
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

On the Security of Thread Networks: Experimentation with
OpenThread-Enabled Devices

Dimitrios-Georgios
Akestoridis

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

akestoridis@cmu.edu

Vyas Sekar
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
vsekar@andrew.cmu.edu

Patrick Tague
Carnegie Mellon University
Moffett Field, California, USA

tague@cmu.edu

ABSTRACT
The Thread networking protocol is expected to be utilized by a
plethora of smart home devices as one of the IP-based networking
technologies that will be supported by theMatter standard that is be-
ing developed by members of the Connectivity Standards Alliance.
Thread has been developed by the Thread Group as an application-
agnostic protocol that builds on top of the IEEE 802.15.4 standard to
enable IPv6-based low-power wireless mesh networking. However,
unlike other IEEE 802.15.4-based protocols like Zigbee, the security
of Thread networks has been relatively less analyzed in the litera-
ture. Given that commercial Thread devices are expected to interact
with the physical world, vulnerabilities in their communication
protocols could impact the physical security of end users. In this
work we analyze the security of Thread networks by repurposing
hardware and software tools that have been used for the security
analysis of Zigbee networks. We used development boards that
were flashed with OpenThread binaries to gain insight into the
nature of Thread traffic and to study their susceptibility to a set
of energy depletion attacks and online password guessing attacks.
Lastly, we are publicly releasing our software enhancements as well
as our dataset of captured Thread packets.

CCS CONCEPTS
• Security andprivacy→Mobile andwireless security;Denial-
of-service attacks; • Networks → Mobile and wireless security;
Denial-of-service attacks; Home networks; Sensor networks.

KEYWORDS
Thread, IEEE 802.15.4, energy depletion attacks, online password
guessing attacks, OpenThread

ACM Reference Format:
Dimitrios-Georgios Akestoridis, Vyas Sekar, and Patrick Tague. 2022. On the
Security of Thread Networks: Experimentation with OpenThread-Enabled
Devices. In WiSec ’22: 15th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, May 16–May 19, 2022, San Antonio, Texas,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/xxxxxxx.
xxxxxxx

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’22, May 16–May 19, 2022, San Antonio, Texas, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/21/06. . . $15.00
https://doi.org/10.1145/xxxxxxx.xxxxxxx

1 INTRODUCTION
One of the main challenges of the Internet of Things (IoT) [8] is to
make everyday devices accessible remotely and securely as either
sensors, actuators, or both. Door locks, motion sensors, cameras,
thermostats, speakers, and light bulbs are only a few examples of
such devices that are now connected to the Internet. End users
can monitor the state of their IoT devices (e.g., whether a door is
locked or unlocked), issue commands to change the state of their IoT
devices (e.g., unlock a door), and automate the execution of certain
tasks (e.g., turning the lights on whenever motion is detected).
However, different IoT devices may have different requirements. For
example, a smart speaker may require a high-data-rate connection,
while a smart motion sensor may require a long battery life. As
a result, a variety of communication protocols may be utilized in
order to support the operation of a smart environment.

Amazon, Apple, Google, and the Zigbee Alliance (now known
as the Connectivity Standards Alliance) announced the formation
of a new working group in December 2019 for the development
of an IP-based smart home connectivity standard that would in-
crease compatibility among IoT devices [15]. This unifying standard
was initially referred to as Project Connected Home over IP (CHIP),
whichwas rebranded asMatter inMay 2021 [17]. At the time of writ-
ing, the launch of Matter 1.0 is expected to take place in Fall 2022,
which will be followed by the opening of the formal certification
program for Matter-enabled products [16]. As illustrated in Figure 1,
Thread [49] is currently the only IEEE 802.15.4-based networking
protocol that has been selected for the Matter standard [18]. More
specifically, Thread has been developed by the Thread Group as an
application-agnostic protocol that enables IPv6-based low-power
wireless mesh networking [32]. Furthermore, OpenThread [43] is
an open-source implementation of the Thread networking protocol
that has been ported to multiple platforms. It should be noted that,
since Thread is application-layer agnostic, manufacturers of Thread
products have the flexibility to choose from a variety of application
layers to enable device connectivity across different networks, with
the Matter application layer expected to be one such option.

Similar to other IoT devices that interact with the physical world,
vulnerabilities in Thread devices can affect the physical security
of end users. However, the security of Thread networks has not
been popular in the literature. This motivated us to study whether
Thread is susceptible to known attacks on Zigbee [19], an IEEE
802.15.4-based protocol that has been used in smart environments
for several years, as well as attacks that are unique to Thread. Our
contributions in this paper can be summarized as follows:

• We describe a set of observations about the nature of Thread
traffic, which we made by performing multiple experiments

1

https://orcid.org/0000-0001-8017-3953
https://orcid.org/0000-0001-8017-3953
https://orcid.org/0000-0001-5452-8976
https://orcid.org/0000-0002-7561-6112
https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WiSec ’22, May 16–May 19, 2022, San Antonio, Texas, USA Akestoridis et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Matter Application Layer
TCP UDP

IPv6
Wi-Fi 6LoWPAN for BLE

BLE
Thread

IEEE 802.15.4 . . . Cellular

Figure 1: Thread is currently the only networking protocol over IEEE 802.15.4 that is considered for the Matter standard [18].

with development boards that were flashedwith OpenThread
binaries to operate as Thread devices.

• We demonstrate that an outside attacker can launch a set
of energy depletion attacks that prevent an OpenThread-
enabled device from returning to its energy-saving sleep
mode.

• We present a set of attacks that incorporate selective jam-
ming and spoofing techniques in an attempt to guess the
low-entropy password of a Thread device during the com-
missioning process.

• We are publicly releasing the Thread packets that we cap-
tured during our experiments as well as the source code that
we wrote in order to study the security of Thread networks.1

We reached out to the Thread Group in January 2022 to responsibly
disclose our findings and mitigation recommendations, while we
continued providing updates about further improvements that we
made to our proof-of-concept attacks.

The rest of this paper is organized as follows. In Section 2 we
provide relevant background information about the Thread net-
working protocol, while in Section 3 we review related work on the
security of Thread networks. Our threat model and assumptions
are provided in Section 4, followed by our discussion on the results
of our packet analysis experiments in Section 5. Then, we report
the results from our energy depletion attack experiments and our
online password guessing attack experiments in Sections 6 and 7
respectively, while we conclude in Section 8.

2 BACKGROUND
In this sectionwe provide a brief overview of the Thread networking
protocol [49]. Although Thread Group members have access to the
Thread specification and documents [48], there are several publicly
accessible sources of information that an independent security
analyst could use to learn about the operation of Thread networks.

There is a variety of device types and roles that can be observed
in a Thread network [41, 53]. A Thread device can be either a Full
Thread Device (FTD) or a Minimal Thread Device (MTD). Unlike
FTDs, MTDs are expected to have significant resource constraints,
which is reflected in the different roles that they can assume. An
FTD can operate as a Thread Router in order to provide routing
services to other Thread devices, with its receiver being enabled
even when it is idle. In each Thread network, one of its Thread
Routers is elected to assume the role of the Thread Leader, which
1Our dataset will be available on CRAWDAD [20], while our source code will be
available on the corresponding GitHub repositories.

TL

TR

TR

REED

FED

MEDSED

BR

Internet

Abbreviations
TL: Thread LeaderTR: Thread RouterREED: Thread Router-Eligible End DeviceFED: Thread Full End DeviceMED: Thread Minimal End DeviceSED: Thread Sleepy End DeviceBR: Thread Border Router

Figure 2: An example of a few roles that can be observed in
a Thread network [41, 53].

takes additional responsibilities that are related to the management
of the Thread network. If a Thread network becomes partitioned
due to lost connectivity, then each partition is treated as a different
Thread network that elects its own Thread Leader. If the Thread
Leader disconnects at some point, then another Thread Router will
be elected to take its place so that the Thread network will continue
having a Thread Leader. Note that each Thread network can have
up to 32 active Thread Routers. However, an FTD can also operate as
a Thread Router-Eligible End Device, which does not provide routing
services to other Thread devices but can be promoted to a Thread
Router through the Thread Leader if the required conditions are
met. If an FTD is not capable of operating as a Thread Router, then
it operates as a Thread Full End Device. A battery-powered MTD
can operate as a Thread Sleepy End Device in order to conserve its
energy by disabling its receiver when it is idle [50]. Alternatively,
anMTD could operate as a Thread Minimal End Device that keeps its
receiver enabled even when it is idle. Two additional roles that an
MTD may be able to assume are that of a Synchronized Sleepy End
Device and that of a Bluetooth End Device. The main characteristic of
all these End Device roles is that they rely on a Thread Router or the
Thread Leader for their routing services. Furthermore, any Thread
device that can provide connectivity between a Thread network
and a non-Thread network is considered a Thread Border Router.
In Figure 2 we provide an example of a Thread network topology
with some of the roles that we described in this paragraph.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

On the Security of Thread Networks: Experimentation with OpenThread-Enabled Devices WiSec ’22, May 16–May 19, 2022, San Antonio, Texas, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Commissioner Joiner

Client Hello

Hello Verify Request

Client Hello (with cookie)

Server Hello, Server Key Exchange, Server Hello Done

Client Key Exchange, Change Cipher Spec, Finished

Change Cipher Spec, Finished

Figure 3: In Thread networks, the commissioner authenti-
cates a joiner through a DTLS handshake, which may have
to be relayed by a router [51].

Since Thread networks are IEEE 802.15.4-based networks, each
Thread network is using a Personal Area Network Identifier (PAN
ID) to distinguish itself from other nearby networks [29, p. 14].
However, each Thread network is also utilizing an Extended PAN ID
and a Network Name [40]. Furthermore, note that the IEEE 802.15.4
standard supports the usage of 16-bit short addresses and 64-bit
extended addresses on the Medium Access Control (MAC) layer [29,
p. 140]. Thread devices are embedding routing information in these
addresses that is in turn used for IPv6 addressing purposes [39, 53].
More specifically, Thread devices are transmitting and receiving
IPv6 packets by utilizing the 6LoWPAN adaptation layer [27, 35]
above the MAC layer [52], where 6LoWPAN stands for IPv6 over
Low-Power Wireless Personal Area Network. Two key features
of the 6LoWPAN adaptation layer are header compression and
packet fragmentation. Thread devices are also using the Mesh Link
Establishment (MLE) protocol [31] to configure links and distribute
information about the Thread network [53]. It is important to note
that MLE frames can be secured using the same security suite as
MAC frames (that is, AES-128 [36] in CCM* mode [29, p. 231],
which is an extension of the CCM mode [22]), but with a different
cryptographic key. We describe how these MAC keys and MLE keys
can be derived in the next paragraph.

Thread networks use an elliptic-curve variant of the Password-
Authenticated Key Exchange by Juggling (J-PAKE) protocol [25],
which incorporates the Schnorr non-interactive zero-knowledge
proof mechanism [26], to establish a shared secret between two au-
thenticated devices based on a shared low-entropy password [51].
The authentication is performed during a Datagram Transport
Layer Security (DTLS) handshake [45] between an authorized com-
missioner and a joiner that wants to join the Thread network. Fig-
ure 3 shows the messages that are exchanged during a successful
DTLS handshake where the commissioner and the joiner commu-
nicate directly. If they cannot communicate directly, then the DTLS
handshake will have to be relayed by a router. After a successful
completion of the Thread commissioning process, the joiner will
have received several network parameters including a master key.
According to Wireshark2, given a 128-bit master key KMaster, a 32-
bit sequence counter c , and an 8-bit key index i , if we first compute
2https://gitlab.com/wireshark/wireshark/-/blob/
5ecb57cb9026cebf0cfa4918c4a86942620c5ecf/epan/dissectors/packet-thread.c

a messagem as

m = ((c & 0x80) + ((i − 1) & 0x7f)) | | 0x546872656164, (1)

then we can derive the 128-bit MAC key KMAC and the 128-bit MLE
key KMLE by computing

KMLE | | KMAC = HMAC_SHA256(KMaster, m), (2)

where & denotes the bitwise AND operation, | | denotes the concate-
nation operation, and HMAC_SHA256(·, ·) denotes the keyed-hash
message authentication code (HMAC) function [33] that uses the
SHA-256 hash function [37]. In words, the MLE key corresponds
to the first 128 bits of the output of the HMAC-SHA256 function
that has been parameterized by the master key and the computed
message, while the last 128 bits correspond to the MAC key. An
equivalent derivation process can be observed in OpenThread’s
implementation of the Thread networking protocol.3

3 RELATEDWORK
To the best of our knowledge, only a few researchers have analyzed
the security of Thread networks in the literature so far. Liu et al.
proposed a security assessment taxonomy for building automation
systems and applied it to the Thread networking protocol [34]. They
identified a number of potential security issues in Thread networks,
most of which are inherited from the IEEE 802.15.4 standard. For
example, jamming [56] and MAC acknowledgment spoofing [46]
are two types of attacks against IEEE 802.15.4-based networks that
have been well known for several years. However, note that such
attacks can also be combined to launch more sophisticated attacks.
Regarding the Thread commissioning process, Liu et al. argued
that an attacker could degrade the performance of the network
by flooding it with either Beacon Requests or DTLS handshakes.
In contrast, the attacks that we present in Section 7 prevent the
successful commissioning of legitimate Thread devices that in turn
enables the attacker to perform multiple online password guesses
in certain scenarios. Dinu and Kizhvatov analyzed an electromag-
netic side-channel attack on a development board that was running
OpenThread [21]. However, their threat model differs from ours
significantly. As we mention in Section 4, physical attacks like the
one that Dinu and Kizhvatov analyzed are outside the scope of this
work. Instead, we are focusing on attacks that could be launched
against nearby Thread devices over the communication channel,
without having prior knowledge of any cryptographic keys.

Given that both Zigbee and Thread are based on the IEEE 802.15.4
standard, we wanted to test whether battery-powered Thread de-
vices could be susceptible to a known energy depletion attack
against battery-powered Zigbee devices, even though Thread net-
works utilize MAC-layer security services that are disabled in Zig-
bee networks. Cao et al. proposed an energy depletion attack, where
an outside attacker is transmitting spoofed packets with supposedly
encrypted and authenticated data to trick a targeted Zigbee node
into wasting its energy by receiving those packets and performing
unnecessary security computations [14]. Akestoridis and Tague
improved upon the aforementioned attack by selectively jamming
Data Requests and making the aggressiveness of the energy deple-
tion attack configurable [7]. However, the existing implementation
3https://github.com/openthread/openthread/blob/
395d502576025f432e37da5538abf53ed4615700/src/core/thread/key_manager.cpp

3

https://gitlab.com/wireshark/wireshark/-/blob/5ecb57cb9026cebf0cfa4918c4a86942620c5ecf/epan/dissectors/packet-thread.c
https://gitlab.com/wireshark/wireshark/-/blob/5ecb57cb9026cebf0cfa4918c4a86942620c5ecf/epan/dissectors/packet-thread.c
https://github.com/openthread/openthread/blob/395d502576025f432e37da5538abf53ed4615700/src/core/thread/key_manager.cpp
https://github.com/openthread/openthread/blob/395d502576025f432e37da5538abf53ed4615700/src/core/thread/key_manager.cpp


349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WiSec ’22, May 16–May 19, 2022, San Antonio, Texas, USA Akestoridis et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

of this energy depletion attack cannot be launched against a Thread
Sleepy End Device because of differences in the formatting of Zig-
bee packets and Thread packets. As we explain in Section 6, we
were able to launch similar energy depletion attacks against our
OpenThread-enabled device by modifying the condition for the
selective jamming of Data Requests and the format of the spoofed
packets. More specifically, we adapted the jamming condition to
match the formatting of Data Requests that are transmitted by
Thread Sleepy End Devices, while we also injected five different
spoofed packet types in order to test whether our Thread Sleepy
End Device would waste its energy by processing them over long
periods of time instead of conserving its energy in sleep mode.

4 THREAT MODEL AND ASSUMPTIONS
We consider an attacker that has no prior knowledge of any cryp-
tographic keys for our threat model. The security objectives that
we have set for Thread networks are (a) authenticity, (b) integrity,
(c) confidentiality, and (d) availability. The attacker attempts to
violate as many security objectives as possible, with their primary
goal being to obtain the cryptographic keys of a targeted Thread
network. We assume that the attacker has the required hardware
and software tools within communication range of the targeted
Thread network in order to (a) capture, (b) transmit, (c) jam, and
(d) analyze Thread packets. Regarding the end user and their de-
vices, we assume that they are not deliberately downgrading the
security of the Thread network, with physical attacks being outside
the scope of this work. Furthermore, regarding the security of the
Thread commissioning process, we are focusing on the scenario
where the commissioner communicates with the joiner directly.

If the attacker succeeds in obtaining the cryptographic keys of
a targeted Thread network, then they could launch several imper-
sonation attacks against it. Such a scenario would be especially
concerning if the application layer above Thread relies on its cryp-
tographic keys as well, since that would enable the attacker to
launch command injection attacks that would change the state of
actuators and to decrypt potentially sensitive sensor data. How-
ever, even if the application layer above Thread utilizes security
services with a different set of cryptographic keys, an attacker that
has obtained the master key of a Thread network could still launch
several disruptive network-layer attacks such as spoofing routing
information and dropping packets that it should forward [30, 55].

5 PACKET ANALYSIS EXPERIMENTS
Reconnaissance is typically considered the first phase of an intru-
sion into a traditional computer network [13, 28]. Similarly, an
outside attacker would typically start by launching reconnaissance
attacks in order to gather information about the Thread devices that
they would like to target. Since the attacker does not have any prior
knowledge about the end user’s cryptographic keys, they have to
rely on information that can be inferred either directly or indirectly
from unencrypted data. In Section 5.1 we describe the experiments
that we conducted in order to study what information an outside
attacker could infer from a nearby Thread network. We delineate
our observations in Section 5.2, which enabled us to develop the
energy depletion attacks and the online password guessing attacks
that we present in Sections 6 and 7 respectively.

Figure 4: One of the Adafruit Feather nRF52840 Express de-
vices [1] that we used in order to form Thread networks,
which were flashed with OpenThread binaries for Nordic
Semiconductor nRF528xx SoCs [42].

5.1 Setup
We used four Adafruit Feather nRF52840 Express devices [1], one
of which is shown in Figure 4, in order to conduct our experiments.
We flashed these devices with OpenThread binaries for Nordic
Semiconductor nRF528xx SoCs [42] tomake them operate as Thread
devices that we configured as follows:

• One device was flashed with an FTD OpenThread binary
that had the COMMISSIONER and JOINER functionalities en-
abled. This device was used as a legitimate commissioner
that would initially operate as a Thread Leader.

• One device was flashed with an FTDOpenThread binary that
had only the JOINER functionality enabled. This device was
used as a legitimate joiner that would operate as a Thread
Router shortly after joining a Thread network.

• One device was flashed with an MTD OpenThread binary
that had only the JOINER functionality enabled. This device
was used as a legitimate joiner that would operate as a Thread
Sleepy End Device shortly after joining a Thread network.

• One device was flashed with an FTDOpenThread binary that
had the COMMISSIONER and JOINER functionalities enabled.
This device was used for impersonation purposes.

We conducted 19 experiments in order to study a representative
sample of Thread packets, which included (a) observing Thread
traffic during idle periods, (b) commissioning with and without
specifying the joiner’s 64-bit IEEE address, (c) causing commission-
ing errors, (d) generating ping and UDP messages, (e) disconnect-
ing and reconnecting a Thread device, (f) downgrading a Thread
Router, and (g) attempting to cause PAN ID conflicts. We used a
USRP N210 [23] and GNU Radio [24] in order to capture the packets
that our Thread devices transmitted. In particular, we generated
19 pcap files by utilizing the gr-foo and gr-ieee802-15-4 mod-
ules [9–11], along with the IEEE 802.15.4 transceiver flow graph of
the grc-ieee802154 repository [2]. We used Wireshark [54] for
the manual inspection of our pcap files, with a configuration profile
that we developed for Thread traffic.4 Furthermore, we enhanced
the packet dissection capabilities of Scapy [47] in order to inspect
our pcap files programmatically.5 Our Scapy enhancements include
improvements to the dissection of beacons, secured MAC frames,
and 6LoWPAN header fields, as well as the creation of an mle layer

4https://github.com/akestoridis/wireshark-thread-profile
5Our enhancements have been submitted to Scapy’s repository as a pull request.

4

https://github.com/akestoridis/wireshark-thread-profile


465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

On the Security of Thread Networks: Experimentation with OpenThread-Enabled Devices WiSec ’22, May 16–May 19, 2022, San Antonio, Texas, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

for the identification of different MLE commands. In addition, we
enhanced the security analysis capabilities of Zigator [4] to support
Thread networks.6 We used our enhanced version of Zigator to
store the header fields of our captured Thread packets in an SQLite
database for the subsequent execution of SQL queries, as well as to
inject forged packets with an ATUSB [44] during the experiment
where we attempted to cause PAN ID conflicts.

5.2 Observations
5.2.1 MAC Frame Types. According to the IEEE 802.15.4-2006 stan-
dard, there are four possible MAC frame types [29, p. 139]: beacons,
MAC Data packets, MAC acknowledgments, and MAC commands.
Although we observed all four of these MAC frame types during
our experiments, we only observed two out of the nine possible
MAC commands [29, p. 149], namely: Data Requests and Beacon
Requests. In contrast, Zigbee networks have been observed to uti-
lize six MAC commands [5]. For example, while Zigbee devices
rely on Association Requests and Association Responses to join a
Zigbee network, Thread devices perform the DTLS handshake over
MAC Data packets to join a Thread network. Note that even though
all Data Requests that we captured during our experiments were
secured by 32-bit Message Integrity Codes, this does not preclude
their selective jamming because they are the only MAC commands
that are transmitted by Thread devices with a length of either 22
or 34 bytes (depending on the packet’s addressing mode). Interest-
ingly enough, even if other MAC commands were utilized with the
same packet lengths, according to the IEEE 802.15.4-2006 standard,
the Command Identifier field of MAC commands is transmitted
unencrypted even when MAC-layer security is enabled [29, p. 200].
Thus, it is possible for an outside attacker to identify Data Requests,
as they are being transmitted by Thread devices, and selectively
jam them in order to prevent their successful delivery. We take ad-
vantage of this observation to develop the energy depletion attacks
that we describe in Section 6.

5.2.2 MLE Command Types. The format of MLE frames has been
defined in an Internet-Draft, along with seven MLE command
types [31]. However, Wireshark is currently recognizing 18 MLE
command types.7 We observed 14 out of these 18 MLE commands
during our experiments, which are shown in Table 1 along with
the MAC-layer and MLE-layer security services that they utilized,
most of which utilized security services only on the MLE layer. For
example, the payload of each Advertisement command that we cap-
tured was encrypted and appended with a 32-bit Message Integrity
Code. Interestingly enough, unlike secured MAC commands, MLE
commands that utilized MLE-layer confidentiality services were
encrypting their Command Type fields along with their payloads.
The only MLE commands that we observed with both MAC and
MLE security enabled were Announce commands. Notably, Discov-
ery Requests and Discovery Responses did not utilize any security
services since they are transmitted before a joiner initiates a DTLS
handshake. We further discuss how an attacker can leverage this
fact for impersonation purposes in Section 7.

6Our enhancements have been pushed to Zigator’s repository.
7https://gitlab.com/wireshark/wireshark/-/blob/
5ecb57cb9026cebf0cfa4918c4a86942620c5ecf/epan/dissectors/packet-mle.c

Table 1: The MLE command types that we observed during
our experiments, along with the MAC-layer and MLE-layer
security attributes that they used, if enabled.

MLE Command Type MAC Security MLE Security

Link Request Disabled ENC-MIC-32
Link Accept Disabled ENC-MIC-32
Link Accept and Request Disabled ENC-MIC-32
Advertisement Disabled ENC-MIC-32
Data Response Disabled ENC-MIC-32
Parent Request Disabled ENC-MIC-32
Parent Response Disabled ENC-MIC-32
Child ID Request Disabled ENC-MIC-32
Child ID Response Disabled ENC-MIC-32
Child Update Request Disabled ENC-MIC-32
Child Update Response Disabled ENC-MIC-32
Announce ENC-MIC-32 ENC-MIC-32
Discovery Request Disabled Disabled
Discovery Response Disabled Disabled

5.2.3 Unencrypted Header Fields. In addition to most of our cap-
tured MLE commands, we also observed other MAC Data packets
that were transmittedwithout utilizingMAC-layer security services.
These corresponded to fragmented and unfragmented 6LoWPAN
packets that were used to perform the DTLS handshake of the
Thread commissioning process. All of these unsecured MAC Data
packets are transmitting valuable information unencrypted that
an outside attacker can incorporate into their attacks, such as ad-
dressing fields and port numbers. However, it should be noted that
even with MAC-layer security enabled, the MAC-layer header fields
are still being transmitted unencrypted. Furthermore, similar to
Discovery Requests and Discovery Responses, all the header fields
of Beacon Requests and Thread beacons were transmitted unen-
crypted. Lastly, we observed several packet types that were relying
on unsecured MAC acknowledgments, including Data Requests
and 6LoWPAN fragments, which we took into account as we were
developing the attacks that we describe in Sections 6 and 7.

5.2.4 PAN ID Conflict Attempts. In the past, PAN ID conflict at-
tacks have been used against Zigbee devices in order to disconnect
them from their networks [5, 12]. In order to test whether our
Thread network is susceptible to a similar denial-of-service attack,
we attempted to cause PAN ID conflicts during an experiment by
injecting Zigbee and Thread beacons that were using the same PAN
ID as our Thread network, as well as setting another Thread Leader
to form a different Thread network with the same PAN ID as our
original Thread network while we were injecting Beacon Requests.
We did not observe any reaction from our original Thread network
when we performed the aforementioned PAN ID conflict attempts.
We incorporate this observation into one of the online password
guessing attacks that we present in Section 7.

6 ENERGY DEPLETION ATTACKS
Similar to the case of a battery-powered Zigbee device [7], there are
multiple reasons that could motivate an outside attacker to launch

5

https://gitlab.com/wireshark/wireshark/-/blob/5ecb57cb9026cebf0cfa4918c4a86942620c5ecf/epan/dissectors/packet-mle.c
https://gitlab.com/wireshark/wireshark/-/blob/5ecb57cb9026cebf0cfa4918c4a86942620c5ecf/epan/dissectors/packet-mle.c


581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WiSec ’22, May 16–May 19, 2022, San Antonio, Texas, USA Akestoridis et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

an energy depletion attack against a battery-powered Thread device.
For example, the attacker could target a specific battery-powered
Thread device that they would like to prevent from sending and
receiving packets until its battery is replaced. The attacker could
also launch such an attack in order to force the end user to replace
the batteries of their Thread devices more frequently than typically
expected and either increase the maintenance cost of their Thread
devices or to simply abandon them. Furthermore, by depleting the
energy of a battery-powered Thread device, the attacker could trick
the end user into factory resetting it and recommissioning it to their
Thread network, as we further discuss in Section 7. In Section 6.1
we delineate a set of energy depletion attacks that we hypothesized,
while in Section 6.2 we describe the setup of the experiments that
we conducted in order to test them. We report the results of our
energy depletion attack experiments in Section 6.3 and we provide
mitigation recommendations in Section 6.4.

6.1 Hypotheses
6.1.1 Spoofing Secured MAC Data Packets. As we explained in
Section 5.2.1, an outside attacker can selectively jam the Data Re-
quests that Thread devices transmit to poll for pending packets.
The first spoofed packet type that we decided to test injecting, after
the selective jamming of a Data Request and the spoofing of a MAC
acknowledgment with the Frame Pending field set to one, was that
of a supposedly secured MAC Data packet. More specifically, the
attacker could use the short addresses from previous Data Requests
of the targeted Thread Sleepy End Device to forge them with the
Frame Pending field always set to one in order to trick it into wast-
ing its energy instead of returning to its energy-saving sleep mode.
However, given that the Frame Pending field is a MAC header field
and that the verification process would expectedly fail on the MAC
layer for such packets, we decided to test additional spoofed packet
types in case that approach turned out to be ineffective.

6.1.2 Spoofing Secured MLE Commands. Based on our observa-
tions in Section 5.2.2 about the security services that legitimate
MLE commands were utilizing, we decided to also test the injection
of MLE commands that are supposedly secured only on the MLE
layer. The attacker could forge them using the extended addresses
from legitimate MLE commands, as well as 34-byte Data Requests,
but with the Frame Pending field always set to one. The rationale
behind this decision was that there may be a lack of cross-layer
communication regarding the Frame Pending field on the MAC
layer and the result of the verification process on the MLE layer.

6.1.3 Spoofing Invalid MLE Commands. Given that the MLE layer
uses the same security suite as the MAC layer [31], we considered
the scenario where the result of the verification process could affect
the transmission of new Data Requests regardless of whether it
was performed on the MAC or the MLE layer. For that reason, we
decided to test injecting supposedly secured MLE commands with
deliberately incorrect UDP checksums because, after the decompres-
sion of their IPv6 and UDP headers, they could be discarded without
MLE-layer verification and without informing the component that
is responsible for the transmission of new Data Requests.

6.1.4 Spoofing Unsecured 6LoWPAN Fragments. The last spoofed
packet type that we decided to test injecting was that of an un-
secured 6LoWPAN fragment. Unlike the aforementioned spoofed
packet types, the receiver of an unsecured 6LoWPAN fragment
may not be able to verify the authenticity of the message until
they reassemble all of its fragments. The attacker could then keep
transmitting fragments of supposedly different messages by us-
ing different datagram tag values. Depending on how the receiver
manages the storage of unassembled fragments, the attacker could
potentially trick the receiver into exhausting their memory with
such an attack. Although we did not observe any fragmented MLE
commands during our packet analysis experiments, we decided to
use the source and destination port numbers that MLE commands
use for our spoofed first fragments. Furthermore, it is important to
note that a receiver may process a subsequent fragment that arrived
before the first fragment [35]. For that reason, we decided to test
the injection of first fragments and the injection of subsequent frag-
ments separately because subsequent fragments of UDP messages
do not have to include source and destination port numbers.

6.2 Setup
We used the same packet capturing tools for our energy depletion
attack experiments, while forming Thread networks that consisted
of only a Thread Leader and a Thread Sleepy End Device, that we
described in Section 5.1. More specifically, we conducted five energy
depletion attack experiments that differed only in terms of the type
of the spoofed packets, which corresponded to (a) secured MAC
Data packets, (b) secured MLE commands with correct UDP check-
sums, (c) secured MLE commands with incorrect UDP checksums,
(d) unsecured 6LoWPAN first fragments, and (e) unsecured 6LoW-
PAN subsequent fragments. We modified the existing implementa-
tion of an energy depletion attack against battery-powered Zigbee
devices of the atusb-attacks repository [3] in order to launch our
energy depletion attacks with an ATUSB [44] against our Thread
Sleepy End Device.8 Instead, we considered an energy depletion
attack experiment successful if our ATUSB could cause our Thread
Sleepy End Device to keep transmitting new Data Requests over a
long period of time, similar to how commercial battery-powered
Zigbee devices have behaved during this type of attack [6]. We
configured our ATUSB to selectively jam 22-byte MAC commands
of our Thread network and inject spoofed packets for 30 seconds
before allowing our Thread devices to communicate normally for 3
seconds and then wait for the next Data Request to repeat the same
process. Furthermore, after the completion of the aforementioned
experiments, we used a USB tester to collect power measurements
of our Thread Sleepy End Device during our energy depletion attack
where supposedly secured MLE commands were injected.

6.3 Findings
As we can see in Figure 5a and Figure 5b, our ATUSB was able to se-
lectively jam each 22-byte Data Request that our Thread Sleepy End
Device transmitted, as indicated by the 1-byte and 22-byte invalid
packets that we captured, and then spoof a MAC acknowledgment
with the expected MAC sequence number. After that, our ATUSB

8Our proof-of-concept attacks will be available on the atusb-attacks repository.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

On the Security of Thread Networks: Experimentation with OpenThread-Enabled Devices WiSec ’22, May 16–May 19, 2022, San Antonio, Texas, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(a) (b)

Figure 5: Screenshots of captured packets during energy depletion attack experiments, where the attacker was spoofing either
(a) a secured MAC Data packet or (b) a secured MLE command, after the selective jamming of a Data Request and the spoofing
of a corresponding MAC acknowledgment.

 0

 100

 200

 300

 400

 500

 0  300  600  900  1200  1500  1800  2100  2400  2700  3000  3300  3600

N
u
m

b
e
r 

o
f 
C

a
p
tu

re
d

P
a
c
k
e
ts

 p
e
r 

S
e
c
o
n
d

Time (seconds)

(a)

 0

 100

 200

 300

 400

 500

 0  300  600  900  1200  1500  1800  2100  2400  2700  3000  3300  3600

N
u
m

b
e
r 

o
f 
C

a
p
tu

re
d

P
a
c
k
e
ts

 p
e
r 

S
e
c
o
n
d

Time (seconds)

(b)

Figure 6: Number of captured packets per second during energy depletion attack experiments, where the attacker was spoofing
either (a) a secured MAC Data packet or (b) a secured MLE command, after the selective jamming of a Data Request and the
spoofing of a corresponding MAC acknowledgment.

injected a spoofed packet that our Thread Sleepy End Device ac-
knowledged. In the case where a supposedly secured MAC Data
packet was injected after each spoofed MAC acknowledgment, our
Thread Sleepy End Device transmitted a new Data Request only five
times and then it appears that it returned to its sleep mode, with the
same pattern repeating during its next polling period. Therefore,
the impact of this attack is expected to be low because the targeted
Thread Sleepy End Device would still spend most of its time in sleep
mode. This is also evident from Figure 6a, which shows only a small
increase in the number of captured packets per second during this
attack. However, when we were injecting any of the other spoofed
packet types that we tested, our Thread Sleepy End Device kept

transmitting new Data Requests until our ATUSB allowed one of
them to reach our Thread Leader as we next discuss.

The attack where secured MLE commands were injected (as
shown in Figure 5b) is expected to have the highest impact among
the energy depletion attacks that we tested because the targeted
Thread Sleepy End Device would keep performing unnecessary
security computations as part of the verification process for all
these spoofed packets. As we can observe in Figure 6b, the number
of captured packets per second increased significantly during each
30-second period that our ATUSB was selectively jamming Data
Requests and injecting supposedly secured MLE commands. Fur-
thermore, according to the power measurements that we collected
with our USB tester and provide in Figure 7, the power of our Thread

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WiSec ’22, May 16–May 19, 2022, San Antonio, Texas, USA Akestoridis et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  10  20  30  40  50  60  70  80  90

P
o
w

e
r 

(w
a
tt
s
)

Time (seconds)

Figure 7: Collected power measurements of our develop-
ment board that operated as a Thread Sleepy End Device,
from about 45 seconds before the selective jamming of its
Data Requests and injection of spoofed MAC acknowledg-
ments and supposedly secured MLE commands.

Sleepy End Device was approximately 0.05 watts shortly before our
attack started, while it was approximately 0.104 watts during the
spoofing of secured MLE commands by our ATUSB. Regarding the
attack where invalid MLE commands were injected, even though
the targeted Thread Sleepy End Device may not perform any unnec-
essary security computations in this case, the impact of this attack
is still expected to be significant because it would be wasting its
energy receiving and transmitting packets for long periods of time
instead of conserving its energy in sleep mode. The same argument
applies for the injection of unsecured 6LoWPAN first fragments
and unsecured 6LoWPAN subsequent fragments. Regarding the
receiver’s potential memory exhaustion that we hypothesized in
Section 6.1.4, we did not observe any immediate interruptions in its
operation. Lastly, we did not observe any difference in the handling
of first and subsequent fragments, making both of them potential
options for energy depletion purposes.

6.4 Recommendations
While there is a straightforward mitigation strategy for the second
and third energy depletion attack (that is, making the result of the
MLE verification process and the UDP integrity check affect the
transmission of new Data Requests), mitigating the fourth energy
depletion attack is not as simple because, as we mentioned in Sec-
tion 5.2.3, unsecured 6LoWPAN fragments are being legitimately
used in Thread networks. One potential approach is to make Thread
Sleepy End Devices ignore unsecured 6LoWPAN fragments that
are destined for ports where unsecured fragmentation is not ex-
pected. However, it is important to keep in mind that, according
to RFC 4944, a receiver may process a subsequent fragment that
arrived before the first fragment [35]. This complicates the devel-
opment of an effective mitigation strategy because a subsequent
fragment may not include a destination port number.

7 ONLINE PASSWORD GUESSING ATTACKS
As noted in RFC 8236, there is nothing to prevent an online attacker
from trying a random guess of the shared low-entropy password
during the key exchange process [25]. Furthermore, it appears that
RFC 8236 only provides recommendations for the handling of on-
line password guessing attacks. This motivated us to implement
proof-of-concept attacks in order to study the feasibility and associ-
ated risk of such attacks against OpenThread-enabled devices. We

present our online password guessing attacks in Section 7.1 and we
describe the setup of the corresponding experiments that we con-
ducted in Section 7.2. In Section 7.3 we discuss the results of these
experiments, while in Section 7.4 we provide recommendations
regarding the security of the Thread commissioning process.

7.1 Hypotheses
7.1.1 Impersonating the Joiner. If the OpenThread user does not
specify the 64-bit IEEE address of the Thread device that they want
to commission, then the attacker could perform multiple password
guesses during the period that the commissioner is accepting new
Thread devices. Furthermore, the attacker could potentially trick
the end user into restarting the commissioning process by prevent-
ing the legitimate Thread device from joining their Thread network
to perform more password guesses. The attacker could achieve
that by selectively jamming unsecured first fragments that use the
joiner UDP port, which would prevent the reassembly of Client
Hello messages. More specifically, in order to allow only the im-
personating joiner to complete the DTLS handshake, the selective
jammer should ignore first fragments that are exchanged between
two specified extended MAC addresses (the commissioner’s and the
impersonator’s). In addition, since 6LoWPAN fragments rely on un-
secured MAC acknowledgments, the attacker could spoof one after
each selectively jammed first fragment to trick the corresponding
Thread device into thinking that it was received successfully.

7.1.2 Impersonating the Commissioner. Alternatively, instead of
impersonating a joiner to perform online password guesses, an
attacker could also impersonate a commissioner. Note that, in order
for a joiner to attempt to join a Thread network for the first time,
they first have to learn some basic information about the end user’s
Thread network (such as its PAN ID), which they can request by
transmitting Beacon Requests and Discovery Requests. However,
an attacker could set up a device to operate as a fully functional
commissioner for a different Thread network that would accept a
guessed password, while another device is selectively jamming the
Thread beacons and Discovery Responses of the legitimate Thread
network in order to trick the joiner into initiating a DTLS hand-
shake with the impersonating commissioner. Even if the legitimate
commissioner specified the joiner’s 64-bit IEEE address, the im-
personating commissioner can simply be configured to accept any
joiner. Furthermore, even if the joiner was already aware of the le-
gitimate commissioner’s PAN ID, the impersonating commissioner
could also be configured to use the same PAN ID without causing a
PAN ID conflict, as we discovered during the experiment that we
discussed in Section 5.2.4. Therefore, in order to trick the joiner into
interacting with the impersonating commissioner instead of the
legitimate commissioner, the attacker can selectively jam Thread
beacons and Discovery Responses with the corresponding PAN
ID, except for the ones whose source address corresponds to the
extended address of the impersonating commissioner.

7.2 Setup
We conducted 11 experiments in order to study the feasibility and
associated risk of the online password guessing attacks that we hy-
pothesized, while using the packet capturing tools that we described
in Section 5.1. We used FTD joiners for all of our online password

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

On the Security of Thread Networks: Experimentation with OpenThread-Enabled Devices WiSec ’22, May 16–May 19, 2022, San Antonio, Texas, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Figure 8: Screenshot of captured packets during an online password guessing attack experiment, where the attacker selectively
jammed the unsecured 6LoWPAN first fragments of the legitimate joiner, while spoofing a MAC acknowledgment for each
selectively jammed packet, in order to prevent the reassembly of the legitimate joiner’s Client Hello message and to perform
online password guesses by impersonating a joiner.

guessing attack experiments, which interacted with a commissioner
directly. We implemented the selective jamming functionality of
our attacks9 by utilizing the framework of the atusb-attacks
repository [3], which we then launched with an ATUSB [44].

7.3 Findings
As we can see in Figure 8, our ATUSB was able to selectively jam
the first fragment of the legitimate joiner’s Client Hello message
(indicated by the 72-byte invalid packet that was captured) and to
spoof a corresponding MAC acknowledgment. This caused the le-
gitimate joiner to continue transmitting the remaining fragments of
the Client Hello message, after which the legitimate joiner was an-
ticipating to receive a Hello Verify Request message. However, the
commissioner was still waiting to receive the first fragment of the
legitimate joiner’s Client Hello message. After a few seconds, the
legitimate joiner attempted to transmit a new Client Hello message,
with the same pattern repeating for about 2 minutes (the default
duration of a commissioning period). During a single commission-
ing period, we were able to test 13 deliberately incorrect passwords
by using OpenThread’s CLI with an impersonating joiner, whose
first fragments were not selectively jammed (as indicated by the
successful reassembly of the Client Hello message and the corre-
sponding Hello Verify Request message in Figure 8). While this is a
small number of password guesses given the much larger number
of possible passwords, in a real-world setting, an attacker could
trick the end user into restarting the commissioning process by
preventing a legitimate Thread device from joining the end user’s
Thread network to perform more password guesses. In addition, if
the password is hard coded, the attacker could try guessing more

9Our proof-of-concept attacks will be available on the atusb-attacks repository.

passwords by tricking the end user into recommissioning their
device by depleting their energy or by using additional jamming
techniques, potentially similar to those that have been suggested
against legacy Zigbee devices [58] and Zigbee 3.0 devices [5]. How-
ever, given that OpenThread imposes a minimum password length
of six characters from an alphabet of 32 possible characters,10 the
risk of such an attack should be low as long as the end user does
not accept new Thread devices for long periods of time and does
not use an easily guessable password.

In Figure 9 we provide a screenshot of captured packets during
the experiment where our ATUSB was selectively jamming the
Thread beacons and Discovery Responses of our legitimate Thread
network, which caused our legitimate joiner to initiate a DTLS
handshake with our impersonating commissioner that was accept-
ing new Thread devices with an incorrectly guessed password. At
the time of writing, even if OpenThread users are aware of the
PAN ID of their Thread networks, they cannot provide that infor-
mation to a joiner in order to avoid initiating a DTLS handshake
with another Thread network.11 Nevertheless, OpenThread users
could create a new operational dataset with the corresponding PAN
ID12 before executing the joiner start command, even though
this does not appear to be a typical step for the commissioning
of OpenThread-enabled devices [38]. This caused the Discovery
Requests of the legitimate joiner to use the specified PAN ID as their
destination PAN ID (instead of using the broadcast PAN ID 0xffff).
However, by configuring the impersonating commissioner to also
10https://github.com/openthread/openthread/blob/
395d502576025f432e37da5538abf53ed4615700/src/core/meshcop/meshcop.cpp
11https://github.com/openthread/openthread/blob/
395d502576025f432e37da5538abf53ed4615700/src/cli/README_JOINER.md
12https://github.com/openthread/openthread/blob/
395d502576025f432e37da5538abf53ed4615700/src/cli/README_DATASET.md

9

https://github.com/openthread/openthread/blob/395d502576025f432e37da5538abf53ed4615700/src/core/meshcop/meshcop.cpp
https://github.com/openthread/openthread/blob/395d502576025f432e37da5538abf53ed4615700/src/core/meshcop/meshcop.cpp
https://github.com/openthread/openthread/blob/395d502576025f432e37da5538abf53ed4615700/src/cli/README_JOINER.md
https://github.com/openthread/openthread/blob/395d502576025f432e37da5538abf53ed4615700/src/cli/README_JOINER.md
https://github.com/openthread/openthread/blob/395d502576025f432e37da5538abf53ed4615700/src/cli/README_DATASET.md
https://github.com/openthread/openthread/blob/395d502576025f432e37da5538abf53ed4615700/src/cli/README_DATASET.md


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WiSec ’22, May 16–May 19, 2022, San Antonio, Texas, USA Akestoridis et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Figure 9: Screenshot of captured packets during an online password guessing attack experiment, where the attacker selec-
tively jammed the Thread beacons and Discovery Responses of the legitimate Thread network in order to trick the joiner into
initiating a DTLS handshake with the impersonating commissioner.

use the same PAN ID, the behavior that we observed was similar to
the one shown in Figure 9. Note that if the attacker already knows
the joiner’s password, then this attack could also be used in order
to hijack the joiner during its commissioning process. This could
be concerning if the corresponding password is hard coded, similar
to how Zigbee 3.0 devices are currently using hard-coded install
codes [57, p. 73], since in that case it could be leaked if it is not
properly secured.

7.4 Recommendations
As noted in RFC 8236, consecutively incorrect password guesses
can be easily detected with a false authentication counter in order
to thwart subsequent password guesses [25]. In real-world deploy-
ments, a warning should be raised whenever multiple incorrect
password guesses are detected so that the end user can stop the
commissioning process and take appropriate actions. Furthermore,
we recommend that commercial Thread devices are manufactured
to provide a dedicated indication whenever the commissioning
process fails because the commissioner expected a different pass-
word, so that the end users would not restart the commissioning
process and enable the attacker to perform more password guesses.
Similarly, we recommend raising a warning whenever a PAN ID
conflict is observed so that the end user can prevent the attacker
from interacting with the legitimate joiner. Finally, to enhance the
security of the commissioning process, commercial Thread devices
should ideally be manufactured to enable end users to change their
passwords over an out-of-band communication channel, so that the

end users are not forced to use hard-coded secrets in cases where
they cannot be certain that they have not been leaked.

8 CONCLUSION
In this work we present the results of our analysis on the security
of Thread networks that we formed using development boards that
were flashed with OpenThread binaries. In order to conduct our
experiments, we repurposed hardware and software tools that have
been used to analyze the security of Zigbee networks. Since both
Zigbee and Thread are based on the IEEE 802.15.4 standard, we
were able to enhance the capabilities of existing software tools to
support the security analysis of Thread networks. We made sev-
eral observations about the nature of Thread traffic, which led to
the development of energy depletion attacks and online password
guessing attacks. Furthermore, we study the susceptibility of our
Thread networks to our proof-of-concept implementations of our
hypothesized attacks. By publicly releasing our software enhance-
ments and dataset of captured Thread packets, we hope that we will
enable more researchers to study the security of Thread networks,
including the ones that Matter-enabled Thread devices will form
when they will be available as commercial smart home products.

ACKNOWLEDGMENTS
This research was supported in part by the Secure and Private IoT
initiative (IoT@CyLab) at the Carnegie Mellon CyLab Security and
Privacy Institute.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

On the Security of Thread Networks: Experimentation with OpenThread-Enabled Devices WiSec ’22, May 16–May 19, 2022, San Antonio, Texas, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Adafruit Industries. [n. d.]. Adafruit Feather nRF52840 Express. Retrieved February

12, 2022 from https://www.adafruit.com/product/4062
[2] Dimitrios-Georgios Akestoridis. [n. d.]. A collection of GNU Radio Companion

flow graphs for the inspection of IEEE 802.15.4-based networks. Retrieved February
12, 2022 from https://github.com/akestoridis/grc-ieee802154

[3] Dimitrios-Georgios Akestoridis. [n. d.]. Modified ATUSB firmware that supports
selective jamming and spoofing attacks. Retrieved February 12, 2022 from https:
//github.com/akestoridis/atusb-attacks

[4] Dimitrios-Georgios Akestoridis. [n. d.]. Zigator: A security analysis tool for Zig-
bee and Thread networks. Retrieved March 26, 2022 from https://github.com/
akestoridis/zigator

[5] Dimitrios-Georgios Akestoridis, Madhumitha Harishankar, Michael Weber, and
Patrick Tague. 2020. Zigator: Analyzing the Security of Zigbee-Enabled Smart
Homes. In Proceedings of the 13th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec). 77–88. https://doi.org/10.1145/3395351.
3399363

[6] Dimitrios-Georgios Akestoridis and Patrick Tague. 2021. CRAWDAD dataset
cmu/zigbee-eda (v. 2021-10-22). https://doi.org/10.15783/t8mt-a674

[7] Dimitrios-Georgios Akestoridis and Patrick Tague. 2021. HiveGuard: A Network
Security Monitoring Architecture for Zigbee Networks. In Proceedings of the
2021 IEEE Conference on Communications and Network Security (CNS). 209–217.
https://doi.org/10.1109/CNS53000.2021.9705043

[8] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things:
A survey. Computer Networks 54, 15 (2010), 2787–2805. https://doi.org/10.1016/j.
comnet.2010.05.010

[9] Bastian Bloessl. [n. d.]. IEEE 802.15.4 ZigBee Transceiver. Retrieved February 12,
2022 from https://github.com/bastibl/gr-ieee802-15-4

[10] Bastian Bloessl. [n. d.]. Some GNU Radio blocks that I use. Retrieved February 12,
2022 from https://github.com/bastibl/gr-foo

[11] Bastian Bloessl, Christoph Leitner, Falko Dressler, and Christoph Sommer. 2013.
A GNU Radio-based IEEE 802.15.4 Testbed. In Proceedings of the 12th GI/ITG KuVS
Fachgespräch “Drahtlose Sensornetze” (FGSN). 37–40.

[12] Francis Brown and Matthew Gleason. 2019. ZigBee Hacking: Smarter Home
Invasion with ZigDiggity. Presented at Black Hat USA 2019.

[13] Blake D. Bryant and Hossein Saiedian. 2017. A novel kill-chain framework for
remote security log analysis with SIEM software. Computers & Security 67 (2017),
198–210. https://doi.org/10.1016/j.cose.2017.03.003

[14] Xianghui Cao, Devu Manikantan Shila, Yu Cheng, Zequ Yang, Yang Zhou, and
Jiming Chen. 2016. Ghost-in-ZigBee: Energy Depletion Attack on ZigBee-Based
Wireless Networks. IEEE Internet of Things Journal 3, 5 (2016), 816–829. https:
//doi.org/10.1109/JIOT.2016.2516102

[15] Connectivity Standards Alliance. [n. d.]. Amazon, Apple, Google, and the Alliance
and Its Board Members Form Industry Working Group to Develop a New, Open
Standard for Smart Home Device Connectivity. Retrieved February 12, 2022 from
https://csa-iot.org/newsroom/connectedhomeip/

[16] Connectivity Standards Alliance. [n. d.]. Connectivity Standards Alliance Matter
Update. Retrieved March 23, 2022 from https://csa-iot.org/newsroom/matter-
march-update/

[17] Connectivity Standards Alliance. [n. d.]. The Connectivity Standards Alliance
Unveils Matter, Formerly Known as Project CHIP. Retrieved February 12, 2022
from https://csa-iot.org/newsroom/chip-is-now-matter/

[18] Connectivity Standards Alliance. [n. d.]. Matter (formerly Project CHIP) is creating
more connections between more objects, simplifying development for manufacturers
and increasing compatibility for consumers, guided by the Connectivity Standards
Alliance (formerly Zigbee Alliance). Retrieved February 12, 2022 from https:
//github.com/project-chip/connectedhomeip

[19] Connectivity Standards Alliance. [n. d.]. Zigbee. Retrieved February 12, 2022
from https://csa-iot.org/all-solutions/zigbee/

[20] CRAWDAD. [n. d.]. CRAWDAD: A Community Resource for Archiving Wireless
Data At Dartmouth. Retrieved March 25, 2022 from https://crawdad.org/

[21] Daniel Dinu and Ilya Kizhvatov. 2018. EM Analysis in the IoT Context: Lessons
Learned from an Attack on Thread. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2018, 1 (2018), 73–97. https://doi.org/10.13154/tches.v2018.
i1.73-97

[22] Morris Dworkin. 2007. Recommendation for Block Cipher Modes of Operation: The
CCM Mode for Authentication and Confidentiality. https://doi.org/10.6028/NIST.
SP.800-38C NIST Special Publication 800-38C.

[23] Ettus Research. [n. d.]. USRP N210 Software Defined Radio (SDR). Retrieved
February 12, 2022 from https://www.ettus.com/all-products/un210-kit/

[24] GNU Radio. [n. d.]. GNU Radio – the Free and Open Software Radio Ecosystem.
Retrieved February 12, 2022 from https://github.com/gnuradio/gnuradio

[25] Feng Hao. 2017. J-PAKE: Password-Authenticated Key Exchange by Juggling.
RFC 8236. https://doi.org/10.17487/rfc8236

[26] Feng Hao. 2017. Schnorr Non-interactive Zero-Knowledge Proof. RFC 8235.
https://doi.org/10.17487/rfc8235

[27] Jonathan W. Hui and Pascal Thubert. 2011. Compression Format for IPv6 Data-
grams over IEEE 802.15.4-Based Networks. RFC 6282. https://doi.org/10.17487/
rfc6282

[28] Eric M. Hutchins, Michael J. Cloppert, and Rohan M. Amin. 2010. Intelligence-
Driven Computer Network Defense Informed by Analysis of Adversary Cam-
paigns and Intrusion Kill Chains. White Paper. Retrieved February 12,
2022 from https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/
documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf

[29] IEEE Computer Society. 2006. IEEE Standard for Information technology—
Telecommunications and information exchange between systems—Local and
metropolitan area networks—Specific requirements—Part 15.4: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (WPANs). IEEE Std 802.15.4-2006. https:
//doi.org/10.1109/IEEESTD.2006.232110

[30] Chris Karlof and David Wagner. 2003. Secure Routing in Wireless Sensor Net-
works: Attacks and Countermeasures. Ad Hoc Networks 1, 2 (2003), 293–315.
https://doi.org/10.1016/S1570-8705(03)00008-8

[31] Richard Kelsey. 2015. Mesh Link Establishment. Internet-Draft draft-ietf-6lo-
mesh-link-establishment-00. Internet Engineering Task Force. Retrieved Febru-
ary 12, 2022 from https://datatracker.ietf.org/doc/html/draft-ietf-6lo-mesh-link-
establishment-00

[32] Hyung-Sin Kim, Sam Kumar, and David E. Culler. 2019. Thread/OpenThread:
A Compromise in Low-Power Wireless Multihop Network Architecture for the
Internet of Things. IEEE Communications Magazine 57, 7 (2019), 55–61. https:
//doi.org/10.1109/MCOM.2019.1800788

[33] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. 1997. HMAC: Keyed-Hashing
for Message Authentication. RFC 2104. https://doi.org/10.17487/rfc2104

[34] Yu Liu, Zhibo Pang, György Dán, Dapeng Lan, and Shaofang Gong. 2018. A
Taxonomy for the Security Assessment of IP-Based Building Automation Systems:
The Case of Thread. IEEE Transactions on Industrial Informatics 14, 9 (2018), 4113–
4123. https://doi.org/10.1109/TII.2018.2844955

[35] Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan W. Hui, and David E.
Culler. 2007. Transmission of IPv6 Packets over IEEE 802.15.4 Networks. RFC
4944. https://doi.org/10.17487/rfc4944

[36] National Institute of Standards and Technology. 2001. Advanced Encryption
Standard (AES). https://doi.org/10.6028/NIST.FIPS.197 FIPS 197.

[37] National Institute of Standards and Technology. 2002. Secure Hash Standard
(SHS). FIPS 180-2.

[38] OpenThread. [n. d.]. Build a Thread network with nRF52840 boards and OpenThread.
Retrieved February 12, 2022 from https://openthread.io/codelabs/openthread-
hardware

[39] OpenThread. [n. d.]. IPv6 Addressing. Retrieved February 12, 2022 from https:
//openthread.io/guides/thread-primer/ipv6-addressing

[40] OpenThread. [n. d.]. Network Discovery and Formation. Retrieved February 12,
2022 from https://openthread.io/guides/thread-primer/network-discovery

[41] OpenThread. [n. d.]. Node Roles and Types. Retrieved February 12, 2022 from
https://openthread.io/guides/thread-primer/node-roles-and-types

[42] OpenThread. [n. d.]. OpenThread on Nordic nRF528xx examples. Retrieved
February 12, 2022 from https://github.com/openthread/ot-nrf528xx

[43] OpenThread. [n. d.]. OpenThread released by Google is an open-source imple-
mentation of the Thread networking protocol. Retrieved February 12, 2022 from
https://github.com/openthread/openthread

[44] Qi Hardware Inc. [n. d.]. Ben-WPAN Overview. Retrieved February 12, 2022 from
http://downloads.qi-hardware.com/people/werner/wpan/web/

[45] Eric Rescorla and Nagendra Modadugu. 2012. Datagram Transport Layer Security
Version 1.2. RFC 6347. https://doi.org/10.17487/rfc6347

[46] Naveen Sastry and DavidWagner. 2004. Security Considerations for IEEE 802.15.4
Networks. In Proceedings of the 3rd ACM Workshop on Wireless Security (WiSe).
32–42. https://doi.org/10.1145/1023646.1023654

[47] SecDev. [n. d.]. Scapy: the Python-based interactive packet manipulation program
& library. Retrieved February 12, 2022 from https://github.com/secdev/scapy

[48] Thread Group. [n. d.]. Thread Group: Member Benefits. Retrieved February 12,
2022 from https://www.threadgroup.org/thread-group#Membershipbenefits

[49] Thread Group. [n. d.]. What is Thread: Overview. Retrieved February 12, 2022
from https://www.threadgroup.org/What-is-Thread/Overview

[50] Thread Group. 2015. Battery-Operated Devices. White Paper. Retrieved Febru-
ary 12, 2022 from https://www.threadgroup.org/Portals/0/documents/support/
BatteryOperatedDevicesWhitePaper_656_2.pdf

[51] Thread Group. 2015. Thread Commissioning. White Paper. Retrieved Febru-
ary 12, 2022 from https://www.threadgroup.org/Portals/0/documents/support/
CommissioningWhitePaper_658_2.pdf

[52] Thread Group. 2015. Thread Usage of 6LoWPAN. White Paper. Retrieved Febru-
ary 12, 2022 from https://www.threadgroup.org/Portals/0/documents/support/
6LoWPANUsage_632_2.pdf

[53] Thread Group. 2020. Thread Network Fundamentals. White Paper. Retrieved Feb-
ruary 12, 2022 from https://www.threadgroup.org/Portals/0/documents/support/
Thread%20Network%20Fundamentals_v3.pdf

11

https://www.adafruit.com/product/4062
https://github.com/akestoridis/grc-ieee802154
https://github.com/akestoridis/atusb-attacks
https://github.com/akestoridis/atusb-attacks
https://github.com/akestoridis/zigator
https://github.com/akestoridis/zigator
https://doi.org/10.1145/3395351.3399363
https://doi.org/10.1145/3395351.3399363
https://doi.org/10.15783/t8mt-a674
https://doi.org/10.1109/CNS53000.2021.9705043
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://github.com/bastibl/gr-ieee802-15-4
https://github.com/bastibl/gr-foo
https://doi.org/10.1016/j.cose.2017.03.003
https://doi.org/10.1109/JIOT.2016.2516102
https://doi.org/10.1109/JIOT.2016.2516102
https://csa-iot.org/newsroom/connectedhomeip/
https://csa-iot.org/newsroom/matter-march-update/
https://csa-iot.org/newsroom/matter-march-update/
https://csa-iot.org/newsroom/chip-is-now-matter/
https://github.com/project-chip/connectedhomeip
https://github.com/project-chip/connectedhomeip
https://csa-iot.org/all-solutions/zigbee/
https://crawdad.org/
https://doi.org/10.13154/tches.v2018.i1.73-97
https://doi.org/10.13154/tches.v2018.i1.73-97
https://doi.org/10.6028/NIST.SP.800-38C
https://doi.org/10.6028/NIST.SP.800-38C
https://www.ettus.com/all-products/un210-kit/
https://github.com/gnuradio/gnuradio
https://doi.org/10.17487/rfc8236
https://doi.org/10.17487/rfc8235
https://doi.org/10.17487/rfc6282
https://doi.org/10.17487/rfc6282
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf
https://doi.org/10.1109/IEEESTD.2006.232110
https://doi.org/10.1109/IEEESTD.2006.232110
https://doi.org/10.1016/S1570-8705(03)00008-8
https://datatracker.ietf.org/doc/html/draft-ietf-6lo-mesh-link-establishment-00
https://datatracker.ietf.org/doc/html/draft-ietf-6lo-mesh-link-establishment-00
https://doi.org/10.1109/MCOM.2019.1800788
https://doi.org/10.1109/MCOM.2019.1800788
https://doi.org/10.17487/rfc2104
https://doi.org/10.1109/TII.2018.2844955
https://doi.org/10.17487/rfc4944
https://doi.org/10.6028/NIST.FIPS.197
https://openthread.io/codelabs/openthread-hardware
https://openthread.io/codelabs/openthread-hardware
https://openthread.io/guides/thread-primer/ipv6-addressing
https://openthread.io/guides/thread-primer/ipv6-addressing
https://openthread.io/guides/thread-primer/network-discovery
https://openthread.io/guides/thread-primer/node-roles-and-types
https://github.com/openthread/ot-nrf528xx
https://github.com/openthread/openthread
http://downloads.qi-hardware.com/people/werner/wpan/web/
https://doi.org/10.17487/rfc6347
https://doi.org/10.1145/1023646.1023654
https://github.com/secdev/scapy
https://www.threadgroup.org/thread-group#Membershipbenefits
https://www.threadgroup.org/What-is-Thread/Overview
https://www.threadgroup.org/Portals/0/documents/support/BatteryOperatedDevicesWhitePaper_656_2.pdf
https://www.threadgroup.org/Portals/0/documents/support/BatteryOperatedDevicesWhitePaper_656_2.pdf
https://www.threadgroup.org/Portals/0/documents/support/CommissioningWhitePaper_658_2.pdf
https://www.threadgroup.org/Portals/0/documents/support/CommissioningWhitePaper_658_2.pdf
https://www.threadgroup.org/Portals/0/documents/support/6LoWPANUsage_632_2.pdf
https://www.threadgroup.org/Portals/0/documents/support/6LoWPANUsage_632_2.pdf
https://www.threadgroup.org/Portals/0/documents/support/Thread%20Network%20Fundamentals_v3.pdf
https://www.threadgroup.org/Portals/0/documents/support/Thread%20Network%20Fundamentals_v3.pdf


1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WiSec ’22, May 16–May 19, 2022, San Antonio, Texas, USA Akestoridis et al.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[54] Wireshark Foundation. [n. d.]. Wireshark’s official Git repository. Retrieved
February 12, 2022 from https://gitlab.com/wireshark/wireshark

[55] Anthony D. Wood and John A. Stankovic. 2002. Denial of Service in Sensor
Networks. Computer 35, 10 (2002), 54–62. https://doi.org/10.1109/MC.2002.
1039518

[56] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. 2005. The
Feasibility of Launching and Detecting Jamming Attacks inWireless Networks. In

Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc). 46–57. https://doi.org/10.1145/1062689.1062697

[57] Zigbee Alliance. 2016. Base Device Behavior Specification. ZigBee Document
13-0402-13.

[58] Tobias Zillner and Sebastian Strobl. 2015. ZigBee Exploited - The Good, the Bad
and the Ugly. Presented at Black Hat USA 2015.

12

https://gitlab.com/wireshark/wireshark
https://doi.org/10.1109/MC.2002.1039518
https://doi.org/10.1109/MC.2002.1039518
https://doi.org/10.1145/1062689.1062697

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Threat Model and Assumptions
	5 Packet Analysis Experiments
	5.1 Setup
	5.2 Observations

	6 Energy Depletion Attacks
	6.1 Hypotheses
	6.2 Setup
	6.3 Findings
	6.4 Recommendations

	7 Online Password Guessing Attacks
	7.1 Hypotheses
	7.2 Setup
	7.3 Findings
	7.4 Recommendations

	8 Conclusion
	Acknowledgments
	References

