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ABSTRACT
Traffic is not only a source of frustration but also a lead-
ing cause of death for people under 35 years of age. Recent
research has focused on how driver assistance technologies
can be used to mitigate traffic fatalities and create more
enjoyable commutes. In this work, we consider cooperative
adaptive cruise control (CACC) or platooning, a driver as-
sistance technology that controls the speed of vehicles and
inter-vehicle spacing. CACC equipped cars use radar to fine
tune inter-vehicle spacing and dedicated short-range com-
munication (DSRC) to collaboratively accelerate and decel-
erate. Platooning can reduce fuel consumption by over 5%
and increases the density of cars on a highway. Previous
work on platooning has focused on proving string stability,
which guarantees that the error between cars does not grow
with the length of a platoon, but little work has considered
the impact an attacker can have on a platoon. To design safe
distributed controllers and networks it is essential to under-
stand the possible attacks that could be mounted against
platoons.

In this work, we design a set of insider attacks and abnor-
mal behaviors that occur in a platoon of cars. For example,
we introduce the collision induction attack where an attacker
exploits the platoon controller to cause a high-speed accident
with the car following it. To mitigate these insider attacks
we design a model-based detection scheme that leverages
the broadcast nature of DSRC. Each car uses DSRC mes-
sages from other cars in the platoon to model the expected
behavior of the car directly preceding it. If the expected
behavior and actual behavior differ the monitoring vehicle
switches to non-cooperative ACC, relying solely on radar,
to mitigate the impact of the attack. We show that our
detection scheme is able to detect many of our proposed in-
sider attacks and when combined with a well designed ACC
controller can avoid collisions. We propose combining our
detection scheme with a global reputation scheme to detect
when a car is malicious or needs maintenance.
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1. INTRODUCTION
Traffic is a growing source of frustration in most urban

areas. Traffic is also a major source of deaths due to driver
errors and inclement road conditions. The percentage of
vehicle related deaths is particularly startling for people
under the age of 35; according to the CDC for people in
the U.S. aged 5-34, traffic accidents are the leading cause
of deaths [1]. Because of this, an ever increasing body of
work [7,10,14] has explored the use of autonomous and semi-
autonomous driving, allowing for a car to pilot itself while
the passenger inside can focus on other tasks. Various tech-
nologies have enabled the rise in autonomous driving includ-
ing the declining cost of mobile computing, declining cost of
reliable radar, and the dependable emergence of vehicle to
vehicle (V2V) communication.

As autonomous cars are being developed we have seen an
increase in the ability of smart driving features like lane-keep
assist, adaptive cruise control (ACC), and blind-spot warn-
ing systems. All of these technologies do not take the driver
out of the loop but allows for safer driving by assisting the
driver. One increasingly popular feature is adaptive cruise
control which keeps a constant-headway following distance
to the preceding car by using radar. The radar’s interven-
tion allows for the car to safely maintain a constant headway
and thus reduce accidents caused by insufficient following
distance. Insufficient following distance is a major concern
since most people drive at headway under 1 second, and al-
most all motorists drive under the recommended 2 second
headway for human drivers [2].

The performance of ACC is limited to the vehicle’s oper-
ations, in particular brake lag. Brake lag is the time it takes
for a car to start decelerating after a brake signal has been re-
ceived. So if an ACC-equipped car follows at a headway less
then the brake lag time then a collision may occur. With the
advent of vehicle to vehicle communications (V2V) we can
allow ACC equipped cars to further reduce their headway.
This is enabled because the delay for the V2V communica-
tions is less then the brake lag. The decreased delay allows
for lines of cars to cooperatively decelerate safely while us-
ing small headway times. This type of formation driving is
either called cooperative ACC (CACC) or platooning. The
benefits of platooning include increased density of cars on
a highway and increased fuel efficiency of platooned vehi-
cles [8].



To date, the work on platooning has largely focused on
how to design a controller that is string stable. String sta-
bility in general is the idea that error does not grow along
a platoon of vehicles [14]. While preliminary work has con-
sidered string stability in ideal systems (e.g. no networked
communications [14] or perfect networks [20]), recent work
has explored string stability in realistic networks including
networks with delays [6], packet-based networks [11], and
stochastic networks [16].

There has been a limited set of work that has explored the
impact of attacks on platoon controllers and V2V communi-
cations [4]. In this work, we explore what happens when one
of the cars in the platoon does not behave according to the
control law. Such a vehicle could be malicious, greedy, or
even a malfunctioning benign vehicle. We are particularly
interested in an insider attack where the attacker either uses
a malignant control law or misreports information about her
behavior. We introduce a set of 5 different attacks and ab-
normal behaviors and briefly discuss their motivation and
impact on the system. One particularly devastating attack
is the collision induction attack where the attacker broad-
casts that she is accelerating while in reality, the attacker
jams on her brakes. This attack causes the preceding car to
collide at high speeds and, with high probability, results in
loss of life and assets.

Given the existence of misbehavior that can be mounted
in a platoon of vehicles we propose using a model based
detection scheme to detect and mitigate the impact of ma-
licious behaviors. We propose each vehicle model the ex-
pected behavior of the vehicle proceeding them using DSRC
information provided from cars farther up the platoon. Ve-
hicles can use this model to calculate the error between the
modeled states and the measured state of the proceeding
car. The error calculations can then be used with a simple
threshold to calculate whether an abnormality exists in the
system or not. The technique for modeling, calculating er-
ror, and thresholding can all be chosen in the design of the
system. We summarize this approach in Figure 1.

Once an attack is detected we propose that the vehi-
cle changes to a non-cooperative ACC protocol with an in-
creased headway distance to guarantee safe performance.
We are able to detect most abnormalities and are able to
avoid the collision that would be caused by the collision in-
duction attack using this technique. This detection scheme
could be combined with a global reputation system to keep
track of whether certain vehicles are often problematic.

To summarize, in this paper we make the following con-
tributions.

• We propose a set of insider attacks that can cause un-
expected behavior in platoons and may cause fatal ac-
cidents.

• We develop a platoon detection method based on up
stream DSRC communications to detect misbehavior.

• We design a two state operating mode for semi-autonomous
cars to safely transition to a non-cooperative cruise
control when attacks are being mounted.

• We simulate the above attacks, detection, and mitiga-
tion schemes to provide a proof-of-concept.

The rest of this paper is organized as follows. In Section 2
we introduce related work and in Section 3 we introduce
our system models. In Section 4 we introduce misbehaviors
along with their motivation and impact. In Section 5 we

introduce our detection scheme and in Section 6 we provide
simulation results. In Section 7 we discuss the trade-offs
and possible improvements in the detection system design.
In Section 8 we conclude the paper.

2. RELATED WORK
Two approaches are commonly used to analyze formation

driving in automotive systems. In microscopic models each
car is modeled as a point and their interaction is analyzed
while in a macroscopic model the highway system is mod-
eled as a set of pipes with the traffic modeled as a fluid [15].
Within the domain of platooning, or linear cooperative for-
mation driving, the design criteria most often used is string
stability. String stability is roughly defined as the error
between vehicles not growing as the length of the platoon
grows. In this paper we focus on linear formation driving
using a microscopic model.

Various approaches have been suggested for practically
implementing string stable platoons. Common design as-
sumptions include the number of radars used and the neces-
sary communication range. For platooning, an engineer can
use the assumption from non-cooperative adaptive cruise
controls which uses a single front-facing radar [12], implic-
itly trusting the following car. A design can also use a two
radar approach, one rear-facing and one front-facing, for a
controller [9] which balances the distance to both the pre-
ceding and following car. In this work we use a controller
with a single forward facing radar unit with an implicit trust
that the following car will not rear end us.

There are two common assumptions with respect to com-
munication range in the literature. The first is that all
cars are able to hear the leader [17], implying the range
from the leader to the last car is limited. This assumption
forces an artificial bound on platoon size, but this bound
fits into many platooning frameworks [5]. The second ap-
proach assumes only local communication from the nearest
neighbors [11] and allows for platoons of arbitrary lengths.

Considerable research has explored the impact of network-
ing on the performance of a string stable platoon of cars.
Heemels et al. [6] explore the tradeoff between network de-
lay, transmission intervals, and performance on a string sta-
ble controller. Tabbara et al. [16] introduce string stability
in a platoon of cars with stochastic communications. Zhao
et al. [19] explore the effect of stochastic disturbances in the
vehicle dynamics and how it impacts propogates in a string
stable platoon of vehicles. Segata et al. [13] have recently
explored the impact of communication performance (fading
and transmit power levels) and how communication systems
can be designed for platoons [6].

There has been limited research on attacks on platoon
controllers or attacks on v2v networks used for platooning.
In [3] an attack is designed that decreases the efficiency of a
platoon of vehicles. They show they are able to leverage the
controller to reduce the efficiency of cars around the attacker
by 20-30%. Haas [4] explored an attack on the network of a
platooned system showing that jamming, with only a 50%
duty cycle, can can cause accidents and platoon deformation.
In this work, we continue the exploration of platooning at-
tacks by introducing new attacks using misinformation and
malicious controllers.
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Figure 1: In this figure, we show our proposed detection scheme at a high-level. The car in the back of the
platoon uses data sent via DSRC by the first car to model the expected behavior of car 2. The car then
determines whether the two expected signals differ by an amount greater than a threshold.

3. SYSTEM MODEL
Our system consists of a platoon of K cars that that we

number from 0 to K − 1 with car 0 being the platoon’s
leader. We assume that the cars all drive in a single straight
lane and that their order can not change. We indicate the
spatial position, velocity, and acceleration of car i as qi, vi,
and ai respectively. We indicate the distance between the
front bumper of car i and the rear bumper of car i − 1 as
di = qi−1− qi with d0 = 0 and the desired distance between
car i and car i− 1 as dr,i with dr,0 = 0. We define the error
for car i as ei = di − dr,i.

The cars desire to follow a constant headway policy such
that dr,i = hd,ivi +Li where Li is a constant distance offset
and hd,i is the the desired headway of car i. We can sub-
stitute the constant headway policy into our error equations
to get

ei = qi−1 − qi − hd,ivi − Li. (1)

We can set the distance Li = 0 in (1) by assuming a change
of basis to provide for the safe stopped distance such that
ei = qi−1 − qi − hd,ivi.

We model the cars using a double integrator model with a
lag constant of ηi for each car. Given a desired acceleration
of ui, car i has the following continuous time differential
equations.

ȧi = −η−1
i ai + η−1

i ui (2)

v̇i = ai (3)

q̇ = vi (4)

ėi = vi−1 − vi − hd,iai. (5)

3.1 Controller
In Figure 2 we show a vehicle that is equipped for coop-

erative adaptive cruise control. We assume the radar plus
DSRC setup and use a controller that has been tested for
this setup [6]. This controller uses a combination of a DSRC
based feedforward input, uff,i, and a measurement based
feedback input, ufb,i, such that

ui = ufb,i + uff,i. (6)

Figure 2: In this figure, we show our controller
structure for a platooned vehicle. The vehicle uses
radar to determine distance and error from the car
in front of it, DSRC to get feedforward information
from other cars, and powertrain measurements to
determine its current state.

The inter-vehicle distance is measured using radar and used
to calculate error which allows for PD feedback controller
such that

ufb,i = kpei + kdėi. (7)

The feedforward controller is provided via DSRC using the
update equation

u̇ff,i = −h−1
d,iuff,i + h−1

d,i ûi−1, (8)

where ûi−1 is received via DSRC. In the case that all vehi-
cles are behaving then ûi−1 = ui−1 during update periods.
However, in general, we assume this equation may not hold
in order to account for malicious behavior.

It is important to note that car 0 has a unique control
law such that u0 = ur where ur is a reference desired ac-
celeration profile. It is assumed that car 0 is given ur in
real time so no non-casual predictions can be made. The
proposed controller has been shown to be string stable in



continuous communication systems and has been tested in
real networked platoons with delays and sampling [12].

3.2 System Description
We define the vector xTi = [ei, vi, ai, uff,i] for the state of

car i. The update equation for a vehicle can be written as
a linear system such that

ẋi = Ai,ixi +Ai,i−1xi−1 +Bs,iui +Bc,iûi−1, ∀ i > 0 (9)

and

ẋ0 = A0x0 +Bs,iur (10)

where

Ai,i =


0 −1 −hd,i 0

0 0 1 0

0 0 −η−1
i 0

0 0 0 −h−1
d,i

 , (11)

Ai,i−1 =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , (12)

BT
s,i =

(
0 0 η−1

i 0
)
, (13)

BT
c,i =

(
0 0 0 h−1

d,i

)
, (14)

and

A0 =


0 0 0 0

0 0 1 0

0 0 −η−1
0 0

0 0 0 0

 . (15)

We define X as the state of the whole systems so that
XT = [xT0 , x

T
1 , ...x

T
K−1]. We define the inputs to the sys-

tem as UT = [u0, û0, u1, û1, . . . , uK−1] where each vehicle
chooses its input values ui and ûi. This allows us to write
the linear equations for the whole system as

Ẋ = AX +BU (16)

where

A =


A0 0 0 . . . 0 0

Ai,i−1 Ai,i 0 . . . 0 0

0 Ai,i−1 Ai,i . . . 0 0
...

. . .
...

0 0 0 . . . Ai,i−1 Ai,i

 (17)

and

B =


Bs,i 0 0 . . . 0 0

0 Bc,i Bs,i . . . 0 0
...

. . .
...

0 0 0 . . . Bc,i Bs,i

 . (18)

3.3 Discretization
We discretize the system since the controller is imple-

mented on a digital computer using digital communications.
We assume the radar has a sampling time of 1 ms and the
communication system has a sampling time of 100 ms. We

assume that the controller uses a sample and hold technique
for the communication input variable. We thus use the up-
date equations

X[k + 1] = AdX[k] +BdU [k] (19)

where Ad and Bd represent an exact discretized version of
(16).

For cars that follow the control law we can similarly define
the controller equations for car i in term of xi and xi−1 as

ui = k1xi[k] + k2xi[k − 1] (20)

where

k1 =
(
kp + kd

.001
0 0 1

)
(21)

and

k2 =
(
− kd

.001
0 0 0

)
. (22)

The input ui[k] is updated every 1 ms while ûi[k] is up-
dated every 100 ms and kept constant otherwise. We model
this system for a platoon of 5 cars in Figure 3 where the pla-
toon accelerates for 5 seconds, holds for 15 seconds and then
decelerates for 5 seconds. The controller in this figure uses
a CACC controller with a constant headway of .35 seconds
and constant spacing of 1 m.

We assume homogeneous cars such that Ai,i−1, Ai,i, Bs,i,
and Bc,i are known and the same for all vehicles. This allows
us to write our discrete matrices as

Ad =


Ad,0 0 0 . . . 0 0

Ad,1 Ad,2 0 . . . 0 0

0 Ad,1 Ad,2 . . . 0 0
...

. . .
...

0 0 0 . . . Ad,1 Ad,2


where Ad,0 ∈ R4x4, Ad,1 ∈ R4x4, and Ad,2 ∈ R4x4. Likewise
we define

Bd =


Bd,0 0 0 . . . 0 0 0 0

Bd,1 Bd,2 Bd,3 . . . 0 0 0 0
...

. . .
...

0 0 0 . . . Bd,1 Bd,2 Bd,3 0

 .

where Bd,0 ∈ R4x1, Bd,1 ∈ R4x1, Bd,2 ∈ R4x1, and Bd,3 ∈
R4x1.

4. ATTACK STRATEGIES
In this section, we introduce a set of attacks and abnormal

behaviors that can occur in a platooned vehicular network.
We discuss possible motivations for the attacks which range
from rational to byzantine. This list is not comprehensive
but provides a start to the discussion of what system level
attacks may impact a formation of vehicles and how serious
the effects of these attacks could be. For the convenience
of the reader we summarize these attacks, their motivation,
their potential impact, and their implementation in Table 1.

In the remainder of this section we refer to the attacker’s
control input and performance parameters using the letter
‘a’ in the subscript. Thus, ua refers to the attacker’s con-
trol signal during the attack and ûa refers to the attacker’s
broadcasted control signal. We assume that the attacker’s
signal is non-additive so the state update equation for the
attacker become xa[k + 1] = Axa[k] +Bua[k].



0 10 20 30 40
0

5

10

15

20

25

30

35

40

Time (s)

D
is

ta
n
c
e
 f
ro

m
 L

e
a
d
e
r 

(m
)

 

 

Leader

Car 1

Car 2

Car 3

Car 4

0 10 20 30 40
−5

0

5

10

15

20

25

30

Time (s)

V
e
lo

c
it
y
 (

m
/s

)

 

 

Leader

Car 1

Car 2

Car 3

Car 4

Figure 3: In this figure, we show a simulation of our system without attacks. On the left, we show a plot the
distance for each car behind the lead car. On the right, we show the velocity for each of the cars.

Attack Impact Motivation Method

Reduced Headway Attack Decreased String Stability Decreased fuel consumption
Increased density

Misbehavior

Joining Without Radar Decreased String Stability
Danger in wireless congestion

Decreased cost over radar equipped car Misbehavior

Mis-report Attack Decreased Performance Mistrust of the system Misinformation

Collision Induction Attack Collision
Loss of Life
Property Damage

Maliciousness
Terror

Misbehavior &
Misinformation

Non-Attack Abnormalities Decreased Performance
Decreased String Stability

Improper Maintenance Misbehavior

Table 1: In this table, we summarize the system level attacks that we propose including their impact, method,
and motivations.

4.1 Reduced Headway Attack
In the current highway system the majority of motorists

do not follow the recommended 2 second headway speed,
with many studies showing the average speed on freeways
being under 1 second [2]. This attack models a similar
greedy behavior where a car ignores the recommended head-
way speed that guarantees string stability and follows closer.
A driver might, for example, follow at a headway of 0.125
second speed when the vehicles in the platoon are only string
stable at headway distance greater than or equal to a 0.25
second. This attack would likely be implemented by a driver
who wants to increase fuel savings by decreasing draft or a
driver who manually drives with extremely small headways.

To implement this attack we change the attacker’s head-
way parameter to hd,a < hd,min where hd,min is the recom-
mended minimum headway speed.

4.2 Joining Without Radar
This is another greedy behavior where a car attempts

to become part of a platoon without having the necessary
radar, or other distancing equipment. This is motivated by
a driver who does not want to buy a new vehicle but retrofits
a car with DSRC which, unlike radar, does not require per
vehicle tuning. This attack causes the reaction of the car to
be based only on the feedforward information which is dan-
gerous if wireless congestion prevents the cars from commu-

nicating properly. This also eliminates the guarantees that
are provided by string stability to the platoon of cars, in-
creasing the risk of an accident.

This attack is implemented by changing the attacker’s
control law to ua = uff,a and ignoring the feedback por-
tion of the control law.

4.3 Mis-report Attack
This is an attack that could be mounted for various rea-

sons including not trusting the cooperative adaptive cruise
control system. The attacker misinforms the vehicle that
is following to increase the following car’s headway or to
cause a change in the following car’s behavior. The attacker
mounting this attack could either follow the prescribed con-
trol law or choose an alternative control law. We will assume
in this work that the attacker follows the prescribed control
law and only misreports its behavior so ua = ui. This attack
is motivated by wanting to increase the following distance
of the preceding car.

The attacker defines a mis-report percentage β ∈ [0, 1] and
then implements the attack by reporting ûa = (1 − β)ua if
ua > 0 and ûa = (1 + β)ua if ua < 0.

4.4 Collision Induction Attack
In this attack, the attacker broadcasts an acceleration pro-

file indicating that they are speeding up which causes the
following vehicle to accelerate. The attacker actually starts
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Figure 4: In this figure, we show the effect of a collision induction attack that is started at 10 seconds. On
the left is a plot of the distance between the attacker and the car under attack and on the right is a graph
of the car under attacks velocity. In under 2 seconds the attacking car is hit by the following car going at a
speed of over 55 miles per hour.

to aggressively brake which causes the error between the at-
tacker and following car to quickly increase. This is very
likely to cause an accident at high speed which makes this
attack extremely dangerous.

This is very similar to attacks that could be mounted in
the current highway system. If a driver was to jam on their
breaks during rush hour while being tailgated, the vehicle
would likely be rear ended. If there are many cars that are
all tailgating this could even result in a pile up. In Figure 4
we show this attack implemented starting at ten seconds. In
under two seconds the car behind the attacking car collides
with the attacker at speeds over 25 meters per second, or
approximately 56 miles per hour.

Assuming that cars have a range on their inputs defined as
ui ∈ [umin, umax] we can implement this attack by setting
the attackers control parameters to ua = umin and ûa =
umax.

4.5 Non-attack abnormalities
Our detection method is also able to detect non-malicious

abnormal behaviors in the system. For example, our de-
tection scheme would detect if the acceleration or breaking
parameters of a vehicle were to change due to normal wear
on the system. This could be used in conjunction with a
global monitoring system to help alert drivers when their
vehicle might need maintenance.

To model abnormal driving in our system we vary the
value of ηa for a vehicle that we call the attacker even though
their intent may not be malicious.

5. MODEL BASED ATTACK DETECTION
In Figure 5, we show our proposed approach to detecting

abnormal behavior in a platoon of cars. Our approach has
every car model the expected behavior of the vehicle directly
in front of them. The vehicles then compare the calculated
expected behavior with the observed behavior. Using these
comparisons the car is then able to detect both malicious
and benign abnormalities. The ability to detect malicious as
well as benign but dangerous behavior is one of the greatest
strengths of our approach.

Once abnormal behavior is detected, the car switches from
operating in a cooperative platoon framework to a radar only
based adaptive cruise control framework where it is safe even
if the preceding car is mounting an attack. We choose this
very aggressive response to a potential attack for a multiple
reasons. First, the potential impact of a malicious car is a
high-speed traffic accident which, in the worst case, results in
loss of life, and, in the best case, results in high-value prop-
erty damage. This technique can also be combined with re-
gional reputation systems to detect vehicles that frequently
behave abnormally. We discuss each portion of our detection
and response scheme in detail below.

5.1 Modeling Techniques
In this section, we design an algorithm for car i to model

the expected behavior of car i − 1 given the data packets
from car i − j. We define xm,i−1 as the modeled state of
car i− 1. We can then define the state of all the cars in the
model as Xm = [xm,i−j , xm,i−j+1, . . . , xm,i−1]. Likewise, we
define the feedback inputs and feedforward inputs of car i−1
as um,i−1 and ûm,i−1 respectively. This allows us to define
the inputs at each time as.

Um = [um,i−j , ûm,i−j , um,i−j+1, ûm,i−j+1, . . . , um,i−1, ]
T .

We can write the system update equation for the model
as

Xm[k + 1] = AmXm[k] +BmUm[k] (23)

where

Am =


Ad,0 0 0 . . . 0 0

Ad,1 Ad,2 0 . . . 0 0

0 Ad,1 Ad,2 . . . 0 0
...

. . .
...

0 0 0 . . . Ad,1 Ad,2

 (24)



Figure 5: In this figure, we show a detailed diagram of our proposed detection scheme. A model of the
expected behavior of the car in front of the monitoring car is made from the broadcasted upstream control
information. This is compared to the measured behavior of the car in front of the monitoring car. If the
error is larger than expected, the monitoring car switches to a non-cooperative ACC algorithm.

and

Bm =


Bd,0 0 0 . . . 0 0 0

Bd,1 Bd,2 Bd,3 . . . 0 0 0
...

. . .
...

0 0 0 . . . Bd,1 Bd,2 Bd,3

 .

We assume that the cars in the model behave according
the control law given in (20) with 1ms radar update times
and 100ms state broadcast times.

During an update period we can use (20) to define

Um[k] = φ1Xm[k] + φ2Xm[k − 1] + φ3ûi−j [k] (25)

where

φ1 =



0 0 0 . . . 0

0 0 0 . . . 0

0 k1 0 . . . 0

0 k1 0 . . . 0

0 0 k1 . . . 0

0 0 k1 . . . 0
...

. . . 0

0 0 0 . . . k1
0 0 0 . . . k1


, φ2 =



0 0 0 . . . 0

0 0 0 . . . 0

0 k2 0 . . . 0

0 k2 0 . . . 0

0 0 k2 . . . 0

0 0 k2 . . . 0
...

. . . 0

0 0 0 . . . k2
0 0 0 . . . k2



and

φ3 =
(
1, 1, 0, . . . , 0

)T
. (26)

Likewise, during a non-update period we can define our
update input as

Um[k] = φ4Xm[k] + φ5Xm[k − 1] + φ6Um[k − 1] (27)

where

φ4 =



0 0 0 . . . 0

0 0 0 . . . 0

0 k1 0 . . . 0

0 0 0 . . . 0

0 0 k1 . . . 0

0 0 0 . . . 0
...

. . .
...

0 0 0 . . . k1
0 0 0 . . . 0


, φ5 =



0 0 0 . . . 0

0 0 0 . . . 0

0 k2 0 . . . 0

0 0 0 . . . 0

0 0 k2 . . . 0

0 0 0 . . . 0
...

. . .
...

0 0 0 . . . k2
0 0 0 . . . 0


,

and

φ6 =



1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 1 . . . 0
...

. . .
...

0 0 0 0 . . . 0


. (28)

We used the linear double integrator for modeling the ve-
hicles in the system but in an actual implementation more
advanced models could be used. The techniques used for
modeling could be as complex as desired considering trade-
offs in accuracy, calculation cost, and time for calculation.
Improvements that could be considered in the modeling in-
clude capturing non-linear behavior of the vehicles drive-
train and using terrain mapping to predict variations.

5.2 Thresholding Techniques
Once we have a model of x̄i−1|ûi−j we can then predict

whether the model error is acceptable or not. We indicate
the measured values for x̂i−1,m and assume we can measure
acceleration and velocity. It is not possible to measure the
error since we do not have a line of site to car i− 2.
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Figure 6: In this figure, we show the system operating under noisy conditions with the variance in noise set
to .001 of the vehicles velocity. On the left we show the distance from the leader and on the right we show
the acceleration for each of the vehicles.

We propose using the model error normalized to acceler-
ation such that

(aerr|ûi−j) =

(
(am,i−1|ûi−j)− ai−1,

ai−1

)2

(29)

(verr|ûi−j) =

(
(vm,i−1|ûi−j)− vi−1

ai−1

)2

(30)

(ûerr|ûi−j) =

(
(ûm,i−1|ûi−j)− ûi−1

ai−1

)2

(31)

We use a hand-tuned constant delay between the model and
measured data since the model trails the real system.

5.3 Attack Mitigation
We propose a two-state operating condition for the moni-

toring vehicle. The vehicle will use the CACC controller pro-
posed in Section 3.1. When an attack is detected the control
law changes to a non-adaptive cruise control law such that
ui = ufb,i = kdėi + kpei where the error is now calculated
with a larger headway constant, for example 1 second. In
Section 6, we show that this controller is effective at mitigat-
ing the impact of the collision induction attack, avoiding the
loss of life or assets. This controller would likely cause other
cars in the platoon to flag the detecting car as an attacker
and result in the loss of the platoon formation.

As a design decision other reactions could be implemented
to mitigate the impact of abnormal behavior. For example
a control law could be designed where the headway is pro-
portional to the amount of error in the model and actual
system. We leave the design of more response techniques as
an implementation decision.

5.3.1 Global reputation system
The ability to detect malicious and abnormal behavior can

be combined with a global system to keep a reputation for
vehicles. If a car continually gets flagged then it would be
flagged for investigation by authorities. Similarly, a car that
is often flagged could run a diagnostics routine to determine
if it has a system failure as proposed in various works on
reputation systems [18].

6. SIMULATIONS
We simulate our attacks as well as the detection scheme to

provide a proof-of-concept in a five car platoon. We use the
following parameters for our platoon: η = 0.1, hd = 0.35s,
kp = 0.2, kd = 0.7, and K = 5 cars. We set the sampling
time for the radar at Ts = 0.001s and assume that the up-
date for the feedforward information occurs every 100ms.
For each trial we assume that the lead car in the platoon
accelerates from standstill for 5 seconds at a constant rate,
maintains the maximum speed for 20 seconds, decelerates
at a constant rate for 5 seconds, and remains at rest for 5
seconds. We do not make assumptions on the acceleration
rate used in the test. We assume a model delay of 250ms,
which was determined by empirical tuning.

We assume that the 4th car in the platoon mounts the
attack so a = 3. We assume that the 5th car is monitoring for
the attack and can react if an attack occurs. The monitoring
car receives DSRC communications from the 2nd and 3rd

advertising their respective acceleration profiles. Thus car 5
has a model

err =



aerr|û1

verr|û1

ûerr|û1

aerr|û2

verr|û2

ûerr|û2

 (32)

to base its detection results on. We hand tune our detec-
tion parameters to δ = [0.23, 0.48, 0.9, 0.46, 0.9, 0.9]T . We
assume that if any element of err > δ the system is under
attack and instantly switch to an ACC.

6.1 False Positives
We consider the impact of noise on our detection scheme

by adding Gaussian noise to the acceleration. We assume
that the variance in system noise is proportional to current
velocity of the car. In Figure 6 we show the system during
noisy operation with the variance for the car i set to σi =
.0005vi[k]. This results in the acceleration update equation
being modified to ai[k+ 1] = ai[k] +vi[k] +N (0, .0005vi[k]).
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Figure 7: In this figure, we show the false positive
rate for different levels of noise with velocity relative
variance.
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Figure 8: In this figure, we show the headway attack
detection results, we calculate the false positive rate
across 75 trials with an acceleration rate of 2 m

s2
and

75 trials with an acceleration rate of 5 m
s2

.

We simulate the system without an attacker present to
explore the impact of noise on the false positive rate of our
detection scheme. In Figure 7 we model two acceleration
rates (2 m

s2
and 5 m

s2
) at various noise levels. For each noise

level and acceleration profile we run 75 trials and calculate
the percentage of time that an attack was detected. In this
figure, the false positive rate is acceptable when the noise
variance is under .0004 of the velocity. When the noise in-
creases beyond this the false positive rate is extremely high.

We can mitigate the high false positive rate by using fil-
tering to limit the impact of Gaussian noise.

6.2 Attack Detection Results
We again simulate the attacks at various noise levels and,

where applicable, with various attack parameters. Similarly,
with mis-report percentages β ∈ [0.05, 0.1, 0.15, 0.2, 0.3] we
detect 100% of mis-report attacks. Additionally, collision
induction attacks are detected 100% of the time. In the next
section we explore whether they are detected fast enough to
mitigate the attack’s effect.

In Figure 8 we show the result for detecting headway re-
duction with our detection scheme. For headways under 0.3
seconds the detection scheme works 100% of the time. when
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Figure 9: In this figure, we show the abnormal be-
havior detection results, we calculate the detection
rate across 75 trials with an acceleration rate of 2 m

s2

and 75 trials with an acceleration rate of 5 m
s2

.

the headway is close to the expected value of 0.35 seconds,
i.e. at 0.3 seconds the detection scheme is not effective.

In Figure 9 we show the results for detecting abnormalities
in the lag using our detection scheme. We again calculate the
detection rate based on 75 trials with 2 m

s2
acceleration and 75

trials with 5 m
s2

acceleration. When η = 0.075 and η = 0.125
which is close to the expected value of η = .1 the attack is not
detected. This is desired behavior since the lag parameters
would be defined by a range in real system. When the values
of η are 50% greater or less than the expected value the
detection rate is over 90%.

Regardless of noise level our detection algorithm does not
detect when a car attempts to join without a radar. This
is expected as the vehicle that joins without a radar uses a
model based acceleration profile, matching the model-based
acceleration that we compare against extremely well.

6.3 Attack Avoidance Results
Lastly, we explore whether a collision induction attack can

be detected in time to mitigate the collision. In Figure 10 we
show the performance of a car using our detection scheme
when a collision induction attack is mounted at 10.001 sec-
onds with no system noise. The blue line shows the behavior
when no detection and mitigation scheme is used. It is clear
that just after 12 seconds an accident occurs at 25m

s
. The

red line shows the same attack when the detection and miti-
gation scheme is used. It takes less then 100ms to detect the
attack and as can be seen no collision occurs, meaning the
detection coupled with the non-cooperative ACC controller
successfully mitigated the attack.

7. DISCUSSION
In this section, we discuss design considerations and short-

comings of our misbehavior detection and mitigation scheme.
First, we highlight design consideration including tuning the
detection threshold and selecting the response mechanism.
We then highlight the shortcomings of our system and pos-
sible improvements.

It is important to choose the detection threshold for the
system carefully balancing false negatives and false positives.
Given that a false negative can have a catastrophic outcome,
either loss of life or loss of personal assets, the designer likely
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Figure 10: In this figure, we show a car using our attack detection technique avoiding an accident during
a collision induction technique. We plot distance between the attacker and monitoring on the left and the
velocity of the monitoring vehicle on the right.

will want to minimize them. The cost of false positives on
the other hand is relatively low, 20-70 % decreased headway
and 5% decreased fuel efficiency, making the costs of a false
positive relatively low. Given the danger of false negatives
and relatively low cost of false positives a designer will likely
choose a conservative model.

Another design decision is how to model the vehicles given
DSRC packets. In the real system this involves modeling the
dynamics of the car and its interaction with the environ-
ment; for example, a car performs differently going up hill.
The cars have to have a trusted way to choose parameters for
each car which could either be through a cloud-based service
or through a trusted broadcast scheme. Modeling the dy-
namics with the environment could easily be supplemented
with GPS data to estimate environmental impact.

Another design decision is how to respond when an attack
is detected. In this work we assume that all attacks are
equally bad and when anomalous behavior is detected switch
to ACC but many approaches could be used. For example, a
designer could use an adaptive response where the headway
and feedforward controller weight are adjusted based on the
anomalous behavior measurement.

One major shortcoming of our approach is the inability
of our scheme to detect when the platoon leader is misbe-
having. To mitigate this attack we would have to consider
global schemes with trusted and secured cars that would
mitigate risk. Our system is also susceptible to noise. To
mitigate this shortcoming we can use many noise reduction
techniques. For example, we could mitigate the impact of
Gaussian noise in our observations by using a Kalman filter
for optimal estimation.

Another shortcomings of our detection scheme is its in-
ability to detect when a vehicle joins without a radar. This
behavior is expected because when a vehicle joins without
radar it uses a model based approach to determine its accel-
eration. Thus the model based approach to the non-radar
equipped vehicle performs similarly to the system model
based on future communications. In normal scenarios this
performs acceptably but becomes dangerous when the DSRC
is unavailable. One approach to detect a car without radar is
to occasionally introduce a small amount of noise at a given

car’s velocity. The car directly behind it should respond ac-
cording to the feedback controller if it has a radar. After
a short period the first noise inducing car can communicate
how it inserted noise and it can be tested.

It should also be noted that our scheme would likely cause
the platoon to disassemble around the detecting car. This
opens up another attack similar to the efficiency attacks [3]
allowing a car to lessen the efficiency of the platoon.

8. CONCLUSION
Platooning improves the use of current highway systems

by safely allowing cars to drive closer together. The de-
creased headway distances can reduce drag forces on cars
allowing platooned cars to reduce fuel consumption by over
5%. Safety in platooning is guaranteed via string stability
given that all the vehicles behave according to the prescribed
control laws and within the expected performance bounds.

In this work we introduce various ways that a car may
misbehave in a platoon, both in a benign or malicious fash-
ion. To mitigate misbehavior in platoons we propose an
model-based detection scheme that is used to trigger a non-
cooperative ACC mode. In the detection scheme each car
makes a model of the expected behavior of the preceding car
based on upstream communications. It can uses this mod-
eled expected behavior and measurements to determine if
their is anomalous error. If the monitoring vehicle detects
anomalous behavior it switches to ACC and we show this
is effectively able to mitigate when an attacker attempts to
cause a collision.
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