

Mobile Security - Tutorial 1

Beginning
Advanced

Android Development
Brian Ricks
Fall 2014

Before we begin...

● I took your Wireless
Network Security
course in Spring...
are you gonna have
memes in this?
– No

What are we doing?

● Eat up tidbits of
knowledge beyond just
the basics
– We assume you have

some Android
fundamentals already,
and are fluent in Java

● Devour background
needed for the
homeworks
– ….. and the course

projects also

What do you need?

● Something to write code
in
– Android Studio is

recommended

– The ADT plugin for Eclipse
is an alternative

● The Android SDK

Lets Get Started

● Topics
– Processes

– Services

– Threads

– Intents

Processes

● Talking about Linux processes here
– Everything that makes up an app (components) are

run from the same process and thread (main
thread)

● Can spawn other threads
● Can change which process a component runs in by

messing with the manifest (android:process)

Process Lifecycle

Shamelessly ripped from:
http://www.techotopia.com/index.php/Understanding_Android_Application_
and_Activity_Lifecycles

Process Lifecycle

● What does a visible process mean?
– One that is technically visible to the user, but is not

in the foreground
● An activity from another process that does not take up

the entire screen
– Think the messenger window from FB messenger, or a dialog

– An activity (from another process) which takes up
the entire screen would make the activity under it
not visible

Process Lifecycle

● What is the difference between a service and
background process?
– A background process contains activities not visible

to the user, but is not hosting any services that
would qualify it for service process priority

– Some subtle differences
● Service processes may not contain activities
● Background processes always contain activities not

visible to the user
– Otherwise, it would be an empty process

Activities

● Component that provides user interaction to
accomplish some task
– Any screen you see when running an app is an

activity, and each activity has a screen associated
with it

– These interact with each other (and possibly other
components) to form apps

Activity Lifecycle

● In terms of state

● Shamelessly ripped from: http://www.edureka.co/blog/android-tutorials-for-
beginners-activity-component/

Activity Lifecycle

● In terms of visibility

● Shamelessly ripped from:
http://www.techotopia.com/index.php/Ha
ndling_Android_Activity_State_Changes

Activity Lifecycle

● A note about onPause() vs onStop() in terms of
visibility
– onPause() - Activity still has visible scope. As with

visible processes, this means some other activity
will capture the foreground (user interaction), but is
not taking up the entire screen

– onStop() - This activity is about to be covered
entirely (the screen) by another activity

Activities - Starting

● When you start an activity:
– The activity which called it is stopped

● It's onPause() method is called

– The starting activity is pushed onto a stack (called
the back-stack)

● It's onCreate() method is called (followed by onStart()
and onResume())

● Now it has foreground visibility

– If the calling activity is no longer visible
● It's onStop() method is called

Activities – Back Stack

Shamelessly ripped from:
http://www.techotopia.com/index.php/Understanding_Android_Application_
and_Activity_Lifecycles

Activities – Saving State

● When an activity loses foreground visibility, it's
state is saved (until killed)
– What if the activity is killed and you want to save

state?
● onSaveInstanceState() - write state info as key/value pairs

to a Bundle (container of key/value pairs)
– No guarantees for its calling – persistent data should be saved

during onPause() - UI state saved during onSaveInstance()
● onRestoreInstanceState() and onCreate(), this Bundle is

passed
– Null Bundle implies activity created for the first time

Activities – Saving State

● Why is this important?
– Activities are destroyed during

events you may not consider
● When the user turns the phone, and

the screen reorients, this causes the
activity to be destroyed and
recreated

Activities – Saving State

● What if I'm too lazy to save
state?

● Some UI state is saved anyways, so
maybe being lazy is fine?

Services

● A component that doesn't have user interaction,
usually longer-running tasks.
– Can be used to do background processing of some

task by an app
● Note: services do not run in their own threads by default

– Can be shared with other apps

Service Lifecycle

● Shamelessly ripped from:
http://www.tutorialspoint.com/android/and
roid_services.htm

Services - Starting

● startService()
– Creates the service, calls onCreate(), then

onStartCommand()
● Command (intent) is passed from whatever requested

the service

● bindService()
– Used to create a connection to a service

● Will create service if not already running
● Does not call onStartCommand()

● Services (not-bounded) will run even if the
starting app is terminated

Services - Stopping

● stopService()
– Services can also use stopSelf()

● Bound services: If any components have a
connection (bound) to the service, it will keep
running until all connections are terminated
– A service is considered a bound service if it was

created using bindService(), and
onStartCommand() was not called

Services vs Threads

● Which should I use for background tasks?
– Depends on what you wanna do

● Do you need something to be running even if your app is
not?

– Services perhaps
● Do you only need something to be running if your app is

currently running?
– Threads perhaps

● Services should be in their own threads
– You can use the IntentService class to accomplish

this

Services and Threads

● Why should I put my services in their own
threads?
– If they are in your main thread, then they can block

UI related tasks (and cause ANR issues)

● ANR?
– Application Not Responding – Android will pop up a

really nasty dialog alerting the user to how much
your app sucks if a foreground activity does not
react to user input within 5 seconds

Services and Threads

● Can I be lazy and not
care about ANR
issues?
– I won't be running your

code, so why not?

Threads

● Well, we should
probably talk about
threads now...

Threads

● Android apps by default follow a single thread
model
– But you can spin off your own threads

– But.... the UI toolkit is not thread safe

● What does this all mean?
– All UI needs to be done from the main thread

– Any other tasks can be spun off to their own
threads

● But don't call any UI methods from these threads

Threads - Creating

● How do I create
threads?
– Same way as you

would in Java

Threads – UI Manipulation

● How do I manipulate UI from outside the main
thread?
– An easy way is to use AsyncTask instead of Thread

● Separates what should be run in a separate thread vs
what should be run in the main thread

– Another easy way is to use the Handler class
● With this method, you can still use the Thread class, but

handle synchronization with the UI by using the Handler
class.

● Provides a callback method to handle messages sent
from other threads

Threads - Termination

● Under what conditions will a spawned thread
terminate?
– Containing process terminates

– Threads created using AsyncTask will terminate if
the activity does

– Threads created manually may still be running
● … and, if your activity is recreated (say by turning the

screen orientation), the thread may keep running
– Don't assume Java will reclaim the thread

Threads – When to Use

● To save time and mess, follow these guidelines
– Do you need to run a background task for a short

duration, and it's related to an activity?
● AsyncTask created threads

– Do you need to run a background task for a long
duration, and it's related to an activity?

● AsyncTask created threads, or set it up manually and
make sure to terminate the thread in the activity's
onDestroy() method

– Do you need to run a background task not related
to a specific activity?

● Use a service

Intents

● Now on to Intents
– The intent of these

slides is to fill you in on
why intents are
awesome

Intents

● Messengers between components
– Usually between activities, but can be any context

→ class

– Three main use cases
● Starting activities
● Starting services
● Deliver broadcasts

Intents – Starting Activities

● startActivity() method
● If you want a result sent back to your activity,

use startActivityForResult() instead
– Will receive another intent, passed to your

onActivityResult() callback method, when the calling
activity finishes

Intents – Explicit vs Implicit

● Explicit – Here, you know exactly which
component you want to send the intent too.
You specify the component name by its class.
– Usually used when starting activities within a

common app

● Implicit – Here, you may not know (or care)
which component can handle a request, so you
specify in the intent what you need done
– You want the ability to import camera shots to your

app, so you use an implicit intent to request a
component which can take the shots

Intents - Implicit

Shamelessly ripped from: http://developer.android.com/guide/components/intents-filters.html

The android system acts as
a matchmaker

Intents - Implicit

● How does android know which components will
match my request?
– Compare contents of intent to intent-filters specified

in other apps' manifests
● If only one match is found, that component is started
● If multiple matches are found, system prompts user to

pick

Intents - Implicit

● What criteria does the matching use?
– Intent action: Action specified in the intent must

match one of the actions specified in the manifest

– Intent category: Each category specified in the
intent must match a category specified in the
manifest

– Intent data (URI/MIME): Matching based on which
URI/MIME types are present in the intent compared
to what is present in the manifest

Intents - Implicit

● What about if I use an implicit intent to start a
service?
– If multiple services can handle the intent, one of

them will start, and the user will not know which one

– Best to use explicit intents in the case of services

Intents - Implicit

● So if I declare in my app's manifest that
component X can handle intent-filter Y, I will
receive these requests?
– Maybe. If your app is the only app installed that

can handle intent-filter Y, then it will

– Or, your app will be one of many in a list for the
user to choose from

● Apps can force the chooser dialog to display

Intents - Implicit

● How can I determine if the device has any
installed components that can handle a specific
intent request?
– PackageManager class

● Can query the system about installed apps and services
which can handle a given intent

The End

Disclaimer: Meme is in no way presented here to disrespect Dennis Ritchie or his legacy, only your mother.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

