hash operations in
the worst-case, where Z is the total number of packet recep-
tions. In parallel to this, the maximum number of message
authentications at the receiver is bZ/kc, corresponding to
the case when all packets are distinct and form complete
hash chains.

2.3 Communication Efficiency
In order to prevent pollution attacks, fragments are veri-

fied with cryptographic functions of security level s bits. We
assume that s is sufficiently large to prevent cryptanalysis.
We note that the depending on the scheme used, the actual
length of the cryptographic block may vary. For instance,
while a hash of length s bits has security level s against
pre-image attacks, the RSA signature of equivalent security
level has a length of 4s bits.

Using UFH as our communication model, we measure the
communication efficiency of a given scheme according to the
time it takes for the receiver to receive a sufficient number of
fragments and decode the key establishment message. We
normalize this by the average time between packet recep-
tions, so that the time t to complete a message transmission
equals the expected number of valid packet receptions E[V]
needed to correctly decode.

3. BACKGROUND
Here, we present relevant background information that

will form the basis of the protocols we present. Applying
techniques from pollution attack mitigation in peer-to-peer
(P2P) networks and recasting them in the current context,
we extract the following tools: erasure coding to correct for
missing fragments, Merkle trees to identify incorrect frag-
ments, and distillation codes to verify the origin of each
fragment.

3.1 Erasure Coding
Erasure coding [21] adds redundancy to a message in or-

der to provide resilience to erroneous and missing fragments,
thus requiring only a fraction of the coded message needing
to be received correctly. An (a, b) (perfect) erasure code
takes a data symbols and adds (b − a) coding symbols, for
a total of b symbols. In order for original message to be
decoded, a total of a symbols need to be received (the same
as in the uncoded case). Since erasure coding can only cor-
rect for missing symbols in known locations, maliciously in-
serted or out-of-order fragments will result in decoding er-
rors. Hence, the order of packets must be verified before
decoding.

Perfect erasure coding, such as Reed-Solomon coding [21],
is fairly expensive, though still manageable for moderate
values of b, at O(b2) operations to decode. Near-optimal
erasure coding, such as Tornado coding [5], Raptor coding
[22], or LT coding [14], is a linear-time operation (O(b)), but
requires a+ε symbol receptions. Since the focus of this work
is communication efficiency, we use perfect erasure coding
for our protocols.

3.2 Merkle Trees
A Merkle tree [16] is a binary tree of hash values, contain-

ing no more than 2k hashes for a collection of k fragments.
The purpose of the tree is to efficiently verify the message
fragments. The leaf nodes of the tree are given by the hash
values of their respective fragments. Then neighboring pairs
of nodes are hashed together to form their parent nodes,
which is repeated until a single root node is left, which is
signed by the originator. In order to determine the valid-
ity of the message, it is only necessary to verify that the
root node received matches the corresponding hash of the
message. However, if these do not match, the receiver can
determine erroneous fragments through a binary search of
the Merkle tree.

3.3 Distillation Codes and One-Way Accumu-
lators

A distillation code [10] can be used to verify if a group of
packets share the same origin. This verification step does
not require knowledge of the sender’s public key, allowing
this verification to take place prior to message authentica-
tion. The cryptographic overhead used by a distillation code
is equivalent to twice the size of the private key used, as op-
posed to four times the number of security bits, in the case
of RSA and ECDSA signatures. In this work we consider
ECDSA, which has a significantly smaller public key than
RSA [17]. Distillation codes are based on one-way accumu-
lators, of which we will review the necessary properties.

An accumulator [2, 3] is a two-to-one collision-resistant
hash function h(u, x), mapping from U × X to U , with the
property

h(h(u, x2), x1) = h(h(u, x1), x2) for all x1, x2 ∈ X

known as quasi-commutativity. The implication of quasi-
commutativity is that given an arbitrary starting value u
and a set X of fragments, the result of sequentially hashing
all fragments x ∈ X is the same regardless of the order they
were hashed in. In other words, it is the accumulated hash
of the set X. An example hash function which demonstrates
quasi-commutativity is the RSA accumulator h(u, x) = ux

mod n.
Accumulators can be used to generate a witness w for a

fragment x that can verify x ∈ X, with X being the set of
fragments originated from a particular source. To construct
the witnesses w1 for a fragment x1 ∈ X, the sender picks a
random u and computes

w1 = h(u, X − x1) = h(...h(h(u, x2), x3)..., xk),

accumulating all messages in X except for x1. This is re-
peated for all of the remaining messages in X, resulting in
k(k − 1) hash operations. In verifying the witness,

h(wi, xi) = h(h(u, X − xi), xi) = h(u, X)

for all i. In order to determine two fragments xi and xj

belong to the same set X, the receiver verifies h(wi, xi) =
h(wj , xj). In order for an adversary to insert a malicious
fragment into a set, it is necessary to find a collision h(u∗, x∗)
= h(u, X), which would violate the collision-resistance prop-
erty.

=�> ?A@+BDC*E�F�G�H�I
J I�ELK8MONPC*QOBD@

=�> ?�@RB�C3E�F�S�H�I
J IDERK8MONPC3Q�B+@

T K$@+B�U8> ?A@RB"C8E�HOI
V J IDELK3M�NWC3Q�BD@

X X XX X X Y�Z [+\] X X X Y8Z [+^] X X X Y8Z _�]

Figure 2: The Hashcluster scheme is illustrated for

arbitrary sized clusters. The last packet in each clus-

ter contains the hash of all packets in the next clus-

ter, and the final cluster contains a hash of the entire

message.

4. VERIFICATION PROTOCOLS
Since the SPCC scheme requires all fragments in order

to decode and fragments are received randomly, there is a
high degree of redundancy in received fragments, as the au-
thors pointed out in Section 3.4 of [23]. While the receiver
only needs k fragments to authenticate the message, the re-
ceiver will on average receive kHk fragments, where Hk is
the harmonic number of k, that scales as k log2(k). Thus,
for even a moderate value like k = 11, the average number
of received fragments t is greater than 3k. Our aim is to op-
timize for communication efficiency, while maintaining the
level of security guaranteed by the SPCC scheme.

Here, we present three approaches for efficient verification
of message fragments. The first scheme focuses on mini-
mizing communication time through reducing the necessary
number of fragments, without impacting sender complexity.
The purpose of the second scheme is to reduce communi-
cation time without impacting receiver or sender complex-
ity. The final approach directly optimizes for communication
time, keeping the complexity static even under adversarial
attack.

4.1 Hashcluster Scheme
We propose Hashcluster, a generalization of the SPCC

scheme, where blocks of packets are hashed instead of indi-
vidual packets, as shown in Figure 2. Thus, the nth packet
in each cluster will contain the hash of the next n packets,
which will likewise contain the hash of the following n pack-
ets. The final packet contains the hash of the entire message.
The number of packets is then given by k = dm/(l−(s/n))e.
The gain is in reducing the fraction of the packets devoted
to hash information, thereby reducing the total number of
fragments and the total transmit time. An auxiliary benefit
of this is a reduction in the size of Hk and therefore the frac-
tion of redundant packet receptions. Like the SPCC scheme,
all packets need to be received for decoding.

Since clusters are hashed instead of individual packets,
it is necessary to attempt to verify every combination of
packets in a cluster. To verify a hash cluster of length n
packets, the receiver is forced to try a polynomial number
of combinations of degree n, resulting in (Z/n)n hash op-
erations in the worst case. In the absence of adversarial
insertion, however, the number of hash operations reduces
to dk/ne. Thus, the trade-off is a significant increase in re-
ceiver computational complexity during an insertion attack.
For moderate values of n this becomes an unsurmountable
challenge. Furthermore, as n grows, the fraction of space
devoted to hash values decreases, thus diminishing the dif-
ferential gain in increasing n. As in the SPCC scheme, the
maximum number of authentications is bZ/kc.

`5` `
acb
d�e f.g h

a g�i

d�e fkj h
acb

d�e fkg i h

a g

d�e fkj h

f gf b

a j

d�e f.l h

f j

a)m
dOe a b h

f m

f b i f g�i

Figure 3: We illustrate an insertion attack on the

SPCC scheme, where the valid message fragment M2

is replaced by the malicious fragment M∗
2 , while the

entire message is still verified by the hashes given.

The interested reader will note a slight difference between
the Hashcluster scheme and the SPCC scheme, insofar as
the hash value of the final packet. In the SPCC scheme,
it is possible to insert malicious packets into the hash chain
without violating the hash verification, as shown in Figure 3,
thus requiring the use of secondary verification of the recon-
structed message using certificates to detect the insertion.
To prevent this attack, we modify the scheme so that the
final packet contains a hash of the entire message instead
of a hash of the first fragment. This verifies that the entire
message originated from the same source, without increasing
the verification complexity.

4.2 Merkleleaf Scheme
We present Merkleleaf, a scheme where a partial Merkle

tree is used to verify the data fragments. The aim of this
approach is to increase communication efficiency without ef-
fecting sender or receiver complexity. Since the receiver is
unable to query the sender for specific Merkle nodes and
sending the entire tree would require significant overhead,
our approach is to reduce the Merkle tree to the set of leaf
nodes. The sender transmits the leaves of the Merkle tree
in a header message and sends the key establishment in-
formation in a separate data message. Since both must be
received to decode and respond, they are sent in conjunc-
tion with each other. The header message is broken into
fragments and sent using the SPCC scheme, implying that
all header fragments must be received in order to decode.
With the header message received successfully, the hashes
of all data packets are known and can therefore be verified
in any order. Individual verification of data packets lends
itself to erasure coding, which avoids the necessity of receiv-
ing all data fragments by only requiring a subset of coded
fragment receptions.

Compared with an uncoded scheme, which for a fragments
required t = aHa total receptions, an (a, b) erasure coded
scheme would require t = b(Hb − Hb−a), which even for
b − a = 1 significantly reduces t. Note that as b → ∞,
t → a. Intuitively, decoding a (a,∞) code would require infi-
nite computation, and equally important, a correspondingly
large header message size. A consequence of using erasure
coding on the data fragments is that all coded fragments
need to have corresponding hashes, resulting in a larger
header message than without coding, thus implying the need

n�o

p%q8r3sOq-t�u�r3v-w�qyxDz

u�r3v-w�qyx-{ko

| | |
}-~
}3� �(� �

}y�
}3� �(�

}y� � ~
}3� �$� �

}y�
}3� �(� �

} �
}3� � � �

u�r8v*w�q-xy{���u�r3v-w�qyx-{�� u�r8v-w�qyx-{��"� o�u�r8v-w�qyx-{��

n$�n���� on8�n��

�%� ryx�r.��tRr3�(�
q-�(x�z ��� ���.� sO� �O�%��t+r3�(��q*�(xDz

p%q8r3sOq-t� ¡q8z�zLr3�Oq�¢

}-~ }y�} �

}8� £L~ � }8� £ � � }3� £+¤ �}3� £L¤ � ~ �}8� £L� � | | |

Figure 4: The Merkleleaf scheme is illustrated. The

header packets are chained together using the SPCC

scheme, forming a collection of hashes of the en-

coded data fragments. Upon collecting the header

packets, the receiver can verify any encoded data

fragment. The arrows between packets and frag-

ments represents the relationships due to hash op-

erations.

to fine-tune the coding rate to ensure an ideal Merkleleaf im-
plementation.

The optimal (a, b) coding rate for the data message is
determined experimentally by searching through all possi-
bilities, which are bounded by the cases of no coding, and a
header message equal to the the size of the original message.
Additionally, the probability q that a header packet is sent,
with a corresponding probability of 1−q for a data packet, is
found through numerical methods and further developed in
Section 5. An overview of the scheme is shown in Figure 4.

4.3 Witnesscode Scheme
We propose Witnesscode, an alternative approach based

on distillation codes [10], which can be used to individually
verify all packets without a header message. This allows era-
sure coding to be performed over all the packets and sets no
limit on the number of coding fragments, which can therefore
nearly eliminate the redundancy of received fragments. To
frame this in the context of UFH, the sender will generate a
set of coded fragments to send, with witnesses computed for
each of them, allowing the receiver to independently verify
each fragment received.

Since the sender can generate k (fragment, witness) pairs
at a cost of k(k − 1) hash operations and is unconstrained
by a header message for coding length, we perform per-
fect erasure coding on the set of message fragments with
a large number of coding fragments. This forces t = b(Hb −
Hb−a) → a as b → ∞, dramatically increasing the com-
munication efficiency due to the elimination of redundant
fragment receptions. A limiting factor in perfect erasure
coding is the O(b2) computations for the receiver to decode
a message. It would also be possible to use near-perfect
erasure coding, which would have a complexity of O(b), al-
lowing longer codes at the expense of additional fragments
needed for decoding. However, since the cost of generating

b witnesses is O(b2), we keep the receiver complexity of the
same order.

For the Witnesscode scheme, we use the one-way accu-
mulator based on bilinear pairings given by the function f
in Section 4 of [17], resulting in a witness w of size 2s bits.
This requires k = dm/(l − 2s)e data fragments. Thus, the
drawback of this scheme is a large k, especially when l is of
the same order as s. Additionally, the verification computa-
tion at the receiver is then Z accumulator operations and at
most bZ/lc decoding (O(b2)) and authentication operations.

5. ANALYSIS & SIMULATION
In order to compare the candidate schemes with the SPCC

scheme in terms of communication efficiency, we use the ex-
pected number of packet receptions t = E[V] as a metric,
where V is the number of valid packet receptions. When
comparing schemes that are computationally feasible during
an insertion attack, we assume that the adversary prefers to
jam, simplifying our analysis to a pure jamming attack.

Throughout the analysis and simulations, we use a secu-
rity level of s = 112 bits for packet validations, which results
in 112 bit hashes and 224 bit witnesses. We use five differ-
ent packet payload sizes l ∈ {224, 280, 336, 448, 560}, which
includes both the data and the verification bits, and ignore
the packet frame information, which can be unnecessarily
specific to a given protocol. The other parameter we vary is
message size, which we model from m = 1000 bits to m =
4000 bits. While we might choose to vary the triplet (s, l, m),
we decided to fix s because there are only two degrees of free-
dom: the triplet (s0, l0, m0) yields the same results of com-
munication efficiency as (αs0, αl0, αm0). In order to com-
pare this analysis with the simulation given in [23], their
bluetooth environment had (s = 112, l = 280, m = 2176).

Note that the data points on the figures comparing the
various schemes have different x-coordinate values. The rea-
son for this is that we only consider data points for each
scheme where the packets are full. With the packet numbers
being discrete, only specific message sizes fully saturate the
packet space. Message sizes between data points are realiz-
able, but require the t value of the next largest data point,
resulting in a staircase function.

5.1 Hashcluster Analysis
We will first analyze the Hashcluster scheme, where we

focus on reducing the storage space devoted to hashes, thus
requiring fewer fragments and lowering received fragment
redundancy. Here, the worst case computation is (Z/n)n

hash operations, where Z is the number of received packets.
Figure 5 shows l = 280 bits (n = 1 is the SPCC scheme,
and n = ∞ is when the message is contained in a single
cluster). The most significant gain is from n = 1 to n = 2.
Raising n further gives little gain in efficiency, but increases
the complexity of the receiver by a polynomial degree at
each step. Therefore, for the remainder of the simulation,
we focus solely on the n ∈ {1, 2} cases, with the assumption
that 1

4
Z2 complexity is reasonable for the receiver.

The results are determined analytically, with the principle
component being the number of fragments k that the mes-
sage must be broken into. The difference between various
n for a fixed k is that schemes with larger n can contain a
larger message, showing they lie on the same horizontal line
t = kHk. Note that for the n ∈ {2, 3, 4} cases, their slope
is rather erratic. This is due to the addition of clusters to

1000 1500 2000 2500 3000 3500 40000

10

20

30

40

50

60

70

80

90

Message Bits

Ti
m

e
(p

ac
ke

t r
ec

ep
tio

ns
 n

ee
de

d)

280−Bit Packets: Hashcluster Comparison

SPCC (n = 1)
Hashcluster (n = 2)
Hashcluster (n = 3)
Hashcluster (n = 4)
Hashcluster (n = ∞)

Figure 5: The average number of packet receptions

for the Hashcluster scheme is evaluated as a func-

tion of the cluster size n, with the SPCC scheme

representing the performance baseline of n = 1.

the hash chain every n increases in k, where the addition
of a hash for that cluster leads to an increase in verification
overhead.

5.2 Merkleleaf Analysis
For the Merkleleaf scheme, there are two primary compo-

nents that need to be received in order to decode, the header
and the erasure coded data. Since the header packets are
combined using the SPCC scheme, the time to receive them
is of the same order (kHk). In contrast, the coded data
packets are received more efficiently. For an (a, b) code with
a data packets and (b − a) code packets, only a packets
need to be received in order to decode. In the absence of
coding, if there is only one packet left to receive, then the
probability of receiving that one (as opposed to a duplicate
of another) is 1/a, which leads to a large number of dupli-
cates. However, in this scheme, when there is one packet left
to receive, the probability of receiving that any new packet
is (b − a + 1)/b. Thus, the number of receptions becomes
Pb

i=b−a+1

b

i
= b(Hb − Hb−a)), which is significantly lower

than the SPCC scheme.
The total time t spent is then a combination of the time to

receive the header and the time to receive the data. Though
it is possible to analytically determine the expected time for
either, the joint expected time is non-trivial, because they
are dependent random processes. Specifically, the receiver
must receive all of the k header packets and any a of the
b erasure coded message packets. With probability q, the
receiver gets a header packet, uniformly from the set of k,
and with probability (1 − q), a message packet is received,
likewise uniformly from the set of b. The result of interest is
the average number of message receptions required to suc-
cessfully decode both the header and data messages. This
average quantity is derived by developing an appropriate
two-dimensional Markov chain as follows.

The Markov chain state space X consists of pairs (i, j)
such that 0 ≤ i ≤ k and 0 ≤ j ≤ b. Upon reception of a
packet when in state x = (i, j), the next state can be either
x, xi+ = (i+1, j), or xj+ = (i, j+1), so the chain is a discrete
birth-only chain [6]. In order to move from state x to state
xi+, the received packet must be one of the (k − i) header

packets that have not yet been received. Letting Xτ denote
the state of the chain at (discrete) time τ , the probability
p(x, xi+) of the state transition x → xi+ is given by

p(x, xi+) = q

„

1 −
i

k

«

. (1)

Similarly, to move from state x to state xj+, the received
packet must be one of the (b− j) message packets that have
not yet been received, yielding the probability p(x, xj+) of
transition x → xj+ given by

p(x, xj+) = (1 − q)

„

1 −
j

b

«

. (2)

The probability of the loop transition x → x is the remaining
probability p(x, x) given by

p(x, x) = 1 − q

„

1 −
i

k

«

− (1 − q)

„

1 −
j

b

«

. (3)

Now that the discrete Markov chain is set up, we can
approach the problem of computing the expected number of
packet receptions required to decode and verify the message.
This quantity is computed by defining an appropriate hitting
time [6] for the chain. We define the hitting set H as the
subset of the Markov chain state space given by

H = {(i, j) ∈ X : i = k and j ≥ a} . (4)

We define the hitting time T as

T = min {τ : Xτ ∈ H} . (5)

To compute the expected value t of the hitting time T , we
make use of an auxiliary function g(x) which gives the ex-
pected hitting time to reach H from the state x ∈ X . The
function g(x) is defined recursively [6] as

g(x) =

8

<

:

1 +
X

y∈X

p(x, y)g(y) x /∈ H

0 x ∈ H.

(6)

Substituting the three non-zero values of p(x, y) as given in
(1), (2), and (3) into (6) yields the recursive formula

g(x) =1 + p(x, xi+)g(xi+)

+ p(x, xj+)g(xj+) + p(x, x)g(x)

=
1 + p(x, xi+)g(xi+) + p(x, xj+)g(xj+)

1 − p(x, x)
. (7)

The expected hitting time t = E[T] is thus computed by
evaluating g(x) at the initial state x = (0, 0) according to
the recursive formula in (7). Further investigation into a
closed form solution for the function g(x) as in (7) for this
two-dimensional coupon collector problem is left as future
work.

Given the hitting time, it is necessary to find the optimum
number of packets to include in the header and the coding,
of which there are many. For instance, consider l = 336
bits. This leaves space for two hash values of data packets
in each header packet. Thus, if there are k header packets,
the number of coded packets is b = 2k. Let’s suppose that
we are trying to find the optimal configuration for transmit-
ting m = 2016 bits, which results in k = 6 data packets.
(If we were using the original scheme, it would take k = 9
packets) The possible triplets (k, a, b), where b is the era-
sure coded message, is {(4, 6, 8), (5, 6, 10), (6, 6, 12), (7,

1000 1500 2000 2500 3000 3500 40000

10

20

30

40

50

60

Message Bits

Ti
m

e
(p

ac
ke

t r
ec

ep
tio

ns
 n

ee
de

d)

336−Bit Packets: Witnesscode Comparison

SPCC
Witnesscode (b = 64)
Witnesscode (b = 256)
Witnesscode (b = 1024)
Witnesscode (b = ∞)

Figure 6: The average number of packet receptions

for the Witnesscode scheme is evaluated for various

coding values b, with the SPCC scheme included for

reference. The case of b = ∞ represents the optimal

coding case with infinite computational overhead.

6, 14), (8, 6, 16)}. The triplet (3, 6, 6) would be equivalent
to the SPCC scheme, because all 3 + 6 = 9 packets would
need to be received. Also, (9, 18, 18) would be pointless,
because the header contains the same amount of informa-
tion as the coded data, so there is no reason for the data
packets, but the data packet hashes should be replaced with
the data itself. In order to determine the optimal configu-
rations, for each data point we analyzed all possible triplets
and chose the most efficient. Furthermore, we determined
the optimal probability q of receiving a header packet using
numerical methods. For this example, the optimal solution
was (k, a, b) = (4, 6, 8) and q = 0.461. It was assumed that
any fractional leftover information in the header (less than
s, so insufficient to contain a hash) was discarded. This oc-
currence only took place in the 280-bit packets, where the
payload length was 2.5s.

5.3 Witnesscode Analysis
For the Witnesscode scheme, a similar analysis can be

done. The coding parameter in this scheme should be ad-
justed so that the computational complexity at the sender
and receiver are still feasible. At the sender, it takes b(b−1)
two-to-one ECC hash operations, where b is the total num-
ber of packets (data and coding). At the receiver, the Reed-
Solomon coding takes O(b2) operations. To determine an
adequate tradeoff between computation and communication,
in Figure 6, we show the results of several values of b for the
accumulator scheme with s = 112, l = 336. The SPCC
scheme is given alongside for reference.

As can be seen in Figure 6, the Witnesscode points quickly
converge to the optimal for modest values of b. For the
remainder of this work, when we discuss and simulate this
scheme, it is in reference to the b = 1024 case, because
it has a reasonable computational complexity for practical
purposes and is extremely close to the optimal in terms of
communication efficiency.

5.4 Scheme Comparison
Next, we show the bulk of the simulation results, compar-

ing the SPCC, Hashcluster (n = 2), Merkleleaf, and Wit-

1000 1500 2000 2500 3000 3500 40000

20

40

60

80

100

120

140

Message Bits

Ti
m

e
(p

ac
ke

t r
ec

ep
tio

ns
 n

ee
de

d)

224−Bit Packet Comparison

SPCC
Hashcluster (n = 2)
Merkleleaf

Figure 7: The average number of packet recep-

tions for the SPCC, Hashcluster, and Merkleleaf

schemes are compared for 224-bit payloads and 112-

bit hashes.

1000 1500 2000 2500 3000 3500 40000

10

20

30

40

50

60

70

80

90

Message Bits

Ti
m

e
(p

ac
ke

t r
ec

ep
tio

ns
 n

ee
de

d)

280−Bit Packet Comparison

SPCC
Hashcluster (n = 2)
Merkleleaf
Witnesscode (b = 1024)

Figure 8: The average number of packet receptions

for the SPCC, Hashcluster, Merkleleaf, and Wit-

nesscode schemes are compared for 280-bit payloads

and 112-bit hashes.

nesscode (b = 1024) schemes for s = 112, m ∈ [1000, 4000],
and l ∈ {224, 280, 336, 448, 560}. These are shown in Fig-
ures 7, 8, 9, 10, and 11, respectively. Note that the Wit-
nesscode scheme is not shown for the 224-bit case. This is
because in this case the witness saturates the payload of the
packet, reducing the data to zero.

To describe the benefits to each scheme, we begin with
SPCC. First, as is clear from the preceding figures, when the
message is small (close to 1000 bits), the SPCC scheme has
an efficiency roughly equivalent to the other three schemes.
Since it is the simplest to implement, and also has the least
computational requirements for the sender and receiver, it
would be preferable in this case. The reason for the SPCC
scheme performing well for small messages is that the num-
ber of packets is likewise small, thus reducing the probability
of receiving additional redundant packets. For this reason,
decreasing the message size below 1000 bits will only fur-
ther improve the SPCC scheme, making it ideal for short
messages.

1000 1500 2000 2500 3000 3500 40000

10

20

30

40

50

60

Message Bits

Ti
m

e
(p

ac
ke

t r
ec

ep
tio

ns
 n

ee
de

d)

336−Bit Packet Comparison

SPCC
Hashcluster (n = 2)
Merkleleaf
Witnesscode (b = 1024)

Figure 9: The average number of packet receptions

for the SPCC, Hashcluster, Merkleleaf, and Wit-

nesscode schemes are compared for 336-bit payloads

and 112-bit hashes.

1000 1500 2000 2500 3000 3500 40000

5

10

15

20

25

30

35

Message Bits

Ti
m

e
(p

ac
ke

t r
ec

ep
tio

ns
 n

ee
de

d)

448−Bit Packet Comparison

SPCC
Hashcluster (n = 2)
Merkleleaf
Witnesscode (b = 1024)

Figure 10: The average number of packet receptions

for the SPCC, Hashcluster, Merkleleaf, and Wit-

nesscode schemes are compared for 448-bit payloads

and 112-bit hashes.

1000 1500 2000 2500 3000 3500 40000

5

10

15

20

25

Message Bits

Ti
m

e
(p

ac
ke

t r
ec

ep
tio

ns
 n

ee
de

d)

560−Bit Packet Comparison

SPCC
Hashcluster (n = 2)
Merkleleaf
Witnesscode (b = 1024)

Figure 11: The average number of packet receptions

for the SPCC, Hashcluster, Merkleleaf, and Wit-

nesscode schemes are compared for 560-bit payloads

and 112-bit hashes.

The Hashcluster scheme is fairly computationally chal-
lenging, though this computation is only done in the pres-
ence of an adversary inserting erroneous packets. During
normal operation, or in the presence of a jamming adver-
sary, only the non-redundant packets received need to be
verified, resulting in dk/ne hashes. As long as the verifi-
cation is computationally feasible during insertion attacks,
the adversary will choose to spend its energy jamming in-
stead, and the computation will never need to be done. The
hash cluster scheme performs especially well for small packet
sizes, where using this scheme will free up a greater fraction
of the payload for data. For larger packet sizes, its effect
is less evident, as an insignificant portion of the packets are
used to store hashes.

The Merkleleaf scheme, while its gains are modest and is
suboptimal in terms of communication efficiency, has nearly
the same computational complexity of the SPCC scheme,
and overtakes it in terms of efficiency for message sizes larger
than about 2000 bits. For larger message sizes, it can take
the communication down to 80-95% of the SPCC. The only
additional computation of note is the Reed-Solomon coding
on the data packets. However, since the code length b is at
most 20 for all considered values of m and l, the O(b2) decod-
ing operation is insignificant. When it is computationally
infeasible to use the Hashcluster or Witnesscode schemes,
this becomes the optimal approach.

Finally, the Witnesscode scheme has its greatest benefit
for large packet sizes and message lengths. For the former
case, the witness being twice the length of the typical hash
has a lessened effect. For the latter case, having a large
message implies a large number of packets, which was where
the inefficiency in the first three schemes was located. In
this case, however, the coding gain is significant, because the
probability of getting a redundant packet is reduced to near
zero. On the other hand, the computational complexity is
non-trivial and must be performed regardless of whether the
adversary is or is not inserting packets. While the first three
schemes’ times t increase as O(k log2 k), the accumulator
increases as O(k) for b � a, albeit with a larger constant.

6. CONCLUSION
In this paper, we addressed the problem of allowing au-

thorized users to efficiently exchange key establishment mes-
sages in the presence of jamming and message insertion at-
tacks. This problem was first introduced and studied in [23],
and the method we refer to as SPCC was proposed. The
SPCC scheme was introduced to provide the security of the
packet verification, while communication efficiency was not
addressed. The authors have recently extended this work to
broadcast communication [19]. In this work, we jointly con-
sider the security of packet verification and the total time
required for key establishment. We proposed three candi-
date protocols for packet verification in conjunction with
the UFH communication model, leading to a reduction in
the total time required for key establishment in comparison
to the SPCC scheme. We first presented the Hashcluster
scheme which reduces the overhead included in the hash
chain used for packet verification. Next, we presented the
Merkleleaf scheme which uses erasure coding to reduce the
average number of packet receptions required without in-
creasing the computational complexity. We then presented
the Witnesscode scheme which uses one-way accumulators
to individually verify packets and reduce the level of re-

dundancy among received packets. We demonstrated the
improvements in communication efficiency through analysis
and simulation of the three proposed schemes and compared
to the existing SPCC scheme. We note that the communica-
tion efficiency of packet verification can be further improved
by combining the three proposed schemes. For example,
by creating a hybrid scheme between the Hashcluster and
Merkleleaf schemes, using the former to verify the header
packets in the latter, the average number of packet recep-
tions can be further decreased. Future work includes further
generalization of the Merkleleaf scheme using hash trees or
more general hash graphs [7] and the extension of erasure
coding to rateless erasure codes [15] aided by the use of ho-
momorphic encryption [9].

7. REFERENCES

[1] R. Anderson. Security Engineering: A Guide to
Building Dependable Distributed Systems. Wiley, 2001.

[2] N. Barić and B. Pfitzmann. Collision-free
accumulators and fail-stop signature schemes without
trees. Advances in Cryptology – EUROCRYPT ’97,
pages 480–494, 1997.

[3] J. Benaloh and M. de Mare. One-way accumulators: a
decentralized alternative to digital signatures.
Advances in Cryptology – EUROCRYPT ’93, Proc. of
the Workshop on the Theory and Applications of
Cryptographic Techniques, pages 274–285, 1994.

[4] L. Buttyán, L. Czap, and I. Vajda. Securing coding
based distributed storage in wireless sensor networks.
In IEEE Workshop on Wireless and Sensor Network
Security (WSNS), Atlanta, GA, USA, Sept. 2008.

[5] J. W. Byers, M. Luby, M. Mitzenmacher, and
A. Rege. A digital fountain approach to reliable
distribution of bulk data. ACM SIGCOMM Computer
Communication Review, 28(4):56–67, 1998.

[6] R. Durrett. Essentials of Stochastic Processes.
Springer-Verlag, Inc., 1999.

[7] P. Golle and N. Modadugu. Authenticating streamed
data in the presence of random packet loss. In Proc. of
the Symposium on Network and Distributed Systems
Security (NDSS 2001), pages 13–22, Feb. 2001.

[8] V. Gupta, S. Krishnamurthy, and M. Faloutsos.
Denial of service attacks at the mac layer in wireless
ad hoc networks. Military Communications
Conference (MILCOM 2002), 2:1118–1123, 2002.

[9] M. Hirt and K. Sako. Efficient receipt-free voting
based on homomorphic encryption. Advances in
Cryptology – EUROCRYPT 2000, pages 539–556,
2000.

[10] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. D.
Tygar. Distillation codes and applications to dos
resistant multicast authenication. In The 11th Annual
Network and Distributed System Security Symposium
(NDSS 2004), San Diego, CA, USA, Feb. 2004.

[11] J. Liang, R. Kumar, Y. Xi, and K. W. Ross. Pollution
in p2p file sharing systems. Proc. IEEE 24th Annual
Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2005), 2, 2005.

[12] G. Lin and G. Noubir. On link layer denial of service
in data wireless lans. Wireless Communications and
Mobile Computing, 5(3):273–284, May 2005.

[13] W.-T. Lin and K.-B. Yu. Adaptive beamforming for
wideband jamming cancellation. IEEE National Radar
Conference, pages 82–87, 1997.

[14] M. Luby. LT codes. In Proc. of the 43rd Annual IEEE
Symposium on Foundations of Computer Science
(FOCS ’02), pages 150–159, May 1997.

[15] P. Maymounkov. Online codes. NYU, Tech. Rep.
2002-833, Nov. 2002.

[16] R. Merkle. Protocols for public key cryptosystems. In
Proc. 1980 IEEE Symposium on Security and Privacy,
pages 150–159, Apr. 1980.

[17] L. Nguyen. Accumulators from bilinear pairings and
applications. Topics in Cryptography - CT-RSA 2005,
pages 275–292, 2005.

[18] R. A. Poisel. Modern Communication Jamming
Principles and Techniques. Artech House, 2004.

[19] C. Pöpper, M. Strasser, and S. Čapkun.
Jamming-resistant broadcast communication without
shared keys. Technical Report 609, ETH Zurich, Sept.
2008.

[20] T. S. Rappaport. Wireless Communications:
Principles and Practice. Prentice Hall, 2 edition, 2001.

[21] R. M. Roth. Introduction to Coding Theory.
Cambridge University Press, 2006.

[22] A. Shokrollahi. Raptor codes. IEEE/ACM
Transactions on Networking (TON), 14:2551–2567,
2006.

[23] M. Strasser, C. Pöpper, S. Čapkun, and M. Čagalj.
Jamming-resistant key establishment using
uncoordinated frequency hopping. In Proc. 2008 IEEE
Symposium on Security and Privacy, Oakland, CA,
USA, May 2008.

[24] C. Wong and S. Lam. Digital signatures for flows and
multicasts. In Proc. on the 6th International
Conference on Network Protocols (ICNP ’98), pages
198–209, Oct. 1998.

[25] A. D. Wood and J. A. Stankovic. Denial of service in
sensor networks. IEEE Computer, 35(10):54–62, Oct.
2002.

[26] W. Xu, K. Ma, W. Trappe, and Y. Zhang. Jamming
sensor networks: Attack and defense strategies. IEEE
Network, 20(3):41–47, May/June 2006.

[27] W. Xu, W. Trappe, Y. Zhang, and T. Wood. The
feasibility of launching and detecting jamming attacks
in wireless networks. In Proc. of the 6th ACM
International Symposium on Mobile Ad Hoc
Networking and Computing, pages 46–57, 2005.

