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Before we begin...

● I took your Wireless 
Network Security 
course in Spring... 
are you gonna have 
memes in this?
– No



  

What are we doing?

● Eat up tidbits of 
knowledge beyond just 
the basics
– We assume you have 

some Android 
fundamentals already, 
and are fluent in Java

● Devour background 
needed for the 
homeworks
– ….. and the course 

projects also



  

What do you need?

● Something to write code 
in
– Android Studio is 

recommended

– The ADT plugin for Eclipse 
is an alternative

● The Android SDK



  

Lets Get Started

● Topics
– Processes

– Services

– Threads

– Intents



Processes

● Talking about Linux processes here
– Everything that makes up an app (components) are 

run from the same process and thread (main 
thread)

● Can spawn other threads
● Can change which process a component runs in by 

messing with the manifest (android:process)



Process Lifecycle

Shamelessly ripped from: 
http://www.techotopia.com/index.php/Understanding_Android_Application_
and_Activity_Lifecycles



Process Lifecycle

● What does a visible process mean?
– One that is technically visible to the user, but is not 

in the foreground
● An activity from another process that does not take up 

the entire screen
– Think the messenger window from FB messenger, or a dialog

– An activity (from another process) which takes up 
the entire screen would make the activity under it 
not visible



Process Lifecycle

● What is the difference between a service and 
background process?
– A background process contains activities not visible 

to the user, but is not hosting any services that 
would qualify it for service process priority

– Some subtle differences
● Service processes may not contain activities
● Background processes always contain activities not 

visible to the user
–  Otherwise, it would be an empty process



  

Activities

● Component that provides user interaction to 
accomplish some task
– Any screen you see when running an app is an 

activity, and each activity has a screen associated 
with it

– These interact with each other (and possibly other 
components) to form apps



  

Activity Lifecycle

● In terms of state

● Shamelessly ripped from: http://www.edureka.co/blog/android-tutorials-for-
beginners-activity-component/



  

Activity Lifecycle

● In terms of visibility

● Shamelessly ripped from: 
http://www.techotopia.com/index.php/Ha
ndling_Android_Activity_State_Changes



Activity Lifecycle

● A note about onPause() vs onStop() in terms of 
visibility
– onPause() - Activity still has visible scope.  As with 

visible processes, this means some other activity 
will capture the foreground (user interaction), but is 
not taking up the entire screen

– onStop() - This activity is about to be covered 
entirely (the screen) by another activity



Activities - Starting

● When you start an activity:
– The activity which called it is stopped

● It's onPause() method is called

– The starting activity is pushed onto a stack (called 
the back-stack)

● It's onCreate() method is called (followed by onStart() 
and onResume())

● Now it has foreground visibility

– If the calling activity is no longer visible
● It's onStop() method is called



Activities – Back Stack

Shamelessly ripped from: 
http://www.techotopia.com/index.php/Understanding_Android_Application_
and_Activity_Lifecycles



  

Activities – Saving State

● When an activity loses foreground visibility, it's 
state is saved (until killed)
– What if the activity is killed and you want to save 

state?
● onSaveInstanceState() - write state info as key/value pairs 

to a Bundle (container of key/value pairs)
– No guarantees for its calling – persistent data should be saved 

during onPause() - UI state saved during onSaveInstance()
● onRestoreInstanceState() and onCreate(), this Bundle is 

passed
– Null Bundle implies activity created for the first time 



Activities – Saving State

● Why is this important?
– Activities are destroyed during 

events you may not consider
● When the user turns the phone, and 

the screen reorients, this causes the 
activity to be destroyed and 
recreated



Activities – Saving State

● What if I'm too lazy to save 
state?

● Some UI state is saved anyways, so 
maybe being lazy is fine?



Services

● A component that doesn't have user interaction, 
usually longer-running tasks.
– Can be used to do background processing of some 

task by an app
● Note: services do not run in their own threads by default

– Can be shared with other apps



Service Lifecycle

● Shamelessly ripped from: 
http://www.tutorialspoint.com/android/and
roid_services.htm



Services - Starting

● startService()
– Creates the service, calls onCreate(), then 

onStartCommand()
● Command (intent) is passed from whatever requested 

the service

● bindService()
– Used to create a connection to a service

● Will create service if not already running
● Does not call onStartCommand()

● Services (not-bounded) will run even if the 
starting app is terminated



Services - Stopping

● stopService()
– Services can also use stopSelf()

● Bound services: If any components have a 
connection (bound) to the service, it will keep 
running until all connections are terminated
– A service is considered a bound service if it was 

created using bindService(), and 
onStartCommand() was not called



Services vs Threads

● Which should I use for background tasks?
– Depends on what you wanna do

● Do you need something to be running even if your app is 
not?

– Services perhaps
● Do you only need something to be running if your app is 

currently running?
– Threads perhaps

● Services should be in their own threads
– You can use the IntentService class to accomplish 

this



Services and Threads

● Why should I put my services in their own 
threads?
– If they are in your main thread, then they can block 

UI related tasks (and cause ANR issues)

● ANR?
– Application Not Responding – Android will pop up a 

really nasty dialog alerting the user to how much 
your app sucks if a foreground activity does not 
react to user input within 5 seconds



Services and Threads

● Can I be lazy and not 
care about ANR 
issues?
– I won't be running your 

code, so why not?



Threads

● Well, we should 
probably talk about 
threads now...



Threads

● Android apps by default follow a single thread 
model
– But you can spin off your own threads

– But.... the UI toolkit is not thread safe

● What does this all mean?
– All UI needs to be done from the main thread

– Any other tasks can be spun off to their own 
threads

● But don't call any UI methods from these threads



Threads - Creating

● How do I create 
threads?
– Same way as you 

would in Java



Threads – UI Manipulation

● How do I manipulate UI from outside the main 
thread?
– An easy way is to use AsyncTask instead of Thread

● Separates what should be run in a separate thread vs 
what should be run in the main thread

– Another easy way is to use the Handler class
● With this method, you can still use the Thread class, but 

handle synchronization with the UI by using the Handler 
class.

● Provides a callback method to handle messages sent 
from other threads



Threads - Termination

● Under what conditions will a spawned thread 
terminate?
– Containing process terminates

– Threads created using AsyncTask will terminate if 
the activity does

– Threads created manually may still be running
● … and, if your activity is recreated (say by turning the 

screen orientation), the thread may keep running
– Don't assume Java will reclaim the thread



Threads – When to Use

● To save time and mess, follow these guidelines
– Do you need to run a background task for a short 

duration, and it's related to an activity?
● AsyncTask created threads

– Do you need to run a background task for a long 
duration, and it's related to an activity?

● AsyncTask created threads, or set it up manually and 
make sure to terminate the thread in the activity's 
onDestroy() method

– Do you need to run a background task not related 
to a specific activity?

● Use a service



Intents

● Now on to Intents
– The intent of these 

slides is to fill you in on 
why intents are 
awesome



  

Intents

● Messengers between components
– Usually between activities, but can be any context 

→ class

– Three main use cases
● Starting activities
● Starting services
● Deliver broadcasts



Intents – Starting Activities

● startActivity() method
● If you want a result sent back to your activity, 

use startActivityForResult() instead
– Will receive another intent, passed to your 

onActivityResult() callback method, when the calling 
activity finishes



  

Intents – Explicit vs Implicit

● Explicit – Here, you know exactly which 
component you want to send the intent too.  
You specify the component name by its class.
– Usually used when starting activities within a 

common app

● Implicit – Here, you may not know (or care) 
which component can handle a request, so you 
specify in the intent what you need done
– You want the ability to import camera shots to your 

app, so you use an implicit intent to request a 
component which can take the shots



Intents - Implicit

Shamelessly ripped from: http://developer.android.com/guide/components/intents-filters.html

The android system acts as 
a matchmaker



Intents - Implicit

● How does android know which components will 
match my request?
– Compare contents of intent to intent-filters specified 

in other apps' manifests
● If only one match is found, that component is started
● If multiple matches are found, system prompts user to 

pick



Intents - Implicit

● What criteria does the matching use?
– Intent action: Action specified in the intent must 

match one of the actions specified in the manifest

– Intent category: Each category specified in the 
intent must match a category specified in the 
manifest

– Intent data (URI/MIME): Matching based on which 
URI/MIME types are present in the intent compared 
to what is present in the manifest



Intents - Implicit

● What about if I use an implicit intent to start a 
service?
– If multiple services can handle the intent, one of 

them will start, and the user will not know which one

– Best to use explicit intents in the case of services



Intents - Implicit

● So if I declare in my app's manifest that 
component X can handle intent-filter Y, I will 
receive these requests?
– Maybe.  If your app is the only app installed that 

can handle intent-filter Y, then it will

– Or, your app will be one of many in a list for the 
user to choose from

● Apps can force the chooser dialog to display



Intents - Implicit

● How can I determine if the device has any 
installed components that can handle a specific 
intent request?
– PackageManager class

● Can query the system about installed apps and services 
which can handle a given intent



  

The End

Disclaimer:  Meme is in no way presented here to disrespect Dennis Ritchie or his legacy, only your mother.
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