HiveGuard: A Network Security Monitoring Architecture for Zigbee Networks

Dimitrios-Georgios Akestoridis and Patrick Tague

Carnegie Mellon University

IEEE CNS 2021

- Zigbee networks can be found in a wide range of smart environments with low-power IoT devices, but they remain largely unmonitored
- There are no robust open-source software tools to continuously monitor Zigbee traffic for potential security issues

- Without an appropriate network security monitoring system, several types of attacks against Zigbee networks can go undetected
- We designed HiveGuard to provide archiving, aggregation, inspection, visualization, and alert services for Zigbee traffic

- We developed detection rules for attacks against centralized Zigbee networks that can be launched by an outside attacker
- We developed an energy depletion attack against battery-powered Zigbee devices that improves upon the attack that Cao et al. presented (DOI: 10.1109/JIOT.2016.2516102)

Overview of Our Attack (pt. 1)

Overview of Our Attack (pt. 2)

Overview of Our Attack (pt. 3)

Proof-of-Concept Implementation

• It will be available as the attack with ID 13

https://github.com/akestoridis/atusb-attacks

Overview of HiveGuard

Prototype Implementation (pt. 1)

- Our HiveGuard prototype implementation has been organized into three repositories
- https://github.com/akestoridis/hiveguard
- https://github.com/akestoridis/hiveguard-backend
- https://github.com/akestoridis/hiveguard-frontend

Prototype Implementation (pt. 2)

- We wrote our WIDS sensor software on top of Zigator and we extended Scapy to dissect certain Zigbee packets
- https://github.com/akestoridis/zigator/commit/856
 5e6fd26cc3c2ac457c4a467c184297eb51e94
- https://github.com/secdev/scapy/commit/6ad83c5
 13648fc1b4199a4b2d7b74b8a8c2ae0ce

- We conducted **four experiments** in order to test HiveGuard against our energy depletion attack
- We used two Raspberry Pis, each of which was equipped with an ATUSB, as our **WIDS sensors**
- Our dataset of captured Zigbee packets will be available at https://crawdad.org/

Experimental Results (pt. 2)

Experimental Results (pt. 3)

Experimental Results (pt. 4)

No.	Time	Delta time	MAC Src	MAC Dst	MAC SN	Length	Info				
136	308.369641	6.733838	0x0000	0xffff	10	47	Link	Status	5		
137	308.699795	0.330154	0xe0b3	0x0000	171	12	Data	Reques	st		
138	308.701158	0.001363			171	5	Ack				
139	315.764929	7.063771	0xe0b3	0x0000	172	12	Data	Reques	st		
140	315.765009	0.000080			172	5	Ack				
141	322.832626	7.067617	0xe0b3	0x0000	173	12	Unkno	own Con	nmand, B	ad FCS	5
142	322.840584	0.007958	0x0000	0xe0b3	255	127	Data,	Dst:	0xe0b3,	Src:	0x0000
143	322.840606	0.000022			255	5	Ack				
.144	322.842006	0.001400	0xe0b3	0x0000	174	12	Unkno	own Con	nmand, B	ad FCS	5
145	322.847454	0.005448	0x0000	0xe0b3	255	127	Data,	Dst:	OxeOb3,	Src:	0x0000
146	322.847471	0.000017			255	5	Ack				
147	322.852682	0.005211	0xe0b3	0x0000	175	12	Unkno	own Con	nmand, B	ad FCS	5
148	322.859255	0.006573	0x0000	0xe0b3	255	127	Data,	Dst:	0xe0b3,	Src:	0x0000
149	322.859341	0.000086			255	5	Ack				
150	322.863217	0.003876	0xe0b3	0x0000	176	12	Unkno	own Con	nmand, B	ad FCS	5
151	322.871094	0.007877	0x0000	0xe0b3	255	127	Data,	Dst:	0xe0b3,	Src:	0x0000
152	322.871218	0.000124			255	5	Ack				
153	322.876364	0.005146	0xe0b3	0x0000	177	12	Unkno	own Con	nmand, B	ad FCS	S
154	322.876467	0.000103			177	5	Ack		200 A 100	and a constant of	
155	322.883090	0.006623	0x0000	0xe0b3	255	127	Data,	Dst:	0xe0b3,	Src:	0x0000
156	322.883216	0.000126			255	5	Ack				
157	322.888365	0.005149	0xe0b3	0x0000	178	12	Unkno	own Con	nmand, B	ad FCS	S
158	322.896215	0.007850	0x0000	0xe0b3	255	127	Data,	Dst:	0xe0b3,	Src:	0x0000
159	322.896342	0.000127			255	5	Ack				

- We depleted the energy of four commercial Zigbee devices, each powered by a 3-volt CR2450 lithium battery, in less than 16 hours
- HiveGuard successfully generated an alert for each launched attack during our experiments

- We built a distributed system, called HiveGuard, to monitor the security of Zigbee networks
- We developed an energy depletion attack against battery-powered Zigbee devices to test our prototype's monitoring capabilities

- Our experiments show that it is possible for an outside attacker to completely deplete the energy of four commercial Zigbee devices in a relatively short amount of time
- We are publicly releasing our source code and our captured packets to enable others to use them for their own projects